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ABSTRACT
Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the 
design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the 
generation of data describing antigen binding and developability, computational methodology, and artificial 
intelligence may pave the way for a new era of in silico on-demand immunotherapeutics design and discovery. 
Here, we argue that the main necessary machine learning (ML) components for an in silico mAb sequence 
generator are: understanding of the rules of mAb-antigen binding, capacity to modularly combine mAb design 
parameters, and algorithms for unconstrained parameter-driven in silico mAb sequence synthesis. We review the 
current progress toward the realization of these necessary components and discuss the challenges that must be 
overcome to allow the on-demand ML-based discovery and design of fit-for-purpose mAb therapeutic candidates.
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1. Introduction

1.1. mAb discovery remains anchored to legacy technologies

Monoclonal antibody (mAb) based therapeutics continue to 
top the chart for best-selling drugs worldwide. In 2021, the 
sales figures for the top 10 antibody therapeutics are forecasted 
to reach more than $110 billion and almost double in 2024.1,2 

Despite the major commercial success, antibody discovery has 
remained anchored to time- and cost-intensive legacy technol-
ogies, namely display libraries, animal immunization,3,4 and 
comparatively low-throughput antibody modeling.5–10 Indeed, 
although effective, monoclonal antibody therapies cost up to 
100,000 USD per year.11 As such, there is a critical need for 
developing novel in silico, and specifically ML-based, antibody 
discovery tools, to achieve fast, inexpensive, and on-demand 
generation of fit-for-purpose antibodies.

1.2. Three technological pillars for ML-based on-demand 
generation of mAbs: learnability, modularity, and 
unconstrained generation of novel sequences

In recent years, ML has taken the center stage in various 
fields due to its ability to recognize latent patterns in 
data, allowing a constructive extrapolation of such 

patterns to unseen new data.5,7,12–16 A particularly potent 
type of ML is deep learning where layers of intercon-
nected computing units (neurons) work in tandem to 
detect signals in the data, enabling the model to discri-
minate between groups (classification) or to synthesize 
new data points that share particular traits with the ori-
ginal data (generation).17–19

Based on current literature, we identify and review 
recent progress and challenges in the three pillars that are 
instrumental to a successful realization of the long-sought 
immunobiotechnological vision of on-demand antigen- 
specific antibody generation (Figure 1): 1) the presence of 
rules underlying antibody–antigen interactions and devel-
opability (learnability),20,21 2) the capacity for the modular 
and non-linear optimization of interdependent antibody 
design parameters, e.g., plasma half-life, is affected by mul-
tiple regions of the antibody interdependently 
(modularity),22–24 and 3) the capability to synthesize 
a virtually limitless quantity of new antibodies that are 
distinct from the training data yet possess affinity and 
developability parameters (feature-controlled) that match, 
exceed, or extend those of the training dataset (uncon-
strained generation).25–27

CONTACT Rahmad Akbar rahmad.akbar@medisin.uio.no Department of Immunology, University of Oslo and Oslo University Hospital, Norway; Victor Greiff 
victor.greiff@medisin.uio.no Department of Immunology, University of Oslo and Oslo University Hospital, Norway

HEqual contribution
LEqual contribution
CCorrespondence

MABS                                                           
2022, VOL. 14, NO. 1, e2008790 (35 pages) 
https://doi.org/10.1080/19420862.2021.2008790

© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits 
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-6692-0876
http://orcid.org/0000-0001-6660-1843
http://orcid.org/0000-0002-3822-8081
http://orcid.org/0000-0003-1345-5015
http://orcid.org/0000-0002-5457-5163
http://orcid.org/0000-0002-7701-6225
http://orcid.org/0000-0001-8405-3406
http://orcid.org/0000-0001-9097-7963
http://orcid.org/0000-0002-8501-7076
http://orcid.org/0000-0002-9702-226X
http://orcid.org/0000-0003-4764-4615
http://orcid.org/0000-0002-5441-9080
http://orcid.org/0000-0002-2445-1258
http://orcid.org/0000-0003-1710-1628
http://orcid.org/0000-0003-2622-5032
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/19420862.2021.2008790&domain=pdf&date_stamp=2022-03-15


1.3. Learning from nature: considering biological 
complexity in computational antibody design

Although antibody-antigen binding is a subset of protein– 
protein interactions, several important differences exist that 
render the prediction and design of antibody-antigen binding 
even more challenging than the prediction of typical protein– 
protein interaction. These differences are: 1) the immense 
diversity of antibody sequences, 2) many-to-many binding 
due to the high extent of non-linear sequence dependencies, 
and 3) inter-dependence of affinity and pharmacokinetic para-
meters. These specific characteristics need to be considered in 
antibody design and inform computational design constraints.

Diversity: V(D)J recombination and somatic hypermutation 
jointly create a potential immunoglobulin (Ig) diversity of 
>1014,28,29 as compared to a non-immune protein diversity of 
105–106.30 Although there exists antigen-driven (or functional) 
repertoire convergence (formation of similar antibodies in differ-
ent individuals undergoing an identical antigen challenge),28,31,32 

the extent of antigen-specific convergence is antigen-dependent33 

and overall comparatively low (on average, <10% pairwise overlap 
of antigen-specific Ig sequences).34 Thus, the vast observed diver-
sity of (antigen-specific) antibodies implies that the discovery 
space for target-specific mAbs is rather large and amenable to 
constraint-based sequence design approaches.

Additional mechanisms to diversify antibody repertoires 
include insertion and deletion of amino acid (AA) sequences 
into the V region, the use of non-protein cofactor molecules, 
and post-translational modifications.35 On the one hand, the 
insertion, and deletion of AAs and the use of non-protein 
cofactors (e.g., metal ion or haem) are suggested to be strategies 
toward diversifying specificity against pathogens.35–37 On the 
other hand, post-translational modifications, such as O- and 
N-glycosylation, phosphorylation, and oxidation in the anti-
body structure may affect the pharmacokinetics, solubility, 
stability, modulation of effector functions as well as receptor- 
binding properties.38–42 These modes of antibody diversifica-
tion are not fully understood and require further investigations 
to enable favorable in vivo binding and transport properties as 
well as optimal manufacturability and storage formulations.

Many-to-many binding: Antibody-antigen binding is 
mediated by the interaction of AAs at the paratope–epitope inter-
face of the complex. Antibody binding to the epitope is mainly 
formed by the three hypervariable regions termed complementar-
ity-determining regions (CDRs) situated in each of the antibody 
heavy and light chains.43 The CDR3 on the heavy chain (CDR3H) 
is obligate for epitope binding and is on average 15-17 AAs 
long.44,45 Given that the diversity of antigens is even larger, the 
recognition of the majority of antigens encountered is ensured by 
antibody cross-reactivity, which means they may bind multiple 
epitopes on different proteins with high affinity.46 Epitope binding 
is therefore encoded in higher-order complex dependencies (cor-
relations between spatially distant AAs in the CDRH3 enabling 
the binding of conformational epitopes, allowing a higher combi-
nation of binding motifs) in the low dimensionality of the anti-
body sequence space. These strong dependencies reflect 3D 
binding, where residues that are distant along the sequence can 
be close in the folded 3D structure. Indeed, the majority of anti-
body epitopes are thought to be conformational47 – although 85% 

of epitopes contain one or several contiguous (linear) epitope 
stretches.45,48 Therefore, to learn the rules of antibody-antigen 
binding, approaches need to be developed that untangle the non- 
linear sequence dependencies that govern the antibody, antigen, 
and antibody-antigen structures in both bound49,50 and 
unbound51 states.

Interdependence of antibody design parameters: Antibody 
design parameters can be broadly categorized into binding 
parameters (paratope, epitope, affinity) as well as developabil-
ity parameters (e.g., plasma half-life, thermal stability, solubi-
lity, aggregation propensity, and immunogenicity). 
Traditionally, it was thought that antibody design categories 
may be optimized independently. However, recent reports 
suggest that, for example, the plasma half-life is not only 
a function of the antibody isotype and constant fragment 
crystallized (Fc) region, but also sequence variations in the 
CDRs.22–24 Therefore, antibody design parameters are inter-
dependent and thus require modular optimization and bioen-
gineering techniques (Figure 1).

Taken together, nature succeeded in devising an extraor-
dinary antibody repertoire that combines diversity, specificity, 
and modularity. Hence, leveraging data sources that combine 
these properties and developing computational models that 
can take advantage of multi-property optimization would be 
the key to define the fundamental principles that can guide 
tailored antibody design.

1.4. Augmenting scarce experimental data with 
simulated data that account for the biological complexity 
of antibody–antigen interaction

For the design and discovery of mAbs, available experimental 
datasets are particularly scarce in comparison to the biological 
complexity of antibody-antigen binding. To date, one of the largest 
developability studies on mAbs remains very restricted at 137 
samples (Figure 2).52 Similarly, 3D structures, which are useful in 
defining residues of the antibody (paratope) that engage the resi-
dues of the antigen (epitope) at the interaction interface, are 
limited to 1200 non-redundant antibody–(protein)antigen 
complexes.55 Sequence data, however, can be produced at larger 
scales, higher efficiencies, and at markedly reduced costs, making it 
the leading choice to study antibody-antigen binding albeit at 
a reduced resolution where paratope-epitope information often 
is not available (Figure 2). At present, the Observed Antibody 
Space (OAS)57 database contains over one billion antibody 
sequences curated from 79 studies, while the iReceptor database 
contains almost four billion sequences and 6013 repertoires from 
three remote repositories, 49 research labs, and 60 studies.53 Such 
large sequence datasets have been used, for example, to generate 
latent representations of phenotypically similar antibodies,58,59 

prior to training ML models on small-scale structural datasets.
Recently, we presented our efforts to increase the amount of 

3D-structure data by six orders of magnitude larger than the 
1200 structures available experimentally (Figure 2)55 via simu-
lating virtual coarse-grained docking of billions of antibody- 
antigen pairs with several layers of biological complexity.54 We 
complemented this data with in silico predicted developability 
parameters to create datasets that encompass the three afore-
mentioned key design parameters: paratope-epitope binding, 
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affinity, and developability.27 Such efforts have begun to 
increase the number of datasets to a level where the bench-
marking of data-intensive methods, such as deep learning to 
study antibody-antigen binding at the paratope-epitope level as 
well as deep learning-based antibody sequence generation, 
started to become feasible.27,54 More generally, large-scale 3D- 
atomistic resolution data generation may represent the next 
major step where abundantly available antibody sequence data 
will be leveraged to obtain large quantities of antibody-antigen 
complexes via recent advances in computational structural 
biology methods such as antibody modeling,59–63 molecular 
docking,64–67 and molecular dynamics.68,69

2. Learnability of antibody–antigen binding

The hurdles of antibody–antigen binding prediction may be 
subdivided into five ML challenges. Figure 3 illustrates how 
these challenges are intertwined with each other in a typical 
ML workflow. We group these challenges as the ‘learnability’ 
problem, i.e., the capacity of an ML method for a certain type 

of dataset and biological question to achieve generalization and 
provide surrogate rules responsible for its predictions from 
only a limited set of examples (the training dataset). We discuss 
herein aspects of learnability pertaining to antibody-antigen 
binding (affinity), while the following sections review aspects of 
learnability from the perspective of modularity, developability, 
and unconstrained sequence generation.

ML challenge 1: Predictability. The capacity to predict prop-
erties of antibody-antigen binding with high accuracy is the 
sine qua non prerequisite for computationally aided mAb dis-
covery. The predictability of antibody-antigen binding is often 
obscured by the biological complexity and the limited informa-
tion content of the considered datasets.

ML challenge 2: Generalization. Specifically, ML-based 
mAb discovery relies on the generalizability of the models, 
i.e., information learned from “dataset A” will be valid for 
predicting binding in “dataset B”, provided that the two data-
sets are “similar enough” (Figure 3). In general, antibody 
sequence similarity is not necessarily associated with phenoty-
pic similarity since sequence-similar antibodies may bind 

Figure 1. Overview of progress and challenges within the three technological pillars for ML-based on-demand generation of mAb therapeutic candidates, namely 
learnability, modularity, and unconstrained generation. We highlight three key optimizable design parameters for in silico on-demand mAb design: (i) the AA residues at 
the surface of the antigen (epitope) that engage the antibody residues (paratope) at the interaction interface, (ii) the strength of an antibody–antigen interaction 
(affinity), and (iii) the extent to which the mAb successfully progresses from the discovery to the development phase (developability). We discuss these design 
parameters from the perspective of three technological pillars: (i) learnability indicates the presence of rules underlying antibody–antigen interactions as well as 
antibody developability, (ii) modularity signifies that antibody design parameters could be impacted by multiple regions on the antibody and the extent to which they 
can be recombined interdependently, and (iii) unconstrained generation signifies the capacity of high-throughput in silico synthesis of fit-for-purpose mAb candidates.
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different antigens.86 Therefore, the similarity of antibodies 
should be considered both in terms of sequence similarity 
and binding behavior (function). Of note, while transfer learn-
ing aims at performing a new task from subsets of a pre-trained 
model that is further trained for a certain task, generalization 
refers to performing the same task with the same model (with-
out additional training) on different datasets.

ML challenge 3: Interpretability. When it comes to prospec-
tive antibody engineering as well as clinical practice, the most 
beneficial setting would be an interpretable ML model that 
proposes rules to explain the reasons underlying its 
generalization.4,59,87,88 This would both decrease the risk of 
predicting dataset-dependent properties, and provide guide-
lines to generate new possible antibody sequences based on 
those rules. So far, rule inference via, for instance, attribution 
methods, remains a challenge and is poorly standardized.54,89

ML challenge 4. Model (also called epistemic) uncertainty.90 

This descirbes the situation where multiple models predict 
a dataset with equally high accuracy while relying on different 
sets of rules that might or might not be equivalent. For ML, as 
the training data is often noisy and sparse, exhaustive learning 

of the “rules” is likely intractable. Instead, we argue that 
a successful learning model for antibody-antigen binding 
could converge to an approximate (surrogate) set of rules, 
such that its predictions are sufficiently accurate across multi-
ple datasets, indicating that these rules have only retained 
minimal dataset bias.

ML challenge 5: Dataset completeness. Intuitively, the pre-
sence of instances in the dataset illustrating a certain rule is 
required to infer this rule. We refer to the “completeness” of 
a dataset as the amount of information it contains, in compar-
ison to the information needed to infer the rules that we believe 
are underlying the properties of the dataset. Currently, it 
remains unclear how to determine if a dataset is complete to 
infer (surrogate) rules (see ML challenge 3). If the rules are 
explicit (for instance by learning a scoring function or using 
interpretable ML architectures), it can be easier to test the 
completeness of a dataset.91 When the rules are not directly 
interpretable, it can become difficult to assess dataset comple-
teness, except by practically testing the extent of the data 
coverage of the rules.92 Therefore, interpretable ML methods 
are preferable for assessing dataset completeness.

