Corrigendum to "On generalized open sets"

Serap Erdem ${ }^{1(D)}$, Murad Özkoç* ${ }^{* 2}$ (D), Faical Yacine Issaka ${ }^{1}$ (D)
${ }^{1}$ Muğla Sitkı Koçman University, Graduate School of Natural and Applied Sciences, Mathematics, 48000 Menteşe-Muğla, Turkey
${ }^{2}$ Muğla Sıtkı Koçman University, Faculty of Science, Department of Mathematics, 48000 Menteşe-Muğla, Turkey

Abstract

In this corrigendum, we show that Theorem 3.9, Theorem 2.9, Theorem 2.10(1) and Theorem $2.21(9)(10)$ given in the paper entitled "On generalized open sets" [Hacet. J. Math. Stat. 47(6) (2018), 1438-1446] are incorrect.

Mathematics Subject Classification (2020). 54A05, 54A10, 54D99
Keywords. γ-open set, γ-semiinterior, γ-semiclosure, γ-semiclosed set, γ - b-closure, $\gamma-b$-closed set, γ-b-closed function

1. The results

We refute the following Theorems stated by Hussain in [1] through six examples.
Theorem 1.1 ([1, Theorem 3.9]). Let X and Y are topological spaces and function f : $X \rightarrow Y$ be a functions. Then the following statements are equivalent:
(1) f is γ-b-open.
(2) For each set B of Y and for each γ-open set A in X such that $f^{-1}(B) \subseteq A$, there is a γ-b-open set U of Y such that $B \subseteq U$ and $f^{-1}(U) \subseteq A$.
The conclusion mentioned in Theorem 1.1 is incorrect. For example, let $X:=\{a, b, c\}$ and let $\tau:=2^{X}$ be discrete topology on X. For $b \in X$, define an operation $\gamma: \tau \rightarrow 2^{X}$ by

$$
\gamma(A)=A^{\gamma}:=\left\{\begin{array}{cc}
\{a\} & , A=\{a\} \\
A \cup\{b\} & , A \neq\{a\}
\end{array} .\right.
$$

Clearly, γ-open sets in X are $\emptyset, X,\{a\},\{b\},\{a, b\},\{b, c\}$. Calculations show that $B O_{\gamma}(X)=$ $\{\emptyset, X,\{a\},\{b\},\{a, b\},\{b, c\}\}$. Also, let $Y:=\{1,2,3\}$ and $\sigma:=\{\emptyset, Y,\{3\},\{1,3\}\}$. For $2 \in Y$, define an operation $\gamma: \sigma \rightarrow 2^{Y}$ by

$$
\gamma(A)=A^{\gamma}:=\left\{\begin{array}{ccc}
\{3\} & , & A=\{3\} \\
A \cup\{2\} & , & A \neq\{3\}
\end{array} .\right.
$$

[^0]Clearly, γ-open sets in Y are $\emptyset, Y,\{3\}$. Calculations show that

$$
B O_{\gamma}(Y)=\{\emptyset, Y,\{3\},\{1,3\},\{2,3\}\}
$$

Define the function $f: X \rightarrow Y$ by $f:=\{(a, 3),(b, 3),(c, 2)\}$. Simple calculations show that f is γ-b-open function, but the proposition in (2) is not provided.

Theorem 1.2 ([1, Theorem 2.9]). Let X be a space and $A \subseteq X$. Then
(1) $\operatorname{scl}_{\gamma}(A)=A \cup i n t_{\gamma}\left(c l_{\gamma}(A)\right)$,
(2) $\operatorname{sint}_{\gamma}(A)=A \cap \operatorname{cl}_{\gamma}\left(i n t_{\gamma}(A)\right)$.

The conclusion mentioned in Theorem 1.2 is incorrect. For example, let $X:=\{1,2,3\}$ and $\tau:=\{\emptyset, X,\{1\},\{2\},\{1,2\}\}$. Let us consider the operation $\gamma: \tau \rightarrow 2^{X}$ by $\gamma(T):=$ $c l(T)$. Simple calculations show that $\gamma O(X)=\gamma C(X)=S O_{\gamma}(X)=S C_{\gamma}(X)=\{\emptyset, X\}$. For the subset $A:=\{1\} \subseteq X$, we have

$$
\begin{aligned}
\operatorname{scl}_{\gamma}(A) & =\operatorname{scl}_{\gamma}(\{1\}) \\
& =\bigcap\left\{F \mid(\{1\} \subseteq F)\left(F \in S C_{\gamma}(X)\right)\right\} \\
& =\bigcap\{X\} \\
& =X .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
A \cup i n t_{\gamma}\left(c l_{\gamma}(A)\right) & =\{1\} \cup \operatorname{int}_{\gamma}\left(c l_{\gamma}(\{1\})\right) \\
& =\{1\} \cup i n t_{\gamma}(\{1,3\}) \\
& =\{1\} \cup\{1\} \\
& =\{1\} .
\end{aligned}
$$

