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Abstract. Understanding, simulating and forecasting dynamic and nonlinear natural 
phenomena are necessary in a climate change context and increased sensitivity of societies to 
natural hazards. Nevertheless, even though powerful computing tools and algorithms have been 
widely used to understand and to predict natural disasters, these tasks are still challenging for 
scientists. Indeed, one of the most dangerous natural phenomena, flash floods keep being a 
challenge for modelers, despite (i) the existence of some effective hydrological simulating tools, 
and (ii) the increasing availability of descriptive data, especially rainfall and discharge. In 
particular, on one hand, environmental data contain an important amount of noise leading to 
additional uncertainties and on the other hand, physically based models strongly depend on 
assumptions about the behavior of the basin, that is often more variable in space and time than 
what is modelled. With the objective of applying data assimilation to improve forecasting 
properties of the physical model, it is necessary to dispose of a differentiable model. In order to 
mitigate this issue, a hybrid physical and statistical approach is proposed in this study. It was 
shown in previous works that deep neural networks are able to identify any differentiable 
function by using the universal approximation property. Deep neural networks are also good 
candidates to perform the digital twin of the physical model. Thus, three different neural 
networks models were designed in this study, and each one is implementing a different type of 
non-linear filter model, in order to achieve the dynamic character of the catchment area 
(recurrent, feedforward and static models). The study area is located in the Gardon de Sainte-
Croix basin (France), which is known for its sudden and violent floods that caused casualties and 
a lot of damage. The chosen physical-based model is semi distributed conceptual hydrological 
SOCONT model, RS Minerve (https://www.crealp.ch/down/rsm/install2/archives.html). Neural 
networks design was done by using a rigorous complexity selection and regularization methods 
to promote a good generalization. The three models obtained were thus compared. The feed 
forward model gave the best results on tests events (Nash score=0.98-0.99), making full use of 
the inputs with previous observed discharges whereas the recurrent model gave interesting 
results representing satisfactorily the dynamics of the physical model (Nash score=0.8-0.97). 
The static model, whose inputs contain only rainfall, is less efficient, showing the importance of 
dynamics in that kind of system (Nash score=0.62-0.84). Beyond data assimilation, these results 
open paths of inquiry for building digital twins of physical model, allowing also a great reduction 
of computing time. 
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1. Introduction 
Flash floods are one of the most destructive natural hazards. Southern France, as many Mediterranean 
regions, has experienced, in the past few years, catastrophic flash flood episodes causing fatalities and 
damages, that could both increase in a global warming context [1]. Hydrologists have used various 
models, from traditional mass balance hydrologic models to data-driven statistical models, both applied 
to various catchments, to solve the forecasting of such phenomena issue. Heterogeneity and intensity of 
both rainfall and hydro-physical processes, and uncertainty in short-term rainfall forecasts are the main 
issues encountered by authors. Consequently, models’ performance often suffers from uncertainties on 
past and future rainfall as well as on their parameters, sometimes showing a lack of representativeness. 
Besides, in the case of physically-based models, calculation time may not be compatible with operational 
use. 

Digital twins, originally proposed for manufacturing industry, is defined as the representation of an 
object, a process or a closed physical system with an empirical or numerical approach [2]. Some of the 
challenges of hydrology could be met by this approach, especially concerning calculation time and 
uncertainties reduction. In this study, we propose to reproduce a physically-based model using artificial 
neural networks models (ANN). ANN are chosen to identify digital twins due to their universal 
approximation property, allowing to identify any differentiable function. Moreover, ANNs are known 
to be relevant for representing nonlinear complex relationships that underlies hydrological responses. 
Thus, three deep multilayer perceptron inspired by [3, 4] and dedicated to reproduce a previously 
calibrated physically-based model are evaluated in this study. 

In the first section, the study area and the database will be described as well as the physically-based 
model and the neural networks. Then, the results and performance of both physically-based model 
calibration and ANN twins will be presented and discussed.  

2. Materials and methods 
2.1 Study area 
The study area is the Gardon de Sainte-Croix in Pont-Ravagers basin, located in the Cévennes range, in 
Southern France. It covers 47 sq. km and its elevations ranges from 350 to 1100 m.a.s.l., inducing very 
steep slopes demonstrated in ‘figure 1’. As most of the basins of the Cévennes range, this basin is known 
to generate flash floods due to heavy rainfall events that can exceed 500 mm in only one day. These 
events mainly occur during autumn, after hot and dry summers. Most of the surface of the basin is 
occupied by a micaschist bedrock and it is mainly covered by forests and natural landscapes.  