Figure 2. Overview of public datasets on antibody developability, experimental, or synthetic sequence and structural antibody(-antigen) data. The available sequence 
and structural datasets were queried from Europe pubmed central (europepmc.org) using keywords “antibody” and “database” and filtered for publications that contain 
these keywords in the title in addition to manual literature curation (codes and data are available as mentioned in the Code availability section of this manuscript). The 
datasets are visualized with respect to the sequence or structure, and the availability of binding affinity, antigen annotation, developability parameters, or paratope and 
epitope information. Sequence (red), structure (blue), synthetic structural data (purple) and developability (gray) are color-coded. Each circle corresponds to a specific 
type of data. The outer circles correspond to the global data (sequences, structures, synthetic structures, and developability), and the inner ones – to the subdata 
(antibody-antigen complexes, Ig repertoire, mAbs, and paratope and epitope). A separate outer circle for developability is used as its data types differ from the others. 
Since there is not a single database containing quantitative information about the available developability parameters, we used the data from52 as an example for 
visualizing the scarcity of available experimental developability information. The outer red ring represents the number of antibody sequences in the iReceptor database 
(the largest publicly available sequence data,53 the outer purple ring the number of synthetic antibody–antigen binding structures from Absolut! (the largest publicly 
available synthetic antibody-antigen structural dataset),54 the outer blue ring displays the number of structures from AbDb (curated antibody–antigen structural data55 

obtained from the protein data bank),56 and the outer grey ring represents developability information.52 inner rings illustrate information about antibody-antigen 
complexes, ig repertoire, therapeutic antibodies, and paratope and epitope data. For a curated overview of available databases, see Focus Box 1.
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Figure 3. Major ML components that could enable the identification of the rules that govern antibody design parameters (binding, paratope-epitope, and 
developability). These components relate to the five ML challenges namely (1) predictability, (2) generalization, (3) interpretability, (4) model uncertainty, and (5) 
data completeness. Multiplexing (integration and augmentation) of data with varying degrees of information may improve the completeness of the training data which 
would consequently produce an informed representation (learned or otherwise) and allows for data-driven mAb design. As synthetic data tend to be superior (crisp 
icons) in comparison to experimental data (fuzzy icons) with respect to quantity and the extent of completeness (the parameters and rules underlying the data are 
known), the augmentation of sparse experimental data with synthetic data may yield a dataset that contains a fuller degree of completeness than either subset thereof. 
The training of advanced deep learning architectures on informed representation (containing sequence, developability, affinity, linguistic [Focus Box 2], and paratope- 
epitope feature) either via online (continuous) or batch (one-off bulk data) learning would result in high accuracy models that may well be capable of generalization. 
Importantly, the mapping of features that are critical for the predictive performance of the model (interpretability) must be undertaken to allow for rule inference, and 
consequently, to allow rule-driven design.

Focus Box 1 | Databases that curate antibody sequences or structures (see Figure 2)

- AB-Bind70 (https://github.com/sarahsirin/AB-Bind-Database) is a dataset containing experimental results for wild-type and mutant antibodies and antigens, 
including the change in Gibbs free energy of binding (ΔΔG), linked to crystal structures of the parent complexes. Year of publication: 2016.

- ABCD71 (https://web.expasy.org/abcd/) database is a manually curated depository of sequenced antibodies. Year of publication: 2019.
- AbDb55 (http://www.abybank.org/abdb/) is a compilation of antibodies (including nanobodies) extracted from the PDB56 with standard numbering 

schemes applied and redundancy information. Year of publication: 2018.
- abYsis72 (http://www.abysis.org/abysis/) is a web-based antibody research system that includes an integrated database of antibody sequence and 

structure data. Year of publication: 2017.
- AgAbDb73 (http://196.1.114.46:8080/agabdb2/home.jsp) is a derived knowledge base archive of molecular interactions of protein and peptide antigens 

characterized by co-crystal structures. Year of publication: 2014.
- bNAber74 (http://bnaber.org/) is a database of HIV broadly neutralizing antibodies providing neutralization profiles, sequences and three-dimensional 

structures. Year of publication: 2013.
- cAb-Rep75 (https://cab-rep.c2b2.columbia.edu/) is a database of curated human B cell immunoglobulin sequence repertoires. Year of publication: 2019.
- CoV-AbDab76 (http://opig.stats.ox.ac.uk/webapps/covabdab/) is a database of published or patented binding antibodies and nanobodies to coronaviruses, 

including SARS-CoV2, SARS-CoV1, and MERS-CoV. Year of publication: 2021.
- IEDB77 (https://www.iedb.org/) is a resource of experimental data on humans, non-human primates, and other animal species antibody and T cell epitopes. 

Year of publication: 2018.
- IMGT78 (http://www.imgt.org/) is a sequence, genome and structure knowledge resource specialized in the immunoglobulins, T cell receptors, MHC, and in 

the immunoglobulin and MH superfamilies, and related proteins of the immune system of vertebrates and invertebrates. Year of publication: 2018.
- OAS57 (http://opig.stats.ox.ac.uk/webapps/oas/) is a database of annotated immune repertoires. Year of publication: 2018.
- PROXiMATE79 (https://www.iitm.ac.in/bioinfo/PROXiMATE/) is a database of interaction kinetics and thermodynamics data (including wild-type vs mutant 

KD and ΔΔG) for mutations in protein–protein complexes including antibody-antigen complexes, collected from literature and previously published databases. 
Year of publication: 2017.

- SAbDab80 (http://opig.stats.ox.ac.uk/webapps/sabdab) is a database containing annotated antibody and nanobody structures available in the PDB.56 

SAbDab also contains affinity data for antibody-antigen complexes, taken from the PDBbind database.81 Year of publication: 2013.
- sdAb-DB82 (http://www.sdab-db.ca/) is a dedicated single-domain antibody repository and database. Year of publication: 2018.
- SKEMPI 2.083 (https://life.bsc.es/pid/skempi2/) is a database contains kinetics and energetics data upon mutation, for protein–protein interactions 

including antibody-antigen complexes of which structure are available in the PDBe.84 Year of publication: 2019.
- Thera-SAbDab85 (http://opig.stats.ox.ac.uk/webapps/newsabdab/therasabdab/search/) is a database curating WHO recognized antibody-related thera-

peutics. Year of publication: 2020.
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These ML challenges stem from the theoretical foundations of 
computational learning theory, which has been applied to natural 
language (linguistics). Focus Box 2 provides further discussion of 
the theoretical background and the parallels with linguistics.

Altogether, learnability and availability of suitable data 
ensure high prediction accuracy on new tasks.

2.1. Formalization of antibody–antigen binding problems

Three main types of prediction problems have been investi-
gated using ML in antibody-antigen binding: 1) prediction of 
the antibody-antigen binding interface (paratope, epitope or 
paratope-epitope prediction), 2) prediction of binding affinity 
(in particular following AA substitution), and 3) prediction of 
binding partners (binary and/or many-to-many).54 In view of 
the above ML challenges, we delineate to which extent these 
studies have achieved the first proof of principle steps of anti-
body-antigen learnability. We focus on the type and size of 
datasets they use and how antibody-antigen sequence or struc-
tural data are embedded into data representations.

2.2. Epitope prediction

Epitope prediction may be divided into two different application 
areas. Antibody-agnostic epitope prediction seeks to identify the 
most probable epitopes without prior knowledge of the corre-
sponding antibody(ies), and antibody-aware epitope prediction 
seeks to identify the epitope to which a known antibody will bind.

2.2.1. Antibody-agnostic epitope prediction
Early epitope prediction methods infer contiguous epitope 
residues based on a few hundred linear epitopes via propensity 
scales (e.g., PREDITOP,106 BEPITOPE,107 BcePred,108 

see,109,110 for more details). ABCPred used a Jordan network 
(a version of RNN) to perform binary classification on seg-
ments of the antigen via sliding windows.111 Another ensemble 
method, iBCE-EL, used physicochemical properties, AA com-
position, and combined extremely randomized tree (ERT) and 
gradient boosting (GB) to predict linear epitope with higher 
accuracies.112 However, the vast majority of described epitopes 
are conformational,113 hence, linear epitopes may not account 
for non-flanking residues as they may only represent contig-
uous subsequences of the full epitopes.

Other prediction tools used support-vector machines (SVM) 
to classify each antigen residue as epitope or non-epitope residue 
(Söllner and Mayer114 BCPred,115 BEST,116 EPSVR,117 Chen 
et al.118). These tools combined physicochemical properties 
with sequence conservation, similarity to other known epitopes, 
predicted 2D structural features, or even structural properties of 
similar known sequences. SePre119 first predicts individual 
immunogenic residues then clusters them as an epitope in 
a second step. These methods reported high prediction accuracy, 
indicating that sequence information only allowed the predic-
tion of non-contiguous epitopes. The inclusion of sequence 
conservation makes it challenging to understand which infor-
mation in the (explicit) training dataset versus (implicit) align-
ment was important for high prediction accuracy.

Focus Box 2 | A formal language perspective of learnability applied to antibody discovery problems

Multiple articles relate linguistics to the study of proteins by applying neural network (NN) language models to protein sequences.58,93–100 Another fruitful way 
to relate linguistics and biological research is to translate formal perspectives from linguistic research into biological research questions, such as computational 
learning theory. It provides a precise way to define learnability,101 and it has been used for computationally defining natural language learning.102 Below, we 
adapt learning theory to antibody discovery problems: we formalize antibody discovery questions as formal language learning questions and discuss aspects of 
learnability as they pertain to antibody discovery.

A language is a formal system that consists of a potentially infinite set of structures, built from a finite set of elements (the alphabet) with a finite set of rules 
(a grammar). 103 In the context of antibody discovery, the language to be learned depends on the research question. If the goal is to predict if input antibodies 
bind to a given antigen (a binary classification problem),54 then the language is the set of encoded representations of antibody structures that bind to the 
antigen, and the learner’s task is to discriminate between the structures that are part of the language and ones that are not. If the goal is to predict the set of 
antigens that bind to input antibodies (a multiclass classification problem),54 the language consists of antigen–antibody pairs that exhibit high affinity. A learner 
in this case has to be able to recognize these pairs. For both types of research questions, the target grammar to be learned are the physicochemical rules that 
govern antibody structures and antibody–antigen interactions.

When learning a language, the learner maps from an observable subset of all possible data (examples) to a grammar that describes the language.102 The 
learner can be either a black box learner that can answer whether an input belongs in a language (or give a probability for it) without showing the grammar it 
operates on, or an interpretable one that returns the full grammar it learned. It is possible, though often difficult, to extract the grammar from black-box 
learners. We argue that for successful antibody discovery, it is crucial to have access to the rules, and have an interpretable model. A fully interpretable model 
enables more informed antibody discovery because it clarifies which properties might be entirely dataset dependent versus which properties might be 
generalizable across datasets.

Another question raised by learning theory is the definition of successful learning. The criteria for successful learning can range from exact convergence to 
some defined value of approximate convergence. Exact convergence requires the inferred grammar to be identical to the target grammar of antibody discovery 
problems, while approximate convergence means that the inferred grammar is not completely identical, but “close enough” to the target grammar.102 

Approximate convergence is easier to achieve and is thus a more practical criterion for successful learning. This is especially appropriate for antibody discovery 
problems, where the target grammar is a set of highly complex and largely unknown physicochemical rules, and currently, available data is too limited and 
noisy for exact convergence to be feasible. Moreover, it is difficult to assess how approximate any inferred ruleset is to the target. It can therefore be useful to 
use synthetic data to study the performance of a given ML algorithm first, as synthetic data are generated with explicit rules.54,104,105

Lastly, there is a possibility that the data presented to a learner is not complete. A complete dataset contains every kind of structure from the target 
language that would be sufficient for the learner to converge successfully to the target grammar, while incomplete datasets might lead to alternative 
grammars that only account for a subset of the examples but not all.102 If the dataset is not complete, the learner might reach high prediction accuracy for 
dataset-specific properties rather than converging to the more fundamental grammar that describes general binding specificity. The completeness of the 
dataset is only loosely related to its size: a very large dataset can still be incomplete if it lacks crucial data points for inferring the target grammar, and 
a complete dataset can be relatively small as long as it has everything necessary for successful learning. It is therefore important to aim for completeness 
rather than merely size in the dataset in order to achieve successful learning.

In conclusion, formalizing antibody-antigen binding questions as formal language learning questions helps clarify various aspects of learnability. It 
particularly draws attention to the nature of the learner, defining the standard for successful learning, and the completeness of the dataset.
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In parallel, structure-based discontinuous epitope predic-
tion methods have been trained on antibody-antigen struc-
tures and then tested on the antigen structures alone (i.e., 
antibody agnostic) to predict the epitopes, using AA pro-
pensity scales as above but adding geometric predictors 
such as the number of neighbors according to different 
distance thresholds, triangle-based propensity measures, or 
ellipsoids (SEPPA,120 Discotope,121 PEPITO/BEpro,122 

ElliPro123) and reported ~0.75 AUC on 75 antibody- 
antigen structures. Moreover, Lu et al.124 combined 
a graph convolution network to leverage local spatial neigh-
borhood information with an attention-based long short- 
term memory-recurrent neural network (LSTM-RNN). 
They examined whether spatially distant information on 
the antigen sequence can improve prediction accuracy and 
reported an AUC of ~0.8.

Nevertheless, we argue that antibody-agnostic epitope pre-
diction is an ill-defined problem 125,126 because only in the 
context of an antibody (a paratope) does an epitope become 
functional and vice versa. Indeed, it is now a general consensus 
that nearly any surface accessible region of an antigen may be 
recognized by an antibody.127 In addition, epitopic and other 
surface residues were found to be mostly indistinguishable in 
their amino-acid composition.128

2.2.2. Antibody-aware epitope prediction
Bepar129 utilizes correlations of AAs usage on sliding windows 
between the antigen and the CDR loops of the antibody in 
antibody-antigen complexes to predict epitope residues from 
the antibody and antigen sequences only.

Several structure-based studies attempted to improve the 
quality of antibody-antigen docking by including geometrical 
features on both antibody and antigen to re-rank the list of 
predicted possible poses. For instance, EpiPred130 measures 
the conformational matching of an input pair of antibody and 
antigen structures. DLAB-Re131 models the antibody struc-
ture from its sequence,132 generates docking to the antigen 
structure and uses a convolutional neural network (CNN) to 
predict the paratope-epitope complementarity of a pose as 
a re-ranking score, therefore predicting both epitope and 
paratope.

