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ABSTRACT
In thisworkwe introduce differentmodified estimators for the vector
parameter β and an unknown regression function g in semipara-
metric regression models when censored response observations are
replaced with synthetic data points. The main idea is to study the
effects of several covariates on a response variable censored on the
right by a random censoring variable with an unknown probability
distribution. To provide the estimation procedure for the estimators,
weextend the conventionalmethodology to censored semiparamet-
ric regression using different smoothingmethods such as smoothing
spline (SS), kernel smoothing (KS), and regression spline (RS). In addi-
tion to estimating the parameters of the semiparametric model, we
also provide a bootstrap technique tomake inference on the param-
eters. A simulation study is carried out to show the performance and
efficiency properties of the estimators and analyse the effects of the
different censoring levels. Finally, the performance of the estimators
is evaluated by a real right-censored data set.
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1. Introduction

In statistics literature, a problem commonly faced by statisticians is the analysis of censored
survival data. Examples of this data arise in different applied fields such as medicine, biol-
ogy, public health, epidemiology, engineering, economics, and demography. Observations
in these fields are usually incomplete, especially in medical studies. For instance, some
patients may still be alive, disease-free or die at the termination of a medical study. There
are two main traditional statistical methods, parametric and nonparametric, used in anal-
ysis of the relationship between covariates and the censored response variable, known as
lifetime. Instead, we focus on semiparametric estimation methods which do not require
knowledge of the underlying distribution of the response variable.

Let {(yi, xi, ti), i = 1, 2, . . . , n} be independent and identically distributed (i.i.d) ran-
dom variables satisfying the semiparametric regression model

yi = xiβ + g(ti) + εi, (1)
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where the yi’s are values of the response variable, xi = (xi1, . . . , xip) are known p-vectors of
explanatory variables with p ≤ n, the ti’s are values of an extra univariate explanatory vari-
able,β = (β1,β2, . . . ,βp)

′ is an unknown vector of regression parameters, g is an unknown
smooth regression function inR, and εi’s are random error termswith E[εi|xi, ti] = 0 and
variance σ 2 and are independent of the data (xi, ti). To be specific, this model is also called
a partially linear model due to the connection with the classical linear model.

In vector and matrix form, model (1) can be rewritten as

Y = Xβ + g + ε, (2)

where Y = (y1, . . . , yn)′, X′ = [x1, . . . , xn], g = (g(t1), . . . , g(tn))′ and ε = (ε1, . . . , εn)′.
As inmost literature, it is supposed thatX has full column rank. Note also that the function
g symbolizes the smooth part of the model and assume that it shows the unparameter-
ized functional relationship. The model (1) was discussed by Engle et al. [1] based on the
assumption of the completely observed yi. For more details on the model (1), see Wahba
[2,3], Speckman [4], Green and Silverman [5] among others.

In our study, we are interested in estimating the vector parameter β and an unknown
function g (.) in semiparametric model (1) when theyi’s are observed incompletely
and right censored by a random censoring variable ci, i = 1, 2, . . . , n, but xi and ti are
observed completely. Therefore, instead of observing yi, we now observe the pair of values
(zi, δi), i = 1, . . . , n where

zi = min(yi, ci) and δi =
{
1; if yi ≤ ci(ith response is observed),
0; if yi > ci(ith response is censored).

(3)

Here, we assume that ci’s are i.i.d random variables with a common distribution G (i.e. the
distribution of the censoring observations ci). Notice also that zi and ci are referred to as
the lifetimes and the censoring time, respectively, for the ith survival subject. zi’s are the
observed lifetimes, while δi stores the information on whether an observation is censored
or uncensored. If an observation is not censored, we choose zi = yi and δi = 1; otherwise,
we take zi = ci and δi = 0.

Themodel (1) is also said to be a right-censored semiparametric regressionmodel when
the response variable is observed incompletely and right censored by a random variable.
The useful special cases of the censored partial linear model can be obtained using dif-
ferent methods and conditions. For example, if g(t) = 0 in Equation (1), the censored
partially linearmodel reduces to the linear regressionmodel with censored data. A number
of authors have studied the case of the linear regression model with censored data. Exam-
ples of such studies include Miller [6], Buckley and James [7], Koul et al. [8], Zheng [9],
Leurgans [10] and Lai et al. [11]. On the other hand, if β = 0 in model (1), the mentioned
model reduces to the nonparametric regression model with censored data. See studies
by Dabrowska [12], Zheng [13], Fan and Gijbels [14], Guessoum and Ould-Saïd [15] for
examples.

In this paper, the key idea is to estimate the vector parameter β , an unknown func-
tion g (.), and the mean vector μ = Xβ + g. Because the values of Y are the censored
observations, the censoring distributionG is usually unknown. For this reason, traditional
methods for estimating β and g (.) cannot be applied directly here. To overcome this prob-
lem, Koul et al. [8] suggested replacing incomplete observations with synthetic data. In our
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context, we introduce differently modified estimators for the components of the semipara-
metric model with right-censored data, especially when the censored response variable is
replaced by synthetic data. The modified estimators are based on a generalization of the
ordinary SS, KS, and RS methods in the case of unknown censoring distribution G. We
also provide the bootstrapped confidence intervals for the estimators. It is worth noting
that some authors have studied semiparametric regression with censored data. For exam-
ple, the censored partial linearmodel in which the censoring distribution is supposed to be
known is considered by Qin and Lawless [16] andQin and Cai [17]. Asymptotic properties
for the right-censored semiparametric regression are discussed byWang andZheng [18]. In
the last decade, Qin and Jing [19] discussed the asymptotic properties for estimation of par-
tial linearmodels with censored data. Orbe et al. [20] examined censored partial regression
and proposed an estimation procedure based on penalized weighted least squares, using
Kaplan–Meier weights.