2.2. Database presentation 
The database provided by the local flood forecasting service (SPC Grand Delta) and Météo-France is 
composed of 6 rain gauges, one temperature station and one hydrometric station at Pont Ravagers, each 
sampled at a 30 minutes’ time step from 2002 to 2019. The rain gauges are Barre-de-Cévennes (BDC), 
Saint-Roman-de-Tousque (SRDT), Mialet (MIA), Saumane (SAU), La-Croix-de-Berthel (BER), Sainte-
Cécile-d’Andorge (SCA), and the temperature station is located in Générargues (GENE). Descriptive 
statistics about the database are given in ‘table 1’. 
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Figure 1. Map of the study area with the meteorological and gauge stations. 

 

Table 1. Descriptive statistics of the database over the 2002 to 2019 period. 

 
Rainfall [mm] Temperature 

[°C] 
Discharge 

[m3s-1] 

Specific  
discharge 

[m3.s-1.km-2] 
 BDC SRDT MIA SAU BER SCA GENE Pont-Ravagers 
Maximum 32 565 79.5 63 43.5 51.5 31 108 2.3 
Minimum 0 0 0 0 0 0 -5.1 0 0 
Average 0.09 0.08 0.09 0.08 0.09 0.08 14.4 0.79 0.02 
Median 0 0 0 0 0 0 14.3 0.32 0.01 

 
This database is dedicated to the calibration of the physically-based model (named hereafter phy-

model). From the result of the run of the phy-model over the 17 years’ period, we extracted 7 relevant 
autumns (e.g. including major flood events). This second database is composed of the inputs used by 
the phy-model (interpolated rainfall and temperature, and calculated evapotranspiration) and of the 
output that it produces (discharge). This second database is dedicated to the ANN training, test, and 
validation. 

2.3. Physically based model 
The SOCONT rainfall-runoff conceptual semi-distributed model, incorporated in the RS Minerve 
software developed by CREALP [6, 7, 8, 9, 10] have been used to simulate the discharges over 17 years.  

The phy-model design requires dividing the basin in elevation bands (300 meters in this study) in 
order to spatially distribute the rainfall and temperature signals. The SOCONT model is composed of a 
Snow-SD model [9] that remains mostly unused is this case, due to the rarity of significant snowfall, a 
GR3 infiltration reservoir model [6, 7], and a SWMM (Storm Water Management Model) surface runoff 
model [10] as shown in ‘figure 2’. The whole model will be called the “RS Model” to ease reading and 
writing.  
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Figure 2. Illustration of phy-model with the main calibrated parameters. P and ETP refer 

respectively to rainfall and evapotranspiration, HGR3 is the level of water in the soil reservoir, KGR3 
is the release coefficient of this reservoir, Kr is the surface roughness of the slopes and QRS is the 

resulting discharge. 
The GR3 model operates as an infiltration reservoir storing water that is driven to the output with a 

discharge depending on the storage and draining rates. The infiltration reservoir in the GR3 model [8, 
9] calculates the base flow while the SWMM model, developed by [8], converts net rainfall intensity 
into surface runoff over an impervious surface when the reservoir is full. QRS in ‘figure 2’ is the total 
discharge calculated at the basin outlet. The model is fed by virtual stations at the gravity center of each 
sub-basin (elevation band). These virtual stations interpolate the values from real stations using an 
inverse distance weighting interpolation combined to elevation gradients. It needs precipitation and 
temperature and it calculates evapotranspiration using the well-known Turc formula. 

The model calibration is performed by adjusting the following parameters: 
• 𝐻!"#	and 𝐾!"#, respectively the infiltration reservoir capacity and the water release coefficient 

of this reservoir for the GR3 part,   
• 𝐾$, the Strickler coefficient of the slopes for the SWMM part,  
• A precipitation multiplicative coefficient, a temperature additive coefficient and a potential 

evapotranspiration multiplicative coefficient, 
• Precipitation, temperature and potential evapotranspiration gradients. 