PEASE133,134 takes the antibody and antigen structures, cal-
culates a solvent accessibility score per residue, predicts the pairs 
of interacting epitope-paratope residues using random forest, 
followed by patch reconstruction in order to reconstruct the 
epitope. Another study20 has defined antibody and antigen sur-
face patches using a Monte Carlo method that includes or 
excludes neighboring residues with a probability defined from 
features initially learned from antibody-antigen complexes. 
From the observation that matching paratope and epitope 
patches share correlated features in shape or AA composition, 
a deep feed-forward network was built to predict whether 
a paratope patch would bind an epitope patch. PECAN135 used 
CNNs with an attention layer directly from the antibody and 
antigen structures to predict the binding interfaces of antibody 
and antigen structures. We discuss DLAB131 and PECAN135 in 
detail in the paratope prediction section below.

Altogether, these studies have shown that, at present, in silico 
epitope prediction tools yield moderately accurate predictions 
and that structural information of the antibody or the paratope 
is critical to improving epitope prediction performance.

2.3. Paratope prediction

Although paratope prediction may look like the symmetric 
reverse problem of epitope prediction, paratope residues are 
both sequentially and spatially close to each other as they 
are most often contained within the CDR loops,45 in con-
trast to epitope residues that can be spatially close but 
sequentially distant over the span of the antigen length.45 

Further, the AA usage of paratopes is distinct to those of 
epitopes45 as each CDR has its own preferential AA usage, 
and the subset of epitope residues bound by a CDR also 
have a preferential AA usage specific to which CDR it was 
bound to.128

2.3.1. Sequence-based antigen-agnostic paratope 
prediction
Parapred136 uses either an LSTM-RNN-based or a deep NN- 
based architecture on top of a CNN to predict the 1D paratope, 
starting from the antibody sequence alone. In this process, only 
the antibody CDRs are considered and one-hot encoding is 
combined with biochemical encoding for each residue. 
proABC137 outperformed Parapred using a random forest 
model with additional features on the full antibody sequence 
to predict 1D epitope. Briefly, along with the one-hot encoding 
of the full variable heavy (VH) and variable light (VL) chains, 
proABC includes information on the species of origin, the 
inferred germline VH and VL families, the predicted canonical 
structure associated with each CDR sequence, and predicts the 
binding status of each of the residues. In a refined version 
proABC-2,138 a CNN architecture has been implemented as 
a replacement to the random forest, following the same data 
processing and problem formulation as pro-ABC. The authors 
showed that the output of proABC-2 (for instance, including 
the predicted types of interactions) can be used as additional 
constraints when later performing docking of the antibody to 
the antigen.

Paratope prediction tools have also been leveraged to 
identify novel binders that originate from different clono-
types. In immune repertoire mining, for example, known 
binders are typically used to identify new binders via clo-
notyping 34,139 (i.e., finding sequences with close genetic 
history). By design, this approach limits the diversity of 
the identified binders. In contrast, an approach called para-
typing aimed at identifying convergent binders from differ-
ent clonotypes by using the predicted paratope to cluster 
antigen-specific antibodies that originate from diverse 
clonotypes.140 Re-epitoping, on the other hand, used ML 
to predict AA substitutions that would improve the com-
plementarity of the resulting paratope to the epitope of 
interest.141 Another application is the mapping of sequence 
features, or combinations of subsets thereof, to discern 
phenotypic traits such as inhibitors or non-inhibitors.142
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2.3.2. Structure-based antigen-agnostic paratope 
prediction
Paratome web server143 uses structural alignment to identify 
consensus antigen-binding regions on a given antibody sequence 
or structure. The server uses the structural consensus regions 
from multiple structure alignment of a reference set of antibody- 
antigen complexes to identify binding regions of antibodies.

AntibodyInterfacePrediction combined 3D Zernike 
Descriptors (3DZDs) and SVM to predict antibody–antigen 
interface.144 It firstly obtains geometrical representation, physico-
chemical and biological characteristics of the residues on the 
antibody surface starting from an input of the antibody 3D 
structure. A rotationally invariant local descriptor is calculated 
for each uniform spherical patch sampled from the antibody 
surface. On the 3DZDs, randomized logistic regression was used 
to decrease the overall number of features. SVMs were employed 
as a classifier to distinguish the paratope interface LSPs from 
the non-interface ones. As a result, AntibodyInterfacePrediction 
outperformed Parapred,136 Paratome,143 and Antibody 
i-Patch.145 However, Parapred remains competitive against 
AntibodyInterfacePrediction as it does not require structural data.

As discussed in antibody-agnostic epitope prediction ear-
lier, we reaffirm our assessment that paratope prediction with-
out the context from the epitope may not be very insightful.

2.3.3. Sequence-based antigen-aware paratope prediction
The subsequent update of Parapred, called AG-Fast-Parapred21 

makes use of the six CDR sequences and the sequence of the 
cognate bound antigen, with each AA encoded separately with 
their AA and seven chemical features as descriptors, and 
returns a binary vector of the binding status of each position 
in the CDR3 (linear paratope prediction) to train an architec-
ture combining an “à trous” CNN with an attention layer. They 
compared antibody-only prediction (i.e., antigen-agnostic) 
against prediction including antigen information using cross- 
modal attention. The new architecture moderately improved 
the accuracy (AUC = 0.90) compared to Parapred 
(AUC = 0.88).21

Lu et al.124 proposed a sequence-based paratope prediction 
tool from the antigen sequence by separately predicting the 
probability of each antibody residue to be a paratope residue 
(binary classifications). The antigen and antibody sequences 
were transformed into 80 predicted structural features, includ-
ing evolutionary information, secondary structure 
prediction,146 solvent accessibility, and backbone dihedral 
angles with NetSurfP2.0.147 Antibody and antigen information 
is then processed by two parallel attention-LSTM-RNN archi-
tecture, while a CNN leverages local information on the anti-
body side, and fully connected layers transform the CNN and 
LSTM-RNN outputs into binary prediction per antibody resi-
due. Their method showed moderate improvement in accuracy 
by including the partner antigen sequence, as observed in AG- 
Fast-Parapred.

2.3.4. Structure-based antigen-aware paratope prediction
Antibody i-Patch, relies on the structures of antibody and 
antigen as input to predict the paratope.145 Antibody i-Patch, 
annotates each residue with a binding likelihood score rather 
than providing an entire binding region as Paratome, and 

outperformed Paratome in precision. In addition, the usage 
of Antibody i-Patch prediction with the fast docking algorithm, 
ZDOCK,148 increased the number of near-native poses.

Furthermore, Paratope and Epitope prediction with graph 
Convolution Attention Network (PECAN) is a deep learning 
framework that predicts the binding interfaces of antibody- 
antigen-antibody complexes.135 The local spatial connections 
of the interfaces were captured using graph convolutions while 
an attention layer connects distant information, and transfer 
learning was performed using a base network trained on gen-
eric protein–protein interactions. PECAN outperformed 
EpiPred130 and DiscoTope121 in epitope prediction and 
AntibodyInterfacePrediction144 in paratope prediction. The 
attention layer showed only a little improvement in paratope 
prediction performance over convolution, probably because 
paratopes are mostly located around CDRs, while it improved 
epitope prediction significantly. From the observation that 
PECAN sometimes predicts spatially too distant epitope resi-
dues, a new strategy termed Contiguous Epitope – Sub- 
sampled Convolution Attention Network (CE-SCAN149) was 
proposed. CE-SCAN succeeded in predicting localized epi-
topes, while leveraging long-distance information from multi-
ple patches and sequentially distant residues, and provided 
a small increase in prediction accuracy compared to PECAN.

Schneider et al.131 modeled 3D antibody structures from 
their sequence using ABodyBuilder60 and performed docking 
using ZDOCK150 on their known cognate antigen structure. 
Interestingly, docking the modeled structure was a harder task 
in comparison to using the known bound antibody structure, 
and the authors developed a CNN-based strategy (DLAB-Re) 
to re-rank the docking poses proposed from ZDOCK to prior-
itize those with the correct epitope. DLAB-Re takes as input 
a proposed antibody-antigen docking pose, transforms the 
binding interface in voxels, and learns a ‘compatibility score’ 
based on the 3D distribution of the AAs along the voxels.

Vecchio et al.151 used epitope-paratope message passing 
(EPMP) for paratope-epitope prediction. Considering that epi-
tope residues are distant and antigen-dependent, the architec-
ture combines a paratope model (Para-EPMP), sequentially 
processing antibody input features and followed by a graph 
structure, and an epitope model (Epi-EPMP), where only 
structural features are used with GNN layers and substantially 
merged with contextual cues from the cognate antibody.

More recently, geometric deep learning (GDL) has emerged 
as one of the most promising advances to generate a molecular 
representation for the prediction of interacting interfaces (e.g., 
antibody–antigen interface).152,153 The method extends neural 
networks to allow for the incorporation of geometric priors 
(structure and symmetry) of the input in order to improve the 
quality of the signal captured by the model. GDL has been used 
for instance in developing molecular surface interaction fin-
gerprints (MaSIF).154 MaSIF was mostly trained on non- 
immune protein–protein interaction including antibody- 
antigen data. The authors note that geometric models, such 
as MaSIF, are able to capture geometric matching across pro-
tein–protein interfaces that may extrapolate to paratope–epi-
tope interfaces pending further validation. Hence, it would be 
of interest to benchmark MaSIF against antibody-antigen 
binding prediction tools as the model is increasingly being 
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used to study antibody–antigen interface.155 Briefly, MaSIF 
starts with a mesh representation of a protein surface where 
each point on the surface is annotated with both geometric and 
chemical features that capture degrees of curvature, concavity, 
electrostatic potential, hydrophobicity, and hydrogen poten-
tial. Subsequently, a set of geodesic filters generate a one- 
dimensional embedding of the protein surface. MaSIF was 
used to classify interacting versus non-interacting residues 
with satisfactory performance. A GDL model with a simpler 
surface representation for large-scale learning has also recently 
been made available.156 However, GDL, or any other deep 
learning-based tool, has yet to be configured to account for 
the dynamics of the interaction at the interfaces. In particular, 
antibodies sample multiple conformations even at the 
unbound stage,157 and bound antibody structures differs from 
their corresponding unbound structures.49,158 Incorporating 
the dynamics and conformational changes upon binding at 
the interfaces between two molecules remains one of the 
major challenges in protein design in general, as well as in 
the design of antigen-specific antibodies.159

2.4. From single paratope-epitope pair to many-to-many 
binding partner prediction

In addition to paratope or epitope prediction of already known 
binding pairs, learning the rules for paratope-epitope matching, 
and generating all possible binding partners of an antibody or 
antigen represents a difficult challenge. Leveraging antibody- 
antigen complexes in the database AbDb, graph theory, and 
deep learning, we45 discovered a set of antibody-antigen structural 
interaction motifs that demonstrates the potential predictability of 
antibody–antigen interaction in general, and the prediction of 
paratope-epitope pairs more specifically. Indeed, these interaction 
motifs were shared across unrelated antibody-antigen complexes 
(but were largely distinct from non-immune protein–protein 
interaction motifs), suggesting the existence of a general interac-
tion vocabulary of antibody–antigen interfaces that may help, in 
the future, learn antibody–antigen interaction rules. However, the 
lack of large structure and affinity datasets for antibody-antigen 
hinders the exhaustive benchmarking of deep learning-based 
many-to-many binding and affinity prediction.

By generating large-scale synthetic antibody-antigen struc-
tural datasets,54 we investigated the relative influence of struc-
tural and sequence-based features on the accuracy of paratope- 
epitope prediction (i.e., predicting a compatible epitope of an 
epitope). Both an encoder-decoder with attention, and the 
transformer architectures yielded accuracies of ≈90% at gen-
erating the cognate epitopes using at least 2000 to 10,000 
unique encoded paratope-epitope training pairs. In contrast, 
sequence information alone led to unsatisfactory accuracy even 
with 200,000 distinct paratope-epitope pairs in the training 
dataset. Interestingly, the binding degree of paratope and epi-
tope residues (number of binding residues on the other pro-
tein) was the structural feature that contributed most to 
increase prediction accuracy.

Ab-Ligity158 uses the ABodyBuilder tool60 to reconstruct the 
paratope structure of the full antigen-binding fragment (Fab) 
region (based on CDR sequences and homology modeling) and 
to cluster the antibody sequences that would bind the same 

epitope. This is done by hashed encoding of the physicochem-
ical property of the binding (paratope-epitope) pairs of resi-
dues and their distance binned per groups of 1.0 Å. A binding 
similarity site is then calculated from the encoded paratope– 
epitope interaction code. As such, it was possible to identify 
dissimilar antibody sequences that would bind the same epi-
tope, a task that is usually very challenging. With 
a conceptually similar goal, Ripoll et al.160 computationally 
constructed 3D-models of epitope-specific antibody sequences 
to train image-based deep neural networks for antibody- 
epitope classification showing a potential route towards apply-
ing image recognition techniques to sequence-based datasets 
for antigen specificity discovery.

DLAB-VS (Virtual Screening) transforms paratope or epi-
tope prediction into binding prediction131 by virtual screening 
of a docked antibody-antigen pair and using a CNN to predict 
their compatibility. The CNN was trained on the best poses of 
known cognate antibody-antigen pairs as the positive class, 
while two types of negative pairs were selected: docking of 
non-cognate pairs, and the lowest range (FNAT < 0.1) of 
docked poses for a binding pair.

Xu et al.161 used a structure-based clustering of CDRH3 
sequences to cluster supposedly phenotypically similar 
sequences and based on this created a group of sequences 
that bind the same epitope on human immunodeficiency 
virus (HIV) or influenza virus. They predicted whether 
sequences bind the same epitope with SVM.

Altogether, the different strategies for paratope and epitope 
prediction have shown that antibody-antigen binding is pre-
dictable and ML may be able to learn complex rules that govern 
antibody–antigen interaction. In light of the main learnability 
challenges, we would argue that prediction accuracy is not the 
only goal of concern. A major open question is the robustness 
of the prediction accuracies against information that was either 
absent from the data (for instance cross-reactive antibodies or 
antigens), or that has leaked between test and training datasets 
(i.e., the separation of sequence-similar or homologous 
sequences between both datasets).54,162

2.5. Learnability of sequence-induced affinity change

The prediction of the binding affinity of antibody sequences 
toward antigens (binding prediction) is among the major 
applications of deep learning in antibody research. Affinity is 
the strength of the interactions between an antibody and an 
antigen. It is typically governed by proximity, contact surface 
area, and the distribution of charged, polar, and hydrophobic 
groups. When an associated antibody-antigen complex is 
favored, the antibody is categorized as high affinity.163 Thus, 
in the sequence to affinity setting, a deep learning model maps 
the sequence space to the affinity space.