These calculations show that $\operatorname{scl}_{\gamma}(A)=X \neq\{1\}=A \cup i n t_{\gamma}\left(\operatorname{cl}_{\gamma}(A)\right)$.
Similarly, for the subset $B:=\{2,3\} \subseteq X$, we have

$$
\begin{aligned}
\operatorname{sint}_{\gamma}(B) & =\operatorname{sint}_{\gamma}(\{2,3\}) \\
& =\bigcup\left\{E \mid(E \subseteq\{2,3\})\left(E \in S O_{\gamma}(X)\right)\right\} \\
& =\bigcup\{\emptyset\} \\
& =\emptyset
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
B \cap \operatorname{cl}_{\gamma}\left(\operatorname{int}_{\gamma}(B)\right) & =\{2,3\} \cap \operatorname{cl}_{\gamma}\left(\text { int }_{\gamma}(\{2,3\})\right) \\
& =\{2,3\} \cap \operatorname{cl}_{\gamma}(\{2\}) \\
& =\{2,3\} \cap\{2,3\} \\
& =\{2,3\} .
\end{aligned}
$$

These calculations show that $\operatorname{sint}_{\gamma}(B)=\emptyset \neq\{2,3\}=B \cap c l_{\gamma}\left(i n t_{\gamma}(B)\right)$.
Theorem 1.3 ([1, Theorem $2.10(1)])$. Let X be a space and $A \subseteq X$. Then

$$
\operatorname{scl}_{\gamma}\left(\operatorname{sint} \gamma_{\gamma}(A)\right)=\operatorname{sint}_{\gamma}(A) \cup i n t_{\gamma}\left(c l_{\gamma}\left(i n t_{\gamma}(A)\right)\right)
$$

The conclusion mentioned in Theorem 1.3 is incorrect. For example, let $X:=\{1,2,3\}$ and $\tau:=\{\emptyset, X,\{1\},\{2\},\{1,2\}\}$. Let us consider the operation $\gamma: \tau \rightarrow 2^{X}$ by $\gamma(B):=$
$c l(B)$. Simple calculations show that $\gamma O(X)=\gamma C(X)=S O_{\gamma}(X)=S C_{\gamma}(X)=\{\emptyset, X\}$. For the subset $A:=\{2,3\} \subseteq X$, we have

$$
\begin{aligned}
\operatorname{scl}_{\gamma}\left(\operatorname{sint}_{\gamma}(A)\right) & =\operatorname{scl}_{\gamma}\left(\operatorname{sint}_{\gamma}(\{2,3\})\right) \\
& =\operatorname{scl}_{\gamma}\left(\cup\left\{E \mid(E \subseteq\{2,3\})\left(E \in S O_{\gamma}(X)\right)\right\}\right) \\
& =\operatorname{scl}_{\gamma}(\cup\{\emptyset\}) \\
& =\operatorname{scl}_{\gamma}(\emptyset) \\
& =\bigcap\left\{F \mid(\emptyset \subseteq F)\left(F \in S C_{\gamma}(X)\right)\right\} \\
& =\bigcap\{\emptyset, X\} \\
& =\emptyset
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\operatorname{sint}_{\gamma}(A) \cup \operatorname{int}_{\gamma}\left(\operatorname{cl}_{\gamma}\left(i n t_{\gamma}(A)\right)\right) & =\operatorname{sint}_{\gamma}(\{2,3\}) \cup i n t_{\gamma}\left(c l_{\gamma}\left(i n t_{\gamma}(\{2,3\})\right)\right) \\
& =\emptyset \cup i n t_{\gamma}\left(\operatorname{cl}_{\gamma}(\{2\})\right) \\
& =\operatorname{int}_{\gamma}(\{2,3\}) \\
& =\{2\}
\end{aligned}
$$

These calculations show that $\operatorname{scl}_{\gamma}\left(\operatorname{sint}_{\gamma}(A)\right)=\emptyset \neq\{2\}=\operatorname{sint}_{\gamma}(A) \cup \operatorname{int}_{\gamma}\left(\operatorname{cl}_{\gamma}\left(i n t_{\gamma}(A)\right)\right)$.
Theorem 1.4 ([1, Theorem 2.21(9)(10)]). Let X be a space and $A \subseteq X$. Then
(1) $\operatorname{sint}_{\gamma}\left(b c l_{\gamma}(A)\right)=\operatorname{scl}_{\gamma}(A) \cap \operatorname{cl}_{\gamma}\left(i n t_{\gamma}(A)\right)$,
(2) $\operatorname{scl}_{\gamma}\left(b i n t_{\gamma}(A)\right)=\operatorname{sint}_{\gamma}(A) \cup i n t_{\gamma}\left(\operatorname{cl}_{\gamma}(A)\right)$.