2.4. Search for a digital twin: deep multi-layer perceptron 
The neural networks have the capacity to identify any differentiable function; thus it should be possible 
to use them to carry out a digital twin of the phy-model. Being themselves differentiable, it will be also 
possible to implement data assimilation on the digital twin of the phy-model, in order to be able to 
correct the input variables most prone to uncertainties, using data assimilation. This section describes 
the realization of the numerical twin of the phy-model [11]. 

2.4.1. Artificial neural networks models. Artificial neural networks are composed of neurons that are 
mathematical operators, first calculating their potential (the weighted sum of their inputs) and then their 
output, by transforming their potential using a nonlinear activation function. Combined in networks, the 
neurons are of two types: (i) hidden neurons, in hidden layers, whose outputs are not the output of the 
model and (ii) output neurons, whose outputs are outputs of the model. One of the most common type 
of neural network is the multilayer perceptron (MLP). It is chosen in this study, due to its two main 
properties: universal approximation and parsimony. Universal approximation is the ability of the ANN 
to approximate any differentiable function, with an accuracy depending on the number of hidden 
neurons [12]. Parsimony defines the need of fewer parameters, compared to linear statistical models 
[13].  

The role of time in modelling a dynamic system is crucial and lead to design different types of 
architectures, some of them having a dynamic behavior [14]. Three types of models are presented here, 
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where	𝑦(𝑘) is the estimated output at the	discrete	time	𝑘; 𝑥(𝑘), the vector of input variables; 𝑛, the 
sliding window width; 𝑦%(𝑘), the observed output at 𝑘,	; 𝐰, the vector of parameters; 𝑟, the order: 

• The static model is considered as a finite impulse response model. It receives only exogenous 
variables (1). In this type of model, time has no functional role. 

𝑦(𝑘) = 𝑔&&(𝑥(𝑘), 𝐱(𝑘 − 1)… , 𝐱(𝑘 − 𝑛 + 1),𝐰)	 	 (1)	

• The recurrent model differs from static model by having at least one feedback input in addition to 
the exogenous variables (2). It is thus an infinite impulse response filter, showing a dynamic 
behavior. This model is recommended if the noise on observed outputs is more important than the 
noise affecting exogenous inputs [14].  

𝑦(𝑘) = 𝑔&&(𝑦(𝑘 − 1),… , 𝑦(𝑘 − 𝑟), 𝐱(𝑘), 𝑥(𝑘 − 1)… , 𝐱(𝑘 − 𝑛 + 1),𝐰) (2) 

• The feed-forward model receives as input the measured value of the outputs at the previous time 
steps. These inputs play the role of a state variable and allows the model to simulate a dynamic 
behavior (3) even if the model is static.  

𝑦(𝑘) = 𝑔&&(𝑦%(𝑘 − 1),… , 𝑦%(𝑘 − 𝑟), 𝐱(𝑘), 𝐱(𝑘 − 1)… , 𝐱(𝑘 − 𝑛 + 1),𝐰) (3) 

2.4.2. Overfitting and regularization methods. Training consists in calculating the parameter vector that 
minimizes a cost function on a subset of data called the training set. In this study the cost function is the 
mean squared error and the Levenberg-Marquardt algorithm is used for training [15]. 

[16] showed that the training error is an unreliable estimator of the generalization error, and that the 
difference between both errors increases when the complexity of the model, i.e. the number of free 
parameters, increases. The design of a neural network model thus consists in defining the optimal 
complexity of the model that will maximize the generalization performance. This is done by using 
regularization methods. After the model design, the quality of the model is also evaluated on another 
subset of the data called the test set, strictly independent of the training set. The test set is used to evaluate 
the ability of the model to “generalize” to real unseen data. 

Three regularization methods are used in this study. First, the cross-validation was proposed by [17] 
and allows determining the set of optimal inputs and the number of hidden neurons. First proposed by 
[18] early stopping is another regularization method, controlling the number of “active parameters”. It 
stops the training process before the generalization error increases. To this end, an additional subset, 
independent of the training and test sets, called the stop set is introduced. Finally, [19] and [20] show 
that creating an ensemble model, differing only by the parameters’ initialization before training, also 
plays the role of regularization. In this case, the ensemble output at each time step is the median of the 
ensemble members outputs.  