Experimentally, the affinity of an antibody toward a target 
antigen is measured as the change in free energy of binding 
(ΔG) and can be determined by techniques such as surface 
plasmon resonance (SPR), amplified luminescence homoge-
neous assay (AlphaScreen), enzyme-linked immunosorbent 
assay (ELISA), phage display ELISA (phage ELISA), yeast sur-
face display flow cytometry, isothermal titration calorimetry 
(ITC), biolayer interferometry (BLI) and enzymatic 
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assays.70,86,164 Alternatively, when the structure of an antibody 
in complex with an antigen is resolved, the free energy of 
binding can be inferred with knowledge-based scoring func-
tions (statistical potential) or molecular mechanics force 
fields,165,166 which are frequently used in molecular docking 
and molecular dynamics studies.167

Guest et al.49 built a docking benchmark dataset comprising 
antibody-antigen complex structures (single domain or multiple 
domain antibodies) for which the unbound antibody and anti-
gen structures were also known (N = 67 antibody-antigen 
pairs). The dataset allows the testing of the performance of 
docking strategies to predict the docking pose or binding affi-
nity to the target antigen knowing only their unbound confor-
mation. They showed a high discrepancy in docking methods’ 
capacity to predict the correct docking pose and a wide variety 
of correlations between 20 affinity prediction tools and the 
experimental ΔG of antibody-antigen binding. These observa-
tions underline the challenge in the prediction of the affinity, the 
binding pose, and consequently the interacting interface (para-
tope-epitope) of an antibody binding to its cognate antigen.

Lippow et al.168 proposed a computational design alternative 
to directed evolution for affinity maturation by studying the effect 
of CDR single AA substitutions on electrostatic-binding contri-
butions. Briefly, using a classical physics-based energy function 
combined with a hierarchical search indexing, single AA substi-
tutions were performed to replace each of the CDR positions with 
the 20 common side chains, excluding proline and cysteine. 
Combining multiple AA substitutions led to a 10-fold affinity 
improvement to an anti-epidermal growth factor receptor IgG1 
antibody (cetuximab), and similarly, a 140-fold improvement in 
affinity was observed for an anti-lysozyme IgG1 antibody.168

If antibody–antigen interaction is predictable, it must 
follow that affinity could also be predicted by leveraging 
the combination of sequence and structural data. Indeed, 
Kurumida et al.164 used single AA substitutions from 
SiPMAB dataset169 to train an ensemble of ML-based pre-
dictors for affinity prediction and reported notable 
improvements over molecular mechanics-based affinity 
scoring function. Pires and Ascher170 built the mCSM-AB 
webserver to predict the effect of AA substitutions, trained 
on structural signature and pharmacophore count differ-
ences between wild-type and mutant residue, together 
with experimental affinity difference from the AB-Bind 
dataset.70 mCSM-AB2171 was trained on an expanded data-
set including mutant variants with binding affinities 
obtained from the AB-Bind, PROXiMATE,79 and SKEMPI 
2.083 databases. mCSM-AB2 uses graph-based signatures 
(pharmacophore and distance pattern) for the wild-type 
residue, structural-based signatures (distance changes, 
interatomic interactions, solvent-accessible area), evolution-
ary score and potential energy difference calculated using 
FoldX.172 mCSM-AB2 achieved a higher Pearson’s correla-
tion coefficient than the previous version, between pre-
dicted and experimental ΔΔG. mmCSM-AB173 analyzes 
the effect of multi-point mutations on antigen-binding affi-
nity, using graph-, sequence- and structure-based signa-
tures. Topology-based network tree (TopNetTree) was 
developed to predict changes in protein–protein interaction 

(PPI) affinity upon engineering,174 and was built by com-
bining the CNN with gradient-boosting trees (GBT). The 
TopNetTree model outperformed TopGBT (topology-based 
GBT), TopCNN (topology-based CNN) models, and pre-
viously published methods on the AB-Bind dataset and 
SKEMPI database. A similar method, GeoPPI175 consists 
of two components, a graph neural network trained on 
topology features from protein structure via self- 
supervised learning and a gradient-boosting tree (GBT) 
trained on learned features of both wild-type residue and 
its mutant to predict ΔΔG upon AA replacement.

2.6. High-throughput experimental methods to generate 
data for the prediction of antibody-antigen binding using 
ML

Sequence data, as opposed to 3D structures, can be produced at 
larger scales, higher efficiencies, and at markedly reduced costs 
making it the leading choice to study antibody-antigen bind-
ing. Typically, the utility of sequence data for studying anti-
body–antigen binding is restricted to the prediction of binders 
and non-binders, as it does not afford a sufficient resolution to 
recover paratope-epitope information. Deep mutational scan-
ning, for instance, can be paired with screening tools, such as 
ELISA or SPR-based platforms, to obtain large collections of 
binding and non-binding sequences for an antigen of interest. 
For example, Mason et al.86 combined deep mutational scan-
ning, ELISA, and CNN to discover new antibody candidates. 
Specifically, they used CRISPR-Cas9-mediated homology- 
directed repair mutagenesis to create 104 antibody variants, 
which were subsequently screened for binding against human 
epidermal growth factor receptor 2 (HER-2). The resulting 
binders and non-binders were used to train a deep learning 
model, which was subsequently used to screen a much larger 
(108) in silico library, inaccessible to experimental exploration, 
of antibody variants for HER-2 binders.

Sequencing technologies that study, at high-throughput, 
many antibodies against many antigens (a logical step forward 
to the many antibodies against a single antigen as described in 
Mason et al.86) have begun to emerge as well. Setliff et al.176 

developed Linking B-cell receptor to antigen specificity through 
sequencing (LIBRA-seq) and demonstrated the utility of LIBRA- 
seq in high throughput screening of antibodies (103) against 
nine antigens (five HIV envelope proteins and four influenza 
hemagglutinins) and its efficacy to discover broadly neutralizing 
antibodies. Briefly, the methods use DNA-barcoded antigens to 
tag B cells which are then subsequently single-cell sequenced to 
recover the B-cell receptor (BCR) transcripts and the antigen 
barcodes, and thus providing a direct readout of BCR-antigen 
binding. Importantly, the LIBRA-seq score was shown to corre-
late well with the observations from ELISA making it a useful 
metric to partition the resulting data as binder and non-binders 
for subsequent ML training and exploration. LIBRA-seq has also 
been used to delineate cross-reactive antibodies against severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with 
distinct epitopes and Fc effector functions177 as well as rapid 
profiling of SARS-CoV-2 specific memory B cells.178
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The selection of many antibodies (or variants thereof) against 
many antigens (or variants thereof) in parallel has been coupled 
to a display-based library on library (L-o-L) screening platforms. 
While L-o-L screening represents a key technology for the large- 
scale symmetric antibody-antigen binding generation, progress 
in that direction has been slow. Briefly, Hu et al.179 screened 
a phage-based human antibody library against an active mutant 
library of Mac-1 inserted domain displayed on the yeast surface. 
The library enrichment process was bridged with a yeast two- 
hybrid system for the final quantitative selection of antibody- 
antigen pairs. A similar L-o-L screening approach has been used 
to screen an antigen library of the HIV-1 gp160 protein against 
an antibody library generated from an HIV-1 infected 
individual.180 Further, Younger et al.181 developed a yeast syn-
thetic agglutination-based improved single pot L-o-L screening 
platform, which enables high throughput methods for screening 
protein–protein interactions by reprogramming yeast mating 
where they quantitatively characterized 7000 distinct protein– 
protein interactions. Recently, a high-throughput yeast-based 
synthetic agglutination assay (AlphaSeq) was used to character-
ize the binding profiles of tens of antibodies against thousands 
of SARS-CoV-2 receptor-binding domain (RBD) variants. 
Specifically, 178,760 protein–protein interactions were mea-
sured between 33 antibodies and single AA substitutions corre-
sponding to 165 binding sites within the panel of RBD 
variants.182

In summary, emerging high-throughput experimental assays 
that are capable of generating large (developability-adjusted) 
antibody-antigen binding data in the order of 104–105 have 
begun to unlock the potential of ML for the prediction of anti-
body-antigen binding.3,176,183,184 However, for the prediction or 
generation of paratope-epitope pairs on the sequence level with-
out any structure-aided encoding, much larger data at a higher 
resolution may still be necessary, as previously suggested by us.54

2.7. Leveraging ground-truth synthetic data to establish 
lower bounds on learnability

The generation of synthetic data via simulations is a crucial, 
but yet under-explored tool in computational antibody 
design.185 Estimating (ML prediction) error requires us to 
know the ground truth about the training data. We define 
ground truth as a system in which any parameter (and the 
value thereof) that contributed to training data generation is 
known and controlled – this is the case for synthetic data but 
usually not the case for experimental data. Only if we know 
how the training data has been generated, can we benchmark 
ML methods not only with respect to accuracy but also with 
respect to feature discovery and interpretability. To objectively 
benchmark ML approaches, special care should be put on the 
distribution of elements and property of elements in the data-
sets as to faithfully represent experimental datasets because 
method benchmarking on simulated data is only useful if 
conclusions gained on simulated data are transferable to 
experimental data. By distributions we mean, in the case of 
simulation of antibody-antigen binding data, for example, 
parameters such as positional amino acid frequency, antibody 
and antigen topology, sequence dependencies.185 Specifically, 

simulations that allow to precisely define different antibody- 
antigen binding problems, which requires explicit datasets with 
all required levels of annotation allowing any kind of encoding, 
are not yet available in experimental data (Figure 1, challenges 
in Learnability). Commonly used data encodings can be 
divided into sequence-based and structure-based ones, while 
hybrid formalizations leverage both types of datasets.54 To 
summarize, define, and compare ML approaches on the same 
basis, it is critical that simulated data represent 3D features of 
antibody-antigen binding (especially for defining paratopes 
and epitopes), allow the generation of large-scale datasets, 
and the integration with other data types, such as sequence- 
based datasets. Integration of structure and sequence-based 
datasets is especially important given the large imbalance in 
the availability of sequence and structural experimental data 
(Figure 1, challenges in learnability).

We define synthetic datasets as computer-generated datasets 
that mimic a set of observed properties of experimental datasets 
that are the most important in determining the biological out-
come to predict. Synthetic datasets can be generated by data 
augmentation, for instance, by starting from experimental anti-
body-antigen structures, and generating other possible docking 
poses that are added to the dataset,131 or structures that are 
calculated based on physical-based simplified models.54,186 

Alternatively, structure-independently, antibody sequences 
may be simulated according to the principles of V(D)J recombi-
nation and, partially, somatic hypermutation.105,187–191

Sequence-based Ig simulation tools, such as IGoR187,192 and 
immuneSIM,105 enable the generation of large numbers of Ig 
sequences with moderate computational needs. They have the 
advantage of generating sequence data that is native-like, 
which means that data generation is performed, to a large 
extent, in agreement with the rules of V(D)J recombination, 
resulting in the generation of data that are largely indistin-
guishable from experimental data. Importantly, immuneSIM 
also allows the insertion of sequence motifs (“immune signals”) 
into the generated sequences, which may be used to model 
motifs implicated in antigen binding. Therefore, such simu-
lated data can be used for exploring antibody-specificity pre-
diction tasks where in a binary or multi-class/label fashion, 
sequences are to be classified for their antigen-binding beha-
vior (see Use Cases 1 and 2 in ref.54). Of note, simulations with 
implanted motifs have also been used for repertoire-based ML 
with applications to immunodiagnostics.104,193 Independently 
of established simulation frameworks, experimental-based 
simulations for training sequence classifiers may also be per-
formed to augment Ig sequence data by reflecting experimen-
tally determined AA position bias.86

A current drawback in these simulation frameworks is the 
lack of nuance pertaining to VH-VL pairing. Since the rules of 
VH-VL pairing remain underexplored, chain pairing is either 
not simulated at all or implemented by simple random pairing 
of VH and VL chains.105,187,189 Although it has been shown 
that the CDRH3 is the most important site for antigen 
binding,44,45 considering chain pairing is crucial to fully reflect 
the biological complexity of antigen binding.69,194 Pioneering 
work on jointly modeling TCRalpha/beta chain pairing may 
potentially be ported to VH-VL modeling.195,196
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To summarize the advantages of synthetic data for the 
development of computational and machine learning applica-
tions for antibody engineering: we agree that the discovery of 
novel biology can only be performed using experimental data 
(unless synthetic data perfectly reflects biology complexity). 
Rather, the advantage of synthetic data over experimental 
data, if carefully designed, is that due to its arbitrary size and 
specification, it enables the exploration of the capacity and 
limits of computational methods as well as the ranking of 
methods for a given task.185 In other words, synthetic data 
allows the development and refinement of computational 
methods in the absence of suitably large and complete experi-
mental data.197

Large-scale synthetic structural antibody-antigen datasets 
mimicking key aspects of natural antibody-antigen (i.e., para-
tope–epitope interaction) are needed to develop and bench-
mark antibody-adapted ML approaches. Therefore, we have 
recently established the computational framework “Absolut!” 
for simulating in silico antibody–epitope interaction datasets.54 

This framework enables automatic conversion of antibody- 
antigen structure into a (3D)-lattice representation followed 
by modeling of 2D/3D antibody-antigen binding of each anti-
body sequence around the discretized antigens using structural 
lattice affinity computational method based on experimentally 
derived coarse-grained amino–acid interaction 
potentials.186,198 The Absolut! framework was mainly devel-
oped to address the issue of antibody-antigen binding data 
availability for ML method development, formalization, and 
benchmarking. The simulated binding structures incorporate 
a range of physiological properties of antibody-antigen binding 
(a large number of possible binding structures, AA composi-
tion and surface topologies, complex positional AA dependen-
cies in binding antibody sequences, existence of immunogenic 
binding hotspots, and complexity of the paratope-epitope 
binding network) and allow for the exploration of various 
types of negative control datasets that are largely infeasible to 
create experimentally. Using Absolut!, we have generated close 
to one billion antibody-antigen structures. To further close in 
on the physiological reflection of Absolut!-generated structures 
(or any other framework that aims to simulate antibody- 
antigen binding), further work is needed to establish 1) full 
VH-VL chain binding (so far, we can only model CDRH3- 
antigen binding), 2) smaller angle grid in the lattice as our 
framework was limited to integer positions in a 3D grid and 3) 
adding constraints at the CDR3 ends in order to reproduce the 
anchoring of the CDR chains to the framework region (FR) of 
the antibody. In the even more long-term future, atomistic and 
molecular dynamics resolution are needed to add further bio-
logical complexity to the Absolut! antibody–antigen binding 
simulation framework.51,54,131 Of note, given that Absolut! 
simulations are based on physics-based (“equation-based”) 
principles, Absolut!-generated datasets can also be used to 
develop novel deep learning approaches such as end-to-end 
differentiable ML architectures that combine mathematical 
equations specific to a particular domain (in this case, for 
example, antibody-antigen affinity) with general-purpose, 
machine-learnable components.197

Although much progress has been made in the learnability 
of antibody-antigen binding and developability (see next sec-
tion), key challenges such as interpretability as well as data 
completeness have only begun to be addressed.