The conclusion mentioned in Theorem 1.4 is incorrect. For example, let $X:=\{1,2,3\}$ and $\tau:=\{\emptyset, X,\{1\},\{2\},\{1,2\}\}$. Let us consider the operation $\gamma: \tau \rightarrow 2^{X}$ by $\gamma(T):=$ $\operatorname{cl}(T)$. Simple calculations show that $\gamma O(X)=\gamma C(X)=S O_{\gamma}(X)=S C_{\gamma}(X)=\{\emptyset, X\}$ and $B O_{\gamma}(X)=B C_{\gamma}(X)=2^{X}$. For the subset $A:=\{2,3\} \subseteq X$, we have

$$
\begin{aligned}
\operatorname{sint}_{\gamma}\left(b c l_{\gamma}(A)\right) & =\operatorname{sint}_{\gamma}\left(b c l_{\gamma}(\{2,3\})\right) \\
& =\operatorname{sint}_{\gamma}\left(\bigcap\left\{F \mid(\{2,3\} \subseteq F)\left(F \in B C_{\gamma}(X)\right)\right\}\right) \\
& =\operatorname{sint}_{\gamma}(\bigcap\{\{2,3\}, X\}) \\
& =\operatorname{sint}_{\gamma}(\{2,3\}) \\
& =\bigcup\left\{E \mid(E \subseteq\{2,3\})\left(E \in S O_{\gamma}(X)\right)\right\} \\
& =\bigcup\{\emptyset\} \\
& =\emptyset
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\operatorname{scl}_{\gamma}(A) \cap \operatorname{cl}_{\gamma}\left(i n t_{\gamma}(A)\right) & =\operatorname{scl}_{\gamma}(\{2,3\}) \cap \operatorname{cl}_{\gamma}\left(\text { int }_{\gamma}(\{2,3\})\right) \\
& =\left(\bigcap\left\{F \mid(\{2,3\} \subseteq F)\left(F \in S C_{\gamma}(X)\right)\right\}\right) \cap c l_{\gamma}(\{2\}) \\
& =(\bigcap\{X\}) \cap\{2,3\} \\
& =X \cap\{2,3\} \\
& =\{2,3\} .
\end{aligned}
$$

These calculations show that $\operatorname{sint}_{\gamma}\left(b c l_{\gamma}(A)\right)=\emptyset \neq\{2,3\}=\operatorname{scl}_{\gamma}(A) \cap \operatorname{cl}_{\gamma}\left(i n t_{\gamma}(A)\right)$.

Similarly, for the subset $B:=\{1\} \subseteq X$, we have

$$
\begin{aligned}
\operatorname{scl}_{\gamma}\left(\operatorname{bint}_{\gamma}(B)\right) & =\operatorname{scl}_{\gamma}\left(\operatorname{bint}_{\gamma}(\{1\})\right) \\
& =\operatorname{scl}_{\gamma}\left(\bigcup\left\{E \mid(E \subseteq\{1\})\left(E \in B O_{\gamma}(X)\right)\right\}\right) \\
& =\operatorname{scl}_{\gamma}(\bigcup\{\emptyset,\{1\}\}) \\
& =\operatorname{scl}_{\gamma}(\{1\}) \\
& =\bigcap\left\{F \mid(\{1\} \subseteq F)\left(F \in S C_{\gamma}(X)\right)\right\} \\
& =\bigcap\{X\} \\
& =X
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\operatorname{sint}_{\gamma}(B) \cap \operatorname{int}_{\gamma}\left(\operatorname{cl}_{\gamma}(B)\right) & =\operatorname{sint}_{\gamma}(\{1\}) \cap \operatorname{int}_{\gamma}\left(\operatorname{cl}_{\gamma}(\{1\})\right) \\
& =\left(\bigcup\left\{E \mid(E \subseteq\{1\})\left(E \in S O_{\gamma}(X)\right)\right\}\right) \cap \operatorname{int}_{\gamma}(\{1,3\}) \\
& =(\bigcup\{\emptyset\}) \cap\{1\} \\
& =\emptyset \cap\{1\} \\
& =\emptyset
\end{aligned}
$$

These calculations show that $\operatorname{scl}_{\gamma}\left(\operatorname{bint}_{\gamma}(B)\right)=X \neq \emptyset=\operatorname{sint}_{\gamma}(B) \cap \operatorname{int} t_{\gamma}\left(l_{\gamma}(B)\right)$.

References

[1] S. Hussain, On generalized open sets, Hacet. J. Math. Stat. 47 (6), 1438-1446, 2018.

[^0]: *Corresponding Author.
 Email addresses: seraperdem123@gmail.com (S. Erdem), murad.ozkoc@mu.edu.tr (M. Özkoç), faicalyacine@gmail.com (F.Y. Issaka)
 Received: 05.05.2021; Accepted: 17.09.2021