2.4.3. Database. The database devoted to design the neural network twin contains the same variables 
than the phy-model:  

• Inputs consist in interpolated temperatures and precipitations, and calculated 
evapotranspiration, for three elevation bands (300 to 600 m.a.s.l., 600 to 900 m.a.s.l. and above 900 
m.a.s.l. 
• The accumulated precipitation is also applied as input. This allows providing an estimation of 
the soil moisture to the ANN. 
• The output is the discharge simulated by the RS model. 
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The twin database has a smaller duration than the total database in order to specialize the twin-model 
on floods. It contains 7 autumns, which is the season when flash floods preferentially occur (from 
September to half of November). Selected autumns contain important and/or numerous flood events. 
Each of these autumns provides one subset, and the subsets are spread in training, test and stop sets. 
Five of them are used for training, one for testing and one for stopping. 

2.4.4. Model selection. About architecture - Remember that the RS model is a model distributed 
according to three elevation bands. This concept is transposed to the neural network using three groups 
of inputs. Each group applies to the model: temperature, rain, cumulated rain and evapotranspiration as 
in ‘figure 3’. Each group feeds a “branch” that calculates a nonlinear combination of its inputs using a 
deep subnetwork (a multilayer perceptron). Finally, these three branches are connected to a shallow 
subnetwork (also a multilayer perceptron) providing the output. The model is thus a kind of cascading 
multilayer perceptrons. 

About model selection - The length of the exogenous inputs sliding time windows, n in equations 1, 
2, 3, have been set using cross correlations between the considered input (rains, ...) and the output (phy-
model discharge), as explained in [20]. They are set respectively to the delay corresponding to the 
maximum of the cross correlation. The cumulated rainfall is accumulated over the delay corresponding 
to the memory effect introduced by [21]. This allows providing an information about the previous rains 
using only one value. 

For the feedforward model (eq.3), the length of the time-window related to state inputs (observed 
discharge at previous times-steps), corresponding to r in eq.3, was selected by cross-validation. For the 
recurrent model (eq. 2), r was calculated using auto correlation. Nevertheless, as the value of r is very 
high, feedback inputs were not taken into account directly but using several windows grouping the 
recurrent values in several time scale, as done in [22]. Each of these windows is connected to a linear 
neuron before being introduced to the hidden layer in order to diminish the number of parameters and, 
by this way, the complexity of the model. This contributes to improve de generalization ability of the 
model. 

 

 
Figure 3. Neural network models. The brown part is added for the recurrent model and the yellow 

part for the feedforward model. Deep hidden layers are numbered from DHL1 to DHL 3 whereas 
input windows length are numbered from l1 to l17 in which l14 to l17 are the order of the recurrent 

model. HL is for the shallow hidden layer. 
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As discharges are always positive, the output neuron has a RELU activation function, preventing the 
model providing negative values. In the hidden layers, sigmoid functions are implemented. 

2.5. Performance criteria 
Two criteria are used to assess the quality of the models. With the same notations than before and with 
𝑦%>>> the average of observed values and n the number of values of the considered dataset.  

• The Nash criterion. It varies between -∞ and 1 where the latter is the best possible value (4).  

𝑁𝑎𝑠ℎ = 1 −
∑ ()(*),)!(*))²"#$
"#%
∑ ()!(*),)!....)²"#$
"#%

   (4) 

• The relative volume bias. It represents the difference between the estimated water volume and 
the observed water volume at the outlet (5). 0 is the best possible value. This criterion is more 
relevant for the RS model, as it explicitly takes into account water volumes transfers. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑣𝑜𝑙𝑢𝑚𝑒	𝑏𝑖𝑎𝑠 = 	
∑ /)(*),)!(*)0"#$
"#%

∑ )!(*)"#$
"#%

   (5) 
3. Results and discussions 

3.1 Performance analysis for the phy-model 
The simulations over the 17 years’ database were not excellent, but convincing enough for a semi 
distributed physically-based model, for a continuous simulation having to represent hydrological 
extremes for floods a well as for droughts, on this complex Mediterranean pluvial basin. The Nash 
criterion is equal to 0.61, which could be considered as low, but do not prevent the identification by the 
twin model.  

Table 2. Quality of hydrological modeling for 2015 autumn episode. 

Criteria Values for 
2015 

Values for the 
whole dataset 

Nash 0.9 0.61 
Relative volume bias 0.84 0 

 
An example of the results over the 2015 autumn is presented in ‘figure 4' and the corresponding 

performance is presented in ‘table 2’. In this period including intense events, as for most of the other 
autumns, the criteria are higher than on the whole dataset. Peaks are reached, which is important for the 
purpose of the study, but the recessions are reproduced relatively worse.  