On interpretability. Interpretability encompasses the effort 
to infer the rules underlying the data. However, there is not yet 
a way to mechanistically and comprehensively map the rules 
that govern antibody-antigen interaction due to the combina-
tion of large search space and scarcity of data (see the Section 
entitled “Learning from nature: considering biological com-
plexity in computational antibody design”). As the immunol-
ogy field begins to accumulate more data (experimental as well 
as synthetic), we will become increasingly reliant on large ML 
models to infer these rules. Drawing parallels from the natural 
language processing (NLP) field where large transformer-based 
models (Figure 3) continue to advance the state-of-the-art 
results in many different problems and benchmark studies at 
the expense of building larger and larger models.199 It begs the 
question of whether continuing along the lines of building 
large and more sophisticated architecture will perpetuate the 
improvements we have seen thus far at the cost of interpret-
ability. For instance, the Bidirectional Encoder Representations 
from Transformers (BERT),200 a prominent language repre-
sentation model, has grown from 110 million parameters to 
17 billion parameters in Turing-NLG and 175 billion para-
meters in GPT-3.201 The massive complexity of these models 
gave birth to a subspecialty that focuses exclusively to study 
BERT models – BERTology.202 Emphasis has been particularly 
given on the overparameterization of these large models as they 
do not seem to use the parameters to their fullest potential. 
Accumulating evidence reveals that many BERT models can be 
pruned without impacting their predictive prowess, i.e., most 
heads in the same layers converge to a similar attention pattern, 
and thus many layers can be consolidated into a single 
head.203,204 In biology, attention layers of transformer-based 
models, including BERT, have been shown to capture long- 
range interaction in protein and antibody folding by folding 
AAs that are distant in 1D sequence but spatially adjacent in 
the 3D structure, to identify active sites and to capture the 
hierarchy of complex biophysical properties with increasing 
layer depths100,205 – properties that are also critical for anti-
body-antigen binding. Nevertheless, as in NLP, these models 
remain susceptible to overparameterization and lack of inter-
pretability. Future deep learning methods would benefit greatly 
from architectures that accommodate the mapping of rules 
underlying the data instead of merely focusing on prediction 
accuracy.

On data completeness. Our immune system is, at least 
partially, a reactive system where germline gene base diversity 
can be expanded via stochastic recombinations, insertion, dele-
tion, and mutation. By that definition, our collective antibody 
repertoires expand or converge to the prevailing landscape of 
pathogens. Consequently, generating experimental datasets 
that contain exhaustive multiparameter information (a com-
plete dataset) for the purpose of training and benchmarking 
ML models remains challenging (Figure 3). In addition to 
having access to key design parameters (Figure 4) on the 
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same dataset (something that has not been achieved thus far), 
even more “exotic” data on biological parameters would be 
crucial, such as structural information on bound and unbound 
state,49 chain flexibility,206 molecular dynamics simulations.69 

Indeed, only large and exhaustive data will allow us to perform 
subsampling studies27,54 for determining the minimal dataset 
size necessary to achieve satisfactory prediction accuracy on 
a given prediction task. In order to reach data completeness 
faster, it may be interesting to explore experimentally to what 
degree some parameters may be set constant, such as for 
example only working on the CDRH386 or with single-chain 
antibodies207 or only with linear epitopes (or antigen immuni-
zations with simple peptides).208,209

Furthermore, we and others have shown that learned repre-
sentation from one problem (e.g., one antigen) can be lever-
aged to improve the predictive capability of a deep learning 
model that was built for a different problem (a different anti-
gen) by way of transfer learning.27,97,210,211 Large complete 
knowledge datasets have been conceived by simulating large 
antibody-antigen pairs,54 although possible at reduced resolu-
tion, the computational bottleneck to efficiently simulate these 
pairs at full atomistic resolution presents yet another challenge. 

Future ML models may benefit from integrating continuous 
streams of data (either experimental or simulated) in an online 
fashion where the data comes in a sequential manner, and the 
model is updated constantly to allow it to evolve along with the 
prevailing scenario, in contrast to the typical batch learning 
where the model is trained once (often with incomplete data) 
and is expected to generalize well (Figure 3).212

3. Capacity to modularly learn antibody design 
parameters

3.1. Modularity of antibodies and developability 
parameters

mAb therapeutic candidates need to pass several developability 
hurdles for feasible commercial-scale manufacturing and clin-
ical application.213,214 The developability of an antibody 
encompasses the likelihood of the antibody to successfully 
progress to the clinical phase, which is assessed based on 
several biophysical properties including a tendency to aggre-
gate, stability, immunogenicity, and plasma half-life 
(Figure 4).215 The conventional approach for antibody design 

Figure 4. Mapping of developability parameters to the antibody regions. The high-level developability parameters are shown in bold font and placed within black boxes 
with respective mapped antibody regions listed in brackets below each box and referred to with dashed black arrows. The widely used low-level physicochemical 
developability parameters are also shown in grey text and connected to respective high-level developability parameters with solid grey arrows (detailed further in 
Table 1). Antibody regions are color-coded as follows; Fc: grey, VH: red, VL: purple, CDRs: blue. High-level developability parameters. Viscosity, solubility, and 
aggregation propensity of mAbs are mainly linked to the surface-exposed regions of mAb molecules. Antigen specificity and binding affinity, on the other hand, are 
mainly associated with the CDRs as well as thermal stability. All regions of the antibody can impact half-life and immunogenicity. Low-level developability 
parameters. Viscosity has been reported to be influenced by charge, hydrophobicity, atomic/diffusion interaction, and the isoelectric point (pI) of the mAb molecule. 
Solvent exposure area and AA composition are frequently reported to impact the solubility of the antibody. Charge and hydrophobicity were also found to affect 
antibody preparation aggregation likelihood together with stability and spatial aggregation propensity (SAP) measures. The binding affinity of the Fc region to FcRn 
significantly impacts mAb PK, in addition to the reported role of poly-specificity, charge, and pI on mAbs half-life. The likelihood of a mAb to elicit an immune response 
(immunogenicity) is linked to the non-human AA sequence content of the mAb, in addition to the way it is processed (digested) into smaller peptides by APCs, bound to 
the human leukocyte antigen II (HLA II) and presented to T-helper cells. The hydrophobicity and AA composition of mAb CDRs were often reported to affect its thermal 
stability.
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is focused on segregating different biophysical properties to 
different components of antibody.8,43 However, in our view, 
a modular approach for antibody design would need to con-
sider the interdependence and non-linear optimization of the 
antibody design parameters (both developability and antigen- 
binding related), which will lead to the desired function and 
functionality (Figure 4). In the following section of this review, 
we extensively review critical knowledge of the developability 
and pharmacokinetics of mAbs. An experienced reader in anti-
body developability and mAbs therapeutics might find it more 
convenient to directly resume reading from the section entitled 
“Designing antibodies with desirable efficacy and developabil-
ity remains challenging”.

3.2. Background: therapeutic mAbs

Among the five isotypes of human Igs – IgA, IgD IgE, IgG, and 
IgM, the gamma class (IgGs) comprises all clinically approved 
mAb therapeutics.2,216–218 This is due to the combined features of 
distinct effector functions with advantageous pharmacokinetic 
properties of the IgG subclasses. In addition, the high abundance 
of endogenous IgGs in humans (10–12 mg/ml in blood, account-
ing for up to 80% of the native antibody repertoire219 and 60% of 
serum Igs217 intravenous or subcutaneous injection and robust 
manufacturing processes well established at an industrial 
scale220–222 makes them suitable for therapeutic applications.

Four subclasses of IgG exist in humans, named in decreasing 
serum abundance, IgG1, IgG2, IgG3, and IgG4.223 Although 
they share high similarity in their structural architecture and 
AA composition, they have distinct differences that dictate 
unique effector molecule binding and pharmacokinetic 
properties.219,224 Specifically, while IgG1 and IgG3 trigger 
potent immune responses upon engagement of antigen, IgG2 
and IgG4 induce more subtle responses.216,225 Thus, for the 
development of an antigen-specific therapeutic mAb candidate, 
it is a prerequisite to select the most preferable subclass.224–227

Early developability screening for fit-to-manufacture proper-
ties is crucial to minimize the cost and time used for the selection 
of lead mAb candidates.215,228 For this purpose, major efforts have 
been invested to develop in silico tools and ML algorithms that 
could ultimately improve antibody design parameters by imple-
menting modular learning strategies (Table 1).4,215,228 Here, we 
discuss each of the developability parameters with the main focus 
on computational developability prediction tools.

3.3. Tailoring the plasma half-life of therapeutic mAbs

Although the IgG plasma half-life is threea weeks on average in 
humans, the half-life of therapeutic IgG mAbs is actually in the 
range of 6–32 days.254,257 Importantly, large differences are not 
necessarily a direct effect of target-mediated clearance as half- 
life variation is also measured for IgG1 mAbs against 
pathogens.258 An illustrating example is briakinumab and uste-
kinumab, both IgG1s targeting the same antigen (interleukin- 
12/23), which in humans have half-lives of 9 and 23 days, 
respectively.259,260 Understanding the molecular basis for 
these striking differences is the key to predict in vivo pharma-
cokinetic properties. However, the parameters that determine 
the pharmacokinetics of mAbs are multifactorial, including 

target-mediated clearance, nonspecific off-target binding as 
well as specific off-target binding via liver receptors and charge 
characteristics.24,261 While IgG mAbs have a size above the 
renal clearance threshold, which excludes renal filtration, 
FcRn operates as a global half-life regulator as discussed 
above. Thus, Fc-engineering for improved pH-dependent 
FcRn binding has resulted in the generation of Fc technologies 
that can extend the half-life beyond that of natural IgG.224

While the Fc technologies can extend the half-life of IgG, 
each mAb will have a unique pharmacokinetic profile, as 
a result of its variable domain sequence composition, which 
is determined by the targeting-binding properties, but also 
cellular handling (in an FcRn-independent but also likely in 
an FcRn-dependent manner). As such, the distinct sequences 
generally have a unique pharmacokinetics profile. In this 
regard, physicochemical properties of the variable region, 
such as hydrophobicity, isoelectric point (pI), and charge 
patches may have a major influence on mAb pharmacokinetics 
(Figure 4).24,216,261 For instance, positively charged antibodies 
more readily interact with the negatively charged plasma mem-
branes, and therefore, be more susceptible to cellular 
uptake.262,263 In accordance with this, generating mAb with 
increased charge in the variable domains has been shown to 
result in increased nonspecific binding and consequently faster 
clearance.261,263 On the contrary, reducing the pI or balancing 
the charge distribution of the CDRs has been shown to extend 
the plasma half-life by reducing non-specific binding.22,264

While the principal binding site for FcRn is at the Fc elbow 
region, recent findings support that charge features of the 
variable domains may modulate engagement of the receptor, 
and as such affect cellular transport and half-life.24,42,265,266 

This layer of complexity is far from understood, and thus is 
under intense investigation.

Although non-human primates generally offer reliable 
pharmacokinetic parameters that can be translated to 
a human setting, they are not suitable surrogates for screening 
of panels of mAbs due to impractical handling and ethical 
considerations. As such, mice are easier to use, but differences 
exist in how mouse FcRn binds human IgG compared with the 
human receptor, which must carefully be taken into 
consideration.267,268 Thus, mouse strains expressing human 
FcRn have become the state-of-the-art preclinical standard 
for investigating the pharmacokinetic properties of IgG 
mAbs.269,270 Furthermore, Grevys et al.271 have developed 
a human endothelial cell-based recycling assay (HERA) that 
can be used to screen IgG mAbs for their ability to be taken up 
and sorted in an FcRn-dependent manner, which has been 
demonstrated to correlate with half-life values obtained in 
human-FcRn transgenic mice.

In silico screening of antibody candidates for favorable PK 
properties prior to pre-clinical investigations can increase the 
convenience and cost-effectiveness of mAbs development. 
However, identifying the most impactful parameters that affect 
mAbs PK is challenging due to its multifactorial nature 
(Figure 4). In this context, Goulet et al.254 used a LASSO (least- 
absolute shrinkage and selection operator) ML strategy to 
identify the combination of parameters that best correlate 
with mAbs clinical clearance data. They reported that FcRn 
affinity together with mAb thermal stability is the most 
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powerful parameters for mAb half-life prediction. Most 
recently, Grinshpun et al.255 investigated the effects of 40 
physicochemical parameters (12 measured in vitro, 28 calcu-
lated in silico) on 48 IgG1 mAbs clearance profiles. They 
implemented a random forest ML algorithm and identified in 
silico computed sequence-based features “pI” and in vitro mea-
sured feature “binding poly-specificity reagent (PSR)” as the 
top two ranked parameters based on 10,000 repeated runs of 
the random forest model.255 These findings align with the 
previously reported impact of pI and PSR measures on mAbs 
PK.22,264,272

In summary, the half-life of IgG mAbs can be tailored via 
the optimization of numerous physicochemical parameters, 
including FcRn affinity, thermal stability, pI, and PSR. ML 
and the increasing availability of mAb PK data have been 
aiding the identification of the parameters and their threshold 
values to facilitate in silico estimation of mAb PK.

3.4. Improving the stability of mAbs

The stability term of antibodies comprises thermodynamic or 
conformational stability (thermal stability) and colloidal stabi-
lity (solubility, viscosity, and aggregation), which are physically 
related and sometimes used interchangeably. These parameters 
are in particular important to consider during development 
and manufacturing processes as part of risk assessment, to 
reduce the need for cold-chain storage, extend shelf life, and 
expand the range of applications for practical use. The applic-
ability of experimental assays is limited for antibody develop-
ment due to the high mAb concentration requirement for some 
of these steps (i.e., >50 mg/mL) and the lack of high through-
put methods.273,274 These drawbacks may limit the complete 
screening of all parameters during early-stage development. 
However, there has been significant progress in the develop-
ment of high-throughput computational methods to compen-
sate for the time-consuming lab-based biophysical experiments 
(Table 1).

The generally recommended temperature for storing bio-
pharmaceuticals is in the range of 2°C – 8°C. However, protein 
denaturation can occur during freezing and freeze-thawing 
cycles, affecting both conformational and colloidal stability of 
proteins.275,276 A study on eight human IgG mAbs (6 IgG1 and 
2 IgG4) suggests that focusing on strategies that increase the 
thermal unfolding temperature of the Fab arms is an attractive 
approach to improve storage stability.277 The development of 
generic antibody fragments to improve the stability of antibo-
dies against a range of denaturing conditions (e.g., tempera-
ture, denaturants, polar and non-polar solvents, surfactants, 
and proteases) while maintaining antibody-specificity, is 
widely studied experimentally.278–280

Among the computational approaches, molecular 
dynamics (MD) approaches are widely used to assess the 
stability of antibodies in the context of different solvent 
conditions,281 spatial aggregation propensity (SAP),229 frac-
tion of native contacts (Q-value).230 In comparison to 
simulation studies, ML-based models are still at a nascent 
state to predict the stability parameters of antibodies. 
However, an ANN-based model has been developed using 
the AA composition as a feature for studying melting 

temperature (Tm), aggregation onset temperature (Tagg), 
and diffusion interaction parameters (kD) as a function of 
pH and salt concentration.231 Jia et al.282 used a sequence- 
consensus approach combined with structural residue pair 
covariance methods to predict the thermostability of anti-
bodies. In another study, authors used the Rosetta platform 
for protein design to achieve thermal stabilization of anti- 
HA33 (Clostridium botulinum hemagglutinin protein) anti-
body, through clusters of mutation in the FR region, and 
verified the results through experiments.283 In summary, 
antibody-specific MD simulations are widely accepted as 
a more robust way to study thermal stability, in comparison 
to generalized ML/mathematical model development 
(Table 1).

Aggregation describes the accumulation of denatured anti-
bodies into large clusters due to high concentration or envir-
onmental factors (such as temperature, pH, salt concentration, 
additives, etc.). In general, aggregation-prone region (APR) 
prediction methods are widely used to predict the aggregation 
capability of proteins, including antibodies. Several studies on 
antibodies have identified potential aggregation-prone regions 
in the relatively exposed CDR of the VH domains.234,284–286 

However, a recent study observed that almost all the latest APR 
prediction algorithms perform poorly on identifying 
aggregation.287 This can be attributed to (1) limited overall 
variations in the antibody sequence (except for CDRs) leading 
to higher sequence conservation and (2) low sensitivity of these 
algorithms toward similar protein sequences. Importantly, 
these algorithms do not account for aggregation-related envir-
onmental factors and protein concentration. While aggrega-
tion kinetics prediction methods account for these external 
factors, the lack of significant dataset size for training limits 
their robustness.233,288,289

In antibody-specific studies, the developability index (DI) 
allows the prediction of aggregation propensity and long-term 
stability based on the antibody structure and AA sequence 
charge information.232 In an attempt to define success limits 
for developability parameters, Jain et al.52 assessed 12 assay- 
based biophysical properties of 137 mAbs that had reached at 
least phase II clinical trials and observed that decreased protein 
stability, an increased disposition for protein aggregation, and 
polyreactivity are linked to poor developability. This study estab-
lished thresholds for desirable drug-like developability mea-
sures, suggesting practical rules for mAb candidates. 
Subsequently, in an effort to recreate a ‘Lipinski’s rule of five’ 
for antibodies, Raybould et al.213 examined five developability 
properties of 242 post-phase-I clinical-stage IgG1 antibodies and 
implemented them into Therapeutic Antibody Profiler (TAP) 
online tool. Specifically, TAP scores take into account develop-
ability factors, such as the length of the CDRs, hydrophobicity, 
and the presence of charge patches, which are linked to poly-
specificity, aggregation, and viscosity of mAb preparations. 
Rawat et al.234 developed an ML-based light chain aggregation 
prediction method and highlighted that lambda light chains are 
inherently more aggregation-prone. Notably, most approved 
IgG mAbs harbor the kappa light chain, and the pool of 
human IgG in serum has about 2-fold more of kappa light 
chain than the lambda. Van der Kant et al.290 combined the 
aggregation propensity and thermodynamic stability prediction 
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methods to rationally improve the developability parameters of 
mAbs, which was implemented as the Solubis server.235 Another 
example is the aggrescan3D (A3D) 2.0 web server, primarily 
developed to predict aggregation propensity of proteins, which 
recently was implemented for simultaneous prediction of 
change in solubility and stability for improved antibody 
developability.256 In conclusion, in silico studies on antibody- 
specific aggregation have emerged in the past few years, whereas 
generalized protein aggregation predictions have matured for 
over decades (Table 1).

Solubility is another aspect of colloidal stability, which 
is inversely proportional to aggregation. SOLpro is one of 
the early solubility prediction methods that used 23 
groups of features computed from the primary sequence 
to design a two-stage support vector machine (SVM) 
architecture.236 Another method, Protein-Sol, combines 
35 sequence-based properties including AA composition 
and other conventional solubility/aggregation related 
properties (i.e., hydropathy, charge, disorder, β-strand 
propensity, etc.) in a linear model to predict the solubility 
of proteins.237 Further, CamSol is a structure-based 
method to generate the intrinsic solubility profile of pro-
teins. Similar to aggregation prediction algorithms, 
CamSol also identifies low solubility patches in protein 
structures that may elicit the self-assembly process.238,291 

A recent paper discusses ‘Solubility-Weighted Index’ 
(SWI), which is derived from a simple sequence composi-
tion scoring method, to predict the solubility of 
proteins.239 The availability of a large dataset(s) for solu-
bility led to the implementation of advanced deep learning 
models as well. For example, Khurana et al.240 used 
a convolutional neural network that exploits k-mer struc-
ture and additional sequence and structural features 
extracted from the protein sequence to develop the 
DeepSol model. Solubility prediction methods in general 
are relatively more robust compared to other developabil-
ity parameters due to the availability of large-scale data-
sets. However, antibody-specific solubility data is still 
scarce.

Concentration-dependent viscosity is the part of colloidal 
stability that may depend on pairwise and higher-order inter-
molecular interactions, non-native aggregation, and concen-
tration-dependent fluctuations of distinct structural regions 
of antibodies.292 An increase in viscosity has been a challenge 
for concentrated antibody formulation, which can reduce the 
volume of antibody dose, increase dose interval by improved 
pharmacokinetic profile, reduce the healthcare cost, and 
improve the bioprocessing of drugs during downstream ultra-
filtration and diafiltration steps.293 Most of the in silico studies 
on limited datasets correlated viscosity with sequence- 
structural properties, such as net charge, spatial charge map 
(SCM), pI, zeta-potential, hydrophobic parameters, AA com-
position/aggregation propensity of the fragment variable (Fv) 
region.241–246 Although MD simulation-based parameters, 
such as short-range interactions, van der Waals attractions 
and electrostatic repulsions are also used to develop models to 
predict viscosity of antibodies under a wide range of 

concentration and ionic strength.247,294 A mutagenesis study 
using MD simulations and experiments showed that replacing 
surface-exposed aromatic AA residues reduces the viscosity of 
antibodies.248 Schwenger et al.249 measured the viscosity as 
a function of concentration using Ross-Minton model and 
temperature using the Arrhenius equation and tested it on 
four mAbs in the range of potential clinical formulation. An 
interesting study on a relatively large dataset of 59 mAbs 
showed that diffusion interaction parameter (kD), a dilute- 
solution measure of colloidal self-interaction, can predict 
solution viscosity with high accuracy.295 Viscosity of antibo-
dies is dependent on intermolecular interaction, and there-
fore, MD simulation-based studies are heavily exploited. The 
low-level computational parameters related to viscosity are 
still at a preliminary stage of development and should be 
explored further on large datasets.

3.5. Reducing the immunogenicity of therapeutic 
antibodies

All protein-based therapeutics, including mAbs, may poten-
tially be immunogenic and elicit immune responses when 
administered to humans, resulting in the generation of anti- 
drug antibodies (ADAs). ADAs may affect the therapeutic 
efficacy of mAbs by neutralizing their activity and accelerating 
their circulatory clearance.2,253,296 For instance, ADA forma-
tion occurs in up to 35% of inflammatory bowel disease 
patients treated with the anti-tumor necrosis factor-α (anti- 
TNF-α) adalimumab (Humira), subsequently resulting in a loss 
of clinical response within 12 months of treatment 
initiation.297,298 ADAs could also result in adverse effects ran-
ging from topical rashes to systematic fatal inflammatory 
reactions.253,299 Thus, immunogenicity is a key concern for 
mAb development.300,301

Similarly to exogenous proteins, mAbs may be internalized 
by antigen-presenting cells (APCs), processed (digested) into 
shorter peptides, and subsequently bound to the major histo-
compatibility molecule II (MHC II) and presented for T-helper 
cells on the surface of APCs.302 Anti-drug immunogenic 
responses only occur when these complexes (termed as T-cell 
epitopes) are recognized by T-helper cell receptors, thereafter 
activating the adaptive immune cascade and leading to the 
production of ADAs against the mAbs.303,304

While the first approved therapeutic mAb was a mouse 
IgG2 antibody,305 mAbs have evolved to include an increasing 
proportion of human sequences to avoid the generation of 
ADAs.299,300 Thus, murine mAbs were followed by the engi-
neering of (1) chimeric versions where the constant regions of 
the mAb are of human origin, (2) humanized antibodies where 
only the CDRs are of murine origin, and finally (3) fully human 
mAbs where murine sequences are completely absent from the 
mAb sequence as it is obtained from human cell libraries.299,306 

mAb humanization has been widely implemented due its 
advantageous in vivo tolerability.307 In fact, almost 50% of 
approved or investigational therapeutic mAbs in the EU or 
US were humanized antibodies as of 10th July 2021 making 
them the leading class of mAbs in development.308
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Humanization of a mAb refers to the partial replacement of 
murine sequences in an antibody sequence precursor that has been 
initially identified using animal (often, mouse) models with 
human sequences, to improve their tolerability while maintaining 
their specificity, affinity, and stability (Figure 4).306 Antibody 
humanization is usually achieved by selecting and grafting the 
murine CDRs from the antibody precursor into human FR 
regions.309 In this process, human FRs are selected from the 
human germline Ig genes that produce the most homologous 
FRs to the original murine. While humanization seems straight-
forward in principle, further AA substitutions are often required to 
retrieve the desirable properties of the antibody that were lost in 
the grafting process.306,309 AA substitutions are usually performed 
on a trial-and-error basis until an antibody sequence with desirable 
immunogenicity and binding properties is identified, which can be 
both time- and resource-intensive.309 A recent study envisaged 
that human antibody repertoires can be a useful predictive tool for 
mAb development.310 They analyzed the AA substitutions in 
mAbs using position-specific scoring matrices (PSSMs) and 
observed that positions with high frequency of AA alteration 
may potentially reduce immunogenicity and improve other devel-
opability parameters.

To measure the extent of “humanness”, Gao et al.253 introduced 
the “humanness score” as a quantitative measure to reflect the 
distance between the mAb sequence and the human consensus 
sequence. Also, several in silico tools have been developed that 
could potentially accelerate mAb humanization (Table 1).251 For 
example, Hu-mAb is a computational tool built on an extensively 
trained ML model on native human and mouse repertoires to 
compare an input sequence to the closest human germline Ig gene, 
and suggests as few AA substitutions as possible on the FRs in 
order to achieve maximal sequence humanness score while redu-
cing the likelihood of impacting the efficacy of the mAb.251 Hu- 
mAb humanness predictions have shown to be interpretable rela-
tive to clinical immunogenicity data when tested on a set of 217 
mAbs. In their study, Marks and colleagues illustrated that high 
Hu-mAb humanness scores were linked with a low proportion of 
patients with observed ADAs titers.251 Most recently, Prihoda 
et al.57,252 devised an in silico platform BioPhi that offers three 
complementary tools: 1) OASis, short for Observed Antibody 
Space (OAS) identity search, is an interpretable humanness scor-
ing system based on an exact 9-mer peptide search within the OAS 
database, capable of accurately distinguishing human and non- 
human sequences with clinical immunogenicity correlation; 2) 
Sapiens, is an ML-based humanization method trained on the 
OAS human database using language modeling to recognize and 
substitute non-human sequences with human native equivalents 
in FR regions to improve sequence humanness (the OASis score); 
and 3) an interactive interface, to incorporate AA substitutions in 
the sequence and visualization.57,252 In their study, Prihoda et al.-
57,252 compared the humanization performance of Sapiens on 152 
precursor sequences of humanized mAbs against Hu-mAb (com-
putational) and mutation-based humanization (experimental). 
They reported that Sapiens achieved higher humanness improve-
ment than Hu-mAb and comparable results to experimental 
methods, suggesting AA substitutions that were experimentally 
validated to be advantageous for sequence humanization, while 
maintaining mAb specificity and binding affinity. In summary, 
BioPhi is an open platform based on deep learning from the 

human native antibody repertoire providing in silico tools for 
antibody design, humanization, and humanness evaluation with 
a graphical interface aiming for user-friendliness.