 
Figure 4. Simulation result of hydrological model for autumn 2015. 
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3.2 Model selection 
The input windows width were selected according to the method described in section 2.4.4. Ensemble 
models were built with 10 member having different random initializations of parameters. For all hidden 
layers, the range of cross validation investigation was between 2 to 6 neurons. This thus makes a total 
of 6,250 cross validation experiences for each type of architecture (static, recurrent, feedforward). The 
selected models are described in ‘table 3’, in which elements refer to ‘figure 3’. 

Table 3. Model selected (elements of the model refer to ‘figure 3’) 

Elements of the model Static  Recurrent Feed-forward 
Neurons on DHL1 2 2 2 
Neurons on DHL2 5 2 2 
Neurons on DHL3 3 2 4 

Neurons on HL 5 6 4 
l1 Cumulated rainfall higher-band 1 1 1 

l2 Rainfall-higher band 5 5 5 
l3 Temperature higher band 1 1 1 

l4 Evapotranspiration higher band 1 1 1 
l5 Cumulated rainfall medium-band 1 1 1 

l6 Rainfall-medium band 5 5 5 
l7 Temperature medium band 1 1 1 

l8 Evapotranspiration medium band 1 1 1 
l9 Cumulated rainfall lower-band 1 1 1 

l10 Rainfall-lower band 2 2 2 
l11 Temperature lower band 1 1 1 

l12 Evapotranspiration lower band 1 1 1 
l13 Previous observed outputs none none 3 
order l15 Scale 2-24 ½ hours none 23 none 
order l16 Scale 25-54 ½ hours none 29 none 
order l17Scale 55-102 ½ hours none 102 none 

3.3 Simulations  
The results are presented in ‘figure 5’ for autumn 2015 (test set) and for the three models. They show 
that the feed-forward model simulations are by far the best, followed by the recurrent and the static 
model simulations. 

 
Figure 5. Hydrographs for flood concerning 2015 autumn produced (test set) by static (a), 

recurrent (b) and feed-forward models (c). 

 
Table 4. Nash scores for all the cross tested episodes. 

Season 2002 2003 2006 2011 2015 2016 
Static 0.84 0.62 0.84 0.66 0.8 0.82 

Recurrent 0.97 0.85 0.89 0.76 0.96 0.80 
Feed-forward 0.998 0.993 0.98 0.998 0.999 0.997 
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Once the model optimized, cross tests have been performed to observe the behavior of the model on 
other events. Rigorously, another model selection would have been necessary for each new test set to 
practice these cross tests, but the calculation time would have been very high whereas the scores 
presented here are very close to the ones of these subsets when they were in cross validation during 
cross validation stage. The results for all the events in test are presented in ‘figure 4’. They show the 
same increasing values as in ‘figure 5’ and that the 2011 and 2003 autumns are less accurately modeled. 

These results are graphically represented in the scatter plots of ‘figure 6’. They confirm the best 
performance of feedforward and recurrent models. In all cases, on average, the ANN twins tend to 
slightly underestimate the RS model discharges. 

 
Figure 6. Scatter plots of all the cross-tested events for static (a), recurrent (b) and feed-forward 

(c) models. The red line shows the linear regression and its determination coefficient is indicated on 
each plot. 

 4. Conclusions 
Flash floods remain a challenge for modelers but some alternative approaches, as the one developed in 
this paper, progressively lead to enhance their simulation. Here, we show that using a rigorous model 
selection, we can reproduce the discharge simulated by a physically based model using ANN digital 
twins. We also highlight differences between several architectures, which takes into account the role of 
time in different ways. First, the static model shows poor performance, mainly because it lacks the 
consideration of the system dynamics, whereas the recurrent model is better. Unsurprisingly, the feed-
forward model performs significantly better than the two others and proposes very high-fidelity 
simulations, probably strongly relying on previous observed values. In the cases explored in this paper, 
data are free of noise because they come from a physically based model. This will allow using these 
results in future research to practice data assimilation on rainfall in a free of noise context before 
implementing it on a real basin. It is thus an important milestone on the path of reducing uncertainties 
related to inputs.  
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