In contrast to expectations, mAbs completely derived from 
human sequences (human mAbs) can still be immunogenic 
which invites further immunogenicity investigations.300,311,312 

Another approach to estimate mAb immunogenicity is inspired 
by the adaptive immune system activation mechanism. It has been 
suggested that analyzing the peptidic pool presented by the MHC 
II molecules to T-helper cells, termed as immunopeptidome, could 
provide valuable insights for immunogenicity estimation.313 

However, the complexity of the human MHC II immunopepti-
dome is amplified by the large genetic pool coding for structurally 
distinct MHC II molecules, termed as human leukocyte antigen 
(HLA) molecules.314 Over 8000 human allelic forms HLA class II 
have been identified (EBI IMGT/HLA: accessed 20th July 2021315), 
and each person typically expresses up to eight different HLA II 
allelic forms.316

Experimental data from EL assays have been empowering the 
construction of immunopeptidome public databases (IEDB, 
accessed 20th July 2021, last updated 11 July 2021317 and others 
reviewed by Doneva et al.301). These databases have been imple-
mented for the development of in silico tools that can predict 
protein immunogenicity based on the content of immunogenic 
peptides. These tools, as reviewed by Doneva et al.301 could use 
protein sequence or structural data to predict its potency to sti-
mulate a T-cell response. Due to the limited availability and high 
cost of generating structural data, in silico immunogenicity pre-
diction methods that rely on sequence input for motif search and 
ML-based approaches are heavily investigated.301 Among alterna-
tive methods reviewed by Doneva et al.,301 netMHCIIpan provides 
an ANN-mediated holistic approach to predict peptide processing, 
presentation, and binding to any human MHC II molecule 
(Table 1).250 Importantly, netMHCIIpan benefits from the 
advanced abilities of the NNAlign_MA ML algorithm to handle 
peptide ligands with multiple potential HLA allele annotation to 
produce pan-specific T-cell epitope predictions.250,318 The most 
recent version of netMHCIIpan (4.0) has been trained with exten-
sive multi-allele EL datasets and showed a significant improve-
ment when benchmarked against state-of-the-art T-cell epitope 
prediction methods.250 This tool allows the prediction of binding 
affinity of AIRR-seq and stretches of mAb-derived AA sequences 
to selected HLA II alleles.27,86 netMHCIIpan can be implemented 
for the prediction of global immunogenicity by specifying the HLA 
II supertypes found in the majority of the human population in the 
command arguments.86 Of note, HLA II supertypes refer to just 
over 25 HLA II alleles that were found to be responsible for T-cell 
epitope presentation in over 98% of the universal human 
population.319

3.6. Designing antibodies with desirable efficacy and 
developability remains challenging

In silico prediction of mAb developability parameters have been 
evolving in efficiency and accuracy, however, several challenges 
remain. Specifically, computational immunogenicity predictions 
cannot yet fully replace the in vitro animal testing due to the safety 
element associated with this particular parameter, as discussed 
above.301 Also, considering the fact that even fully human 
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antibodies may be immunogenic, it might be difficult to solely rely 
on in silico tools for immunogenicity assessment until the biolo-
gical rules for immunogenicity are better understood.320 Indeed, 
we believe it will be of interest to explore whether mimicking 
antibody design parameter combinations found in natural anti-
body repertoires would improve in silico antibody 

development.213,321 Furthermore, some tools do not allow includ-
ing essential variables that might change the developability pre-
diction outcome. For example, most of the solubility and 
aggregation prediction tools that have been developed for proteins, 
in general, do not take the concentration of the molecule into 
consideration which is a critical factor for mAbs (Table 1).288,322 

Table 1. | Overview of in silico methods for antibody developability parameter computation. We summarize the most prominent computational tools to predict the 
value of high-level developability parameters (thermal stability, solubility, aggregation, viscosity, immunogenicity and half-life shown in Figure 4). We detail the 
methodology used in each tool, the corresponding lower-level developability parameters, and method availability.

Method name Methodology/approach Main low-level parameter(s) Availability

Thermal stability
Spatial aggregation propensity 

(SAP)229
Custom code, MD simulation Surface hydrophobicity Mathematical equation

Bekker et al.230 MD simulation Fraction of native contacts (Q-value) NA
ANN model231 ML model AA composition NA

Aggregation
Developability Index (DI)232 Custom code Charge, 

spatial aggregation propensity (SAP)
Mathematical equation

AbsoluRATE233 ML model for aggregation kinetics 
prediction

Environmental conditions, 
disorderness, 
aggregation related properties etc.

https://web.iitm.ac.in/bioinfo2/absolu 
rate-pred/

Therapeutic Antibody Profiler (TAP)213 Developability rules as per authors CDR length, 
surface hydrophobicity, charge

http://opig.stats.ox.ac.uk/webapps/ 
newsabdab/sabpred/tap

VLAmY-Pred234 ML model Charge, 
hydrophobicity, 
Disorderness, 
β-propensity

https://web.iitm.ac.in/bioinfo2/ 
vlamy-pred/

Solubis235 Custom code Aggregation propensity, 
Stability

https://solubis.switchlab.org/

Solubility
SOLpro236 ML model 23 sequence-based features http://scratch.proteomics.ics.uci.edu/
Protein-Sol237 Regression model 35 sequence-based features https://protein-sol.manchester.ac.uk/
CamSol238 Custom code solvent exposure, intrinsic solubility 

profile
http://www-vendruscolo.ch.cam.ac. 

uk/camsolmethod.html
SoDoPE239 Custom code Solubility-Weighted Index 

(SWI)
AA composition https://tisigner.com/sodope

DeepSol240 Convolutional neural network, Deep 
learning

57 sequence-structure features https://zenodo.org/record/1162886#. 
YQvaxJNKhaQ

Viscosity
Fv region-based qualitative screening 

profile241
Developability rules, MD simulation Charge, ξ-potential, isoelectric point (pI) Mathematical equation

Sharma et al. 242 Developability rules, MD simulation, 
principal component regression

Hydrophobicity, dipole distribution, 
charge

Mathematical equation

Tomar et al.243 Regression model Surface hydrophobicity, charge, hinge 
regions

Mathematical equation

Nicholas et al.244 Mutational analysis Negatively charged surface patches NA
High viscosity index (HVI)245 ML model Charge, AA composition Mathematical equation
spatial charge map (SCM)246 Custom code Partial charge of the atom Mathematical equation
Lai et al.247 MD simulation, ML model, concentration 

dependent
Charge, Hamaker constant (short-range 

interaction parameter)
Mathematical equation

Tilegenova et al.248 MD simulation, Mutational study Aromatic interaction (cation-π and/or π- 
π)

NA

Schwenger et al.249 Ross-Minton model Temperature and concentration 
dependent

Mathematical equation

Immunogenicity & tolerability
netMHCIIpan(T-cell epitope prediction 

method)250
ML model Antigen (mAb) processing, HLA II 

peptide binding and presentation
https://services.healthtech.dtu.dk/ser 

vice.php?NetMHCIIpan-4.0
Hu-mAb(mAb humanization 

method)251
ML model Non-human sequence content http://opig.stats.ox.ac.uk/webapps/ 

newsabdab/sabpred/humab
BioPhi(mAb humanness evaluation, 

humanisation and design)252
ML model Non-human sequence content https://biophi.dichlab.org/

Humanness (T20) score253 Quantitative distance measure Non-human sequence content https://dm.lakepharma.com/ 
bioinformatics/

Half-life
Combinatorial LASSO approach254 ML model FcRn affinity at pH 7, thermal stability Multiple regression & mathematical 

equation (methods)
Random forest approach255 ML model pI (in silico) and poly-specificity (in vitro) Clearance (PK) classification 

thresholds

Multiple high-level parameter prediction/calculation methods
Aggrescan3D (A3D) 

For aggregation and solubility256
Custom code Residue wise aggregation propensity 

scale, 
relative surface accessibility

http://biocomp.chem.uw.edu.pl/ 
A3D2/
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Additionally, the current state-of-the-art in silico tools (discussed 
in this review) are mostly mono-parameter tools, implying the 
need for setting up a multi-parameter pipeline to compute all the 
necessary parameters. Moreover, some computational tools devel-
oped by pharmaceutical businesses are not made publicly avail-
able, which can hinder their implementation and further 
assessment.243,323 More generally, the lack of a comprehensive 
atlas mapping different developability parameters to different 
regions hinders computational antibody design (Figure 4). 
Finally, finding an equilibrium for all developability parameters 
in one antibody, and thus achieving the longstanding goal of 
modular antibody design, has proven to be a challenging task as 
working on improving one developability measure might result in 
compromising another (Figure 4). For example, Kuroda and 
Tsumoto argued that improved antibody stability may be accom-
panied by increased aggregation.320 One experimental solution 
that may contribute to improving the overall percentage of candi-
dates with a fitting developability profile prior to computation and 
optimization is the development of developability-optimized 
screening libraries.183 An intriguing computational solution to 
optimizing the number of mAb candidates with respect to multi-
ple design parameters is the combination of ML models trained on 
data from different experimental campaigns.324

4. Unconstrained parameter-driven in silico antibody 
sequence synthesis

4.1. Antibody (sequence) generation with deep 
generative models

The term “deep generative model” describes a set of deep 
learning-based methods that enable the learning of data 
distributions and subsequent sampling of new unseen 
points (Figure 5). Currently, there exist, to our knowledge, 
eight reports that take advantage of deep generative models 
for antibody sequence generation with diverse objectives: 
optimizing binding affinity toward a specific antigen, gen-
erating new antibodies that replicate developability para-
meters of the original distribution, realistic backbone 
structure sampling, unsupervised identification of antibo-
dies in latent space.25–27,94,325–328 These studies each used 
one of the three most popular architectures namely 
Variational Autoencoders (VAE),329 Generative 
Adversarial Networks (GAN),330 and Autoregressive models 
(AR) namely long short-term memory recurrent neural 
network (LSTM-RNN) and transformer (Table 2).

4.2. GAN-based approaches for antibody design

GANs aim to learn the potential distribution of the actual data 
by setting up a generator and a discriminator in a zero-sum 
game. Equilibrium is achieved when the discriminator can no 
longer discriminate the generator’s outputs from the actual 
distribution.331 For biological sequences, GANs are usually 
used to generate sequences with a particular phenotype of 
interest. GANs have also been used to generate novel samples 
(out-of-distribution sampling) from existing distributions 
(Table 2 and Figure 5).332

4.2.1. Demonstrating the capability of GANs to generate 
feature-controlled antibody sequences
Amimeur et al.25 demonstrated that GANs are a viable option 
for novel antibody design. They trained a GAN on the 
sequences of the light and heavy chain variable regions from 
the Observed Antibody Space (OAS) database.57 Subsequently, 
they sampled new sequences from the model and showed that 
the model can generate large and diverse libraries of novel 
antibodies that mimic the features (CDRH3 length, isoelectric 
point, representative maximum patch size, and predicted affi-
nity to MHCII) of the antibodies from the OAS. They also 
demonstrated that they can bias the model to generate feature- 
controlled antibody sequences with a lower binding affinity 
toward MHCII or a higher isoelectric point by conditioning 
the training dataset on the respective variable. The authors 
experimentally validated their method by expressing newly 
generated antibody sequences in vivo.

4.2.2. GAN-based approaches for general protein design
Repecka et al.333 trained a GAN architecture with temporal 
convolutional networks and a self-attention layer, named 
ProteinGAN, to generate novel malate dehydrogenase 
(MDH) sequences. Their 20,000 generated sequences had 
a median sequence identity of 64.6% when compared to the 
best matching training sample, which was similar to the med-
ian of the training data against the validation set (64.9%), 
indicating that GANs can generate realistic sequences. The 
resulting sequences were also four times more diverse than 
the training subset at 75% sequence identity. A sequence with 
106 substituted AAs was identified among the functional sub-
set – an example of the exhaustive exploration of the functional 
sequence space that GANs are capable of.

Additionally, GANs can also be conditioned on 
a secondary input, which is often a set of categorical 
labels.334 Combining conditioned models with multiple 
computational oracles (classifiers for key design para-
meters) may enable fast multi-parameter/multi-objective 
optimization (Figure 5). Integrating conditional labels 
remains a challenging undertaking.335,336 Despite their rea-
listic sequence or image generation, GANs can often suffer 
from mode collapse, where the generator is stuck in a local 
minimum of a few valid samples. There are, however, 
methods to circumvent mode collapse such as implement-
ing a different loss function.337

4.3. VAE-based approaches for antibody design

VAEs provide a unique avenue to interpretable protein design 
via their latent representation where functionally similar 
sequences group together due to their conserved residues, 
and novel proteins can be obtained by decoding points nearby 
these clusters.338 Thus, VAEs can be used for lowering the 
dimensionality of a dataset, obtaining biologically meaningful 
representations and clusters, sampling to generate de novo 
sequences, and interpolating in the latent space to obtain 
proteins with the desired function (navigating from one 
sequence to another in the latent space), all in the same 
model (Table 2 and Figure 5).
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4.3.1. Generative modeling of antibody backbone structure
Eguchi et al.326 used VAEs to generate new backbone 
structures of antibodies that are filtered for desirable prop-
erties by evaluating them with simulators. This resulted in 
new randomly sampled structures that were different from 
the training data and constrained optimization with 
Rosetta339 does not lead to large changes to the overall 
structure. They also verified generated structures by linearly 
interpolating the latent representation of existing antibody 
structures. The authors sampled 5000 antibody structures 
from the IG-VAE and identified candidates with binding 
affinity for the SARS-CoV-2 RBD with PatchDock.340

4.3.2. Clustering antibody sequences by applying Gaussian 
Mixture Models to the latent space of VAEs
Friedensohn et al.26 used a VAE that incorporated Gaussian 
mixture models in the latent space to identify clusters of 
potentially antigen-specific antibody sequences, which were 
obtained from antigen-immunized mice. Then, they sampled 
from the VAE new antibodies from those putatively antigen- 
associated clusters. Twelve antibodies from one cluster were 
recombinantly expressed and all 12 were confirmed to be 
antigen specific.

4.4. VAE-based approaches for general protein design

An initial study in VAE-generated protein sequences was con-
ducted by Costello and Martin.341 Their architecture 
(BioSeqVAE) employed residual networks, dilated convolu-
tions, and an autoregressive layer on top of the decoder, result-
ing in a latent space that captures residue interactions along the 
entire sequence. Furthermore, they used the latent space to 
generate proteins with the desired phenotype by training 
a classifier on the latent representation of a protein dataset 
with a desirable function, then sampling points from the latent 
space until they were validated by the classifier. They also 
showed that multiple phenotypes could be integrated by train-
ing other classifiers, further extending the idea of multi- 
parameter optimization as a key step in highly specific protein 
generation. Additionally, Gane et al.342 provide a benchmark 
for protein design on synthetic data that investigates VAEs 
among other models.

4.5. AR-based approaches for antibody design

Autoregressive models are inherently sequential, thus, they are 
ideally suited for modeling biological sequences as they decom-
pose into a fixed ordering (one AA after the other). Although they 
can be powerful estimators for the distribution of interest, the 
training and generation can be exceedingly slow as they are done 
in a sequential manner (Table 2).343 A comprehensive benchmark 
over three different AR-based approaches to mAb generation, 
conditioned on protein structure can be found in the work of 
Melnyk et al. where “causal convolutions”, GNNs, and transfor-
mer-based generation methods are compared. The authors also 
provide guidelines as to which of the three AR-based approaches 
are best suited to specific antibody design tasks (e.g., CDR3 graft-
ing, broad or narrow sequence diversity generation).328

4.5.1. Optimizing the binding affinity of antibody 
sequences with LSTM-RNNs
Saka etal.325 used LSTM-RNNs to examine the capacity of deep 
generative models to improve the affinity of kynurenine-binding 
antibodies. The authors generated a dataset of kynurenine-binding 
antibodies through two rounds of phage-display panning. An 
LSTM-RNN was trained on the sequence data of the Fv region 
of the heavy chain. They found that the predicted likelihood values 
of the generated sequences correlate well with binding affinity (R2 

= 0.52) and the best LSTM-RNN generated sequence yielded over 
1800-fold lower dissociation constant over the original kynure-
nine-binding antibody.

4.5.2. Demonstrating the capability of LSTM-RNNs to learn 
distributions of CDRH3 sequences with a wide variety of 
antibody design parameters
We have recently demonstrated the feasibility of in silico anti-
body design with deep generative methods.27 Briefly, we 
trained LSTM-RNNs on ground truth synthetic data antibody 
(CDRH3) sequences where for each CDRH3 sequence, the 
design parameters (affinity, epitope, developability) were 
known54 and showed that LSTM-RNN can generate new 
CDRH3 sequences that match and/or exceed and extend the 
antibody design parameters of the training dataset, but greatly 
differ sequence-wise from those sequences contained in the 
training dataset. Additionally, we showed that pre-training 
models for transfer learning can improve prediction results. 
Finally, we validated the antibody-design conclusions reached 
from ML training on simulated antibody-antigen binding data 
by training on experimental antibody sequence data and eval-
uating the generated sequences using an experimentally vali-
dated computational oracle published by Mason etal.27,86

4.5.3. AR models for nanobody design
Shin et al.94 demonstrated the utility of causal CNN models to 
generate new nanobody sequences. This was done by training 
a causal CNN model to learn a conditional distribution over 
CDRH3 sequences, given the CDRH1 and CDRH2 sequences, 
to avoid CDRH3 sequences that are chemically incompatible 
with the other CDRHs. They also showed that the generated 
CDRH3s have a similar distribution to the developability para-
meters hydrophobicity and isoelectric point of the reference 
CDRH3s. In addition, they evaluated the method by training 
on a llama dataset344 which contains 1.2 million nanobody 
sequences from seven different immune repertoires, and eval-
uated the hydrophobicity and isoelectric point by computa-
tional methods.345,346

4.5.4. Improved AR-based models through simultaneous 
estimation of structure
Jin et al. developed an AR-based model that generates new AAs 
in a sequence while iteratively refining the sequence’s predicted 
global structure. Simultaneously, the inferred structure guides 
subsequent residue choices. The structure is modeled with 
a graph representation that models the position of the AAs 
and the angles that define the backbone structure. Edges within 
the graph are defined through proximity.327
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4.6. AR based approaches for general protein design

4.6.1. On the impracticality of simple AR-based models

The capacity of Ar-based models to generate highly diverse 
sequences was illustrated in an antimicrobial peptide design 
task via an LSTM-RNN model: out of 2000 generated peptides, 
1747 were unique.347 These were further assessed for their 
antimicrobial activity via a random forest classifier (computa-
tional oracle) against both the training dataset and against 
randomly sampled sequences using the original AA 

distribution: de novo peptides had a higher probability of 
being antimicrobial compared to the randomly sampled 
group and as high as the training ones.

However, AR models are often impractical on multidimen-
sional (vast sequence space), multi-feature data: incorporating 
other physicochemical, affinity, or structural properties to 
direct the sequence generation would require pre-trained vec-
tor embeddings of protein sequences,210,211 or carefully engi-
neered features (by hand). These embeddings often require 
a much larger sequence database for training. For example, 

Figure 5. Generative models can be trained on generic or custom-designed datasets to obtain sequence space representation and to generate new sequences for 
a variety of use cases in antibody design. AR models enable the generation of highly diverse proteins and can be used to obtain meaningful sequence embeddings, 
circumventing the need for hand-crafted features. VAEs and GANs have been employed in protein generation in a similar manner to generate functionally relevant 
leads, obtain biologically meaningful latent representations, and condition them on additional features (e.g., solubility). As such, these models can be employed in de 
novo generation of sequences, conditional, or out-of-distribution generation, as well as optimization of multiple parameters. Evaluating the specificity (or any other 
design parameter of interest) of the in silico designed antibody sequences requires either computational or experimental oracles. As deep generative models output 
a large number of sequences, experimental prospective evaluation methods may not possess the time- and cost-efficiency to evaluate these sequences at scale, thus 
creating considerable demand for in silico oracles (Figure 5). Transfer learning may be leveraged to infer higher-order, functionally specific interactions from a small 
number of available sequences (low N). Integrating computational and experimental oracles or directly conditioning the generative models on additional features 
would enable high-yield multiparameter optimization of machine-learning engineered antibody sequences.

Table 2. | (Dis)Advantages of the three most common generative methods (GAN, VAE, AR) with respect to five properties. Polyspecific training objective indicates if the 
training objective assumes only one possible target. Supervision indicates whether the model can be trained in a completely unsupervised manner or if the definition of 
an identity error function is required. Categorical indicates whether the model can deal with categorical data (most common datatype in protein sequence generation 
problems). The difficulty of training indicates the tendency of the model to experience numerical instabilities during training.

pecific training objective Approximate training objective Supervision Categorical Difficulty of training

GAN Yes Direct Unsupervised Not out-of-the-box 3/3
VAE No Lower Bound Unsupervised 

(supervised Identity function)
Yes 2/3

AR No Direct Unsupervised 
(supervised Identity function)

Yes 1/3
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Alley et al.97 used 24 million UniRef50 sequences to construct 
their embeddings, which was later used in an in silico optimi-
zation framework to improve the fluorescence of a GFP.348

4.6.2. Advanced AR-based approaches for general protein 
design – sequence embeddings (self-supervised learning)
The above-mentioned problems (lack of a functionally mean-
ingful latent space, which could represent structural/physico-
chemical information and high-dimensionality of the sequence 
space) could be addressed with LSTM-RNNs97 or Transformer 
models.58 These models were trained on large unlabeled 
sequence databases and can capture the secondary and tertiary 
structures, AA biochemical properties, homology, and func-
tion of a protein in a learned, sequence embedding (self- 
supervised learning). Moreover, Villegas-Morcillo et al.210 dis-
covered that such embeddings solely obtained from sequence 
data outperform even well-engineered features on classification 
tasks, as well as other structure-based protein embeddings via 
distance maps (as designed by ref. 349). Surprisingly, when 
combining their sequence embedding with contact maps, 
their classifier performed similarly (AUC-ROC = 0.76) to 
when such information was omitted (AUC-ROC = 0.77), indi-
cating that the sequence embedding encompassed enough of 
the structural information. Sequence embeddings provide, 
therefore, a biologically interpretable reduction of the vast 
protein sequence space.

It is of interest to investigate how such sequence embeddings 
can be used in protein generation. A first insight was recently 
gained by ref. 348 into how this might be possible for in silico 
directed protein evolution: first, an LSTM-RNN network was 
trained on 20 million general protein sequences to obtain 
a general embedding, which was later fine-tuned on sequences 
evolutionarily related to the protein to optimize, followed by the 
sampling of a small number of mutants (low-N engineering), 
quantifying their specific functional property (e.g., the fluores-
cence of a GFP) and building a linear regression model (inputs = 
embedding representation, outputs = quantified property of 
protein). The starting sequence was mutated, embedded, then 
fed into the linear regression model – sequences with large 
enough values can be functionally assessed in vitro.

4.6.3. Transformer networks for general protein design
To tackle the problem of low receptive fields (i.e., the size 
of the regions in the input that informs the output350) in 
RNNs, Transformer or general attention models have 
been increasingly used for various NLP tasks and for 
protein sequence modeling as well, achieving state-of-the- 
art results.351 For example, Wu et al.352 trained a 5-layer 
Transformer network to generate signal peptide 
sequences, a task where (self)-attention is advantageous 
to scrutinize the entire sequence of an instance. In total, 
25,000 paired proteins without signal peptides were fed 
into the model along with their respective signal peptides, 
in an attempt to translate protein sequences to specific 
peptides. The generated signal peptides had a 73% 
sequence similarity to their corresponding BLAST result 
from SwissProt, therefore showing some diversity, yet had 

poor AUC-ROC values on a signal peptide deep learning 
classifier (AUC-ROC = 0.59, almost equal to baseline 
classification).

Recently, the ProGen model353 was able to generate label- 
conditioned sequences: by training a Transformer network on 
sequences with a conditioning tag prefix (e.g., organism, func-
tion, location, etc.), their model learned conditional probabil-
ities on both the previous residue and the label of interest. 
Integrating such conditioning tags allowed for protein genera-
tion without any starting residue: using the tags Flavoprotein 
and FMN, they were able to sample a 400 AA protein which 
matched numerous other similar proteins (oxidoreductases). 
The work above showed that conditional transformers for text 
generation can be applied to protein engineering problems. 
The extent to which sequences generated from conditional 
labels differ from similar ones in the training data may be 
used to gauge the potential for out-of-distribution generation 
in these models. Another example on conditioning transfor-
mers for protein design is the work from Ingraham et al, who 
condition a transformer on folding information by utilizing 
a graph neural network as representation.354

4.7. Remaining challenges in generative antibody design

Limited application of generative ML approaches to antibody 
design: The current literature on generative modeling of anti-
bodies already incorporates many approaches currently used in 
generative protein design, such as sampling of 3D backbone 
structure of antibodies for finding new antibodies with relevant 
properties,326 sampling of antibody sequences for 
optimization,325 interpolation of a latent space for antibody 
property design,326 and generation of novel and highly diverse 
antibodies that faithfully reproduce developability parameter 
distributions. However, there are still several approaches that 
have not been explored in the antibody generation domain, 
such as using learned amino-acid vector representations,210,211 

combining adversarial training with modern autoregressive 
models (e.g., transformers), and conditioning models directly 
on developability parameters.353

High-throughput prospective evaluation: In a typical ML 
study, a dataset is split into training, validation, and test sets to 
allow for the model to be retrospectively evaluated with the 
validation and test sets upon the completion of the training. In 
such a setup the data comes in the format of input-output pair, 
thus during evaluation, the correct label for a sample either in the 
validation or the test set is known a priori. In generative learning, 
however, the label (i.e., binding affinity, developability, and 
plasma half-life or a subset thereof) is not known a priori as 
the model generates new sequences that may or may not overlap 
with the training data. Thus, generative learning necessitates 
external (computational or experimental) validators (oracles) 
to evaluate its output as the evaluation process is performed 
post-generation (prospective evaluation; Figure 5).

An experimental prospective evaluation workflow 
usually involves the expression and testing of 101–102 

binders.26 A computational validation workflow might 
involve, for example, the sequence-based modeling of 
the antibody structure with tools such as 
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ABodyBuilder,132 followed by molecular docking,66,355,356 

or MD simulation (all-atom simulation; computationally 
expensive357) to validate whether the generated sequence 
overlaps with the desired antibody-antigen binding pose. 
However, given that de novo docking approaches remain 
at low accuracy, such computational validation workflows 
require further refinement. Furthermore, so far, there 
exist only a few ML-based experimentally validated com-
putational oracles published.86 Recent studies27,54 led by 
us were among the first efforts to tackle the high- 
throughput prospective evaluation problem in antibody 
generative learning by leveraging a high-throughput ora-
cle in the form of virtual (coarse-grained) docking albeit 
at a reduced lattice resolution.

Out-of-distribution generation (functional novelty): 
A common challenge in deep generative learning is that the 
model tends to reproduce the training data extremely faithfully, 
a phenomenon known as the copy problem.358 Such a model 
remains useful when the objective of the study is to generate new 
samples that are very similar to the training data. In antibody 
design, however, sequence similarity may not reflect binding 
behavior faithfully. It has been shown, for example in HER2 
binding antibodies, that two very similar sequences (Levenshtein 
distance < 2) had opposing binding behavior.86 Secondly, it is often 
desirable to discover new modes of binding (novel target epitopes) 
when designing antibodies for a target of interest, these function-
ally novel antibodies represent out-of-distribution samples as the 
novel epitopes were never learned from the training data. A naïve 
strategy to obtain out-of-distribution samples is to couple a simple 
architecture with unconstrained generation, i.e., the simple archi-
tecture reduces the risk of overfitting the training data (reduces the 
risk of copy problem) and unconstrained generation allows the 
model to explore a larger sampling space. Indeed, we employed 
such a strategy to obtain novel epitopes and a diverse set of 
developability parameter combinations rather successfully.27 

A more sophisticated strategy may include conditioning the 
model in such a way that the output is biased toward out-of- 
distribution samples.359

All-round optimization – conditioning simultaneously 
on multiple developability parameters in a single model: 
In the two pioneering studies from Amimeur et al.25,86 

and Mason et al.,25,86 the developability optimization step 
is a separate entity. Next-generation antibody design tools 
must be developed with all-round optimization in mind 
where multiple developability parameters and binding 
affinity are simultaneously optimized. For instance, mod-
els such as conditional VAEs have been deployed to gen-
erate drug-like molecules where five target properties 
were simultaneously optimized during training.360 

Another challenge is that different developability para-
meters localize in different regions of the antibody 
(Figure 4) whereas many studies such as ours and 
Mason et al.25,86 conveniently focus on the most impor-
tant segment for antigen engagement, the CDRH3. In 
summary, a holistic all-round antibody generator repre-
sents a crucial component for the on-demand generation 
of fit-for-purpose mAbs.

5. Concluding remarks

In this review, we outlined strategies toward ML-based 
mAb design and the associated necessary computational 
and experimental steps required. We argue that 
a resolution to the in silico antibody design problem lies 
in the development of novel experimental and computa-
tional technologies for large-scale generation combined 
with a screening of antibody, antigen, and antibody- 
antigen parameters. Furthermore, self-supervised learning 
may provide a means to leverage large amounts of unla-
beled data to boost in silico protein design efficiency.197 

As a bridge between experimental and simulated data, 
more investment is needed in the development of data 
augmentation algorithms that can expand training dataset 
sizes. Correspondingly, powerful simulation frameworks 
to generate ground-truth synthetic data are mission criti-
cal for testing the accuracy and performance of novel in 
silico antibody specificity prediction and generation 
approaches. Furthermore, for maximum generalizability, 
it will be paramount to learn from and combine in vitro 
and in vivo data since these datasets underlie different 
generative distributions (e.g., in vitro antibody libraries 
may display broader diversity that have not undergone 
biology self-reactivity-driven selection).3,184 Finally, we 
believe the antibody design field requires closer collabora-
tion with ML experts. As was witnessed in the case of 
protein structure prediction, the infusion of domain- 
specific ML knowledge can propel an entire field substan-
tially forward.361,362
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