The rest of the paper is outlined as follows. In Section 2, we present the censored partial
regression model and provide the details for the estimation procedure. Section 4 describes
a method that uses bootstrap resample techniques to make an inference. Section 6 pro-
vides some simulation results that support the adequacy of the methodology in different
situations. Section 5 presents the results of the application of real data and, finally, Section
7 presents the conclusions.

2. Preliminaries and computation of estimators

Let F and G be the probability distribution functions of yi and ci, respectively. That is,
the unknown distribution function of the response is F(t) = P(yi ≤ k) and the censoring
times are G(t) = P(ci ≤ k). In order to ensure that the model is identifiable, one needs to
make some specification assumptions on the response, censoring and explanatory variables
and their dependence relationships. For this purpose, we have followed the identifiability
assumptions of Stute [21,22]:

Assumption A: yi and ci are i.i.d, conditional on (xi, ti)
Assumption B: P(yi ≤ ci|yi, xi, ti) = P(yi ≤ ci|yi)
These assumptions are used in survival analysis applications. If we use theKaplan–Meier

estimator, assumption A is a standard independence condition to ensure identifiability of
the model with censored data. If assumption A is violated, then we needmore information
about the censoring structure to construct a proper model. Assumption B will be required
to allow for a dependency between (xi, ti) and ci. In other words, assumption B says that
given time of death, covariates do not ensure any further information as to whether the
observation is censored or not. See Stute [22,23,24], Tsiatis [25], Wei et. al. [26] and Zhou
[27] for additional details on assumptions of lifetime data analysis.

As expressed in the previous section, a formal connection between a linear and partially
linear model can be constructed through a right-censored response variable y. If g(t) = 0
in model (1), this model transforms into the linear model

yi = xiβ + εi, i= 1, . . . ,n. (4)

Note that we assume only the response variable is censored. Since the yi’s are observed
incompletely, standard methods which require knowledge of the completely observed yi’s
cannot be used for the censored data. Under censorship, rather than a random variable
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yi, we observe {(zi, δi), i = 1, 2, . . . , n}, as defined in (3). Under these conditions, Koul
et al. [8] discussed that if G is continuous and known, it is possible to adjust the lifetime
observations zi to yield an unbiased modification

yiG = δizi
1 − G(zi)

, i = 1, 2, . . . , n. (5)

The above assumptions A and B are also used to ensure that E[yiG|xi] = E[yi|xi] = xiβ .
Hence, the ordinary least squares (OLS) estimator of β in model (4) is defined by

β̂ = (X′X)−1X′YG, (6)

where YG = (y1G, . . . , ynG)′ is the n x 1 vector of adjusted responses. However, in most
applications, G is usually unknown. To overcome this problem, Koul et al. [8] proposed
replacing G in Equation (6) by its Kaplan–Meier [28] estimator Ĝ, given by

1 − Ĝ(k) =
n∏

i=1

(
n − i

n − i + 1

)I[z(i)≤k,δ(i)=0]
, (k ≥ 0), (7)

where z(1) ≤ z(2) ≤ · · · ≤ z(n) are the ordered observations of z and δ(i) is the correspond-
ing censoring indicator associated with z(i).

Hence, a feasible estimator of β can be obtained as

β̂OLS = (X′X)−1X′YĜ, (8)

where

YĜ = (y1Ĝ, . . . , ynĜ)′ = δizi
1 − Ĝ(zi)

= yiĜ, i = 1, . . . , n. (9)

Here, it should be noted that yiĜ’s are also called synthetic observations since these values
are synthesized from the data (zi, δi) to fit the semiparametric model E[yiG|xi, ti] = xiβ +
g(ti). In this case, in a similar fashion to the linear model based on synthetic data, the
assumptions A and B provide that E[yiG|xi, ti] = E[yi|xi, ti] = xiβ + g(ti).

A number of authors have studied synthetic data in dealingwith the censored data prob-
lem (see, for example, Zheng [29], Leurgans [10], Qin and Jing [19], Delecroix et al. [30],
andGuessoumandOuld-Saïd [15], Lemdani andOuld-Saïd [31]. The generalization of the
well-known censored linearmodel to the partially linearmodel censored from the rightwill
now be stated and discussed. As can be seen from (1), the partially linear models combine
both parametric and nonparametric components; so they are much more flexible than the
ordinary linearmodels. In this study, we adapted three differentmethods to fit (1) when the
response variable is replaced by synthetic data. The first is smoothing splinemethod, which
is suggested to estimate the vector of parameters β from partial residuals and unknown g
function. The secondmethod is kernel smoothing based on the Nadaraya [32] andWatson
[33] kernel weighted average with kernel function. Finally, the third method is regression
spline method which is based on penalized spline functions.
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2.1. Smoothing spline

We first introduce the penalized least square estimates for β and g in the model (2) with
right-censored data. Let the ordered distinct values among t1, t2, . . . , tn be indicated by
r1 < r2 < · · · < rq. The connection between t1, t2, . . . , tn and r1, r2, . . . , rq is provided via
the n × q incidence matrix N, with elements Nij = 1 if ti = rj and Nij = 0 if ti �= rj. It
can be seen that q ≥ 2 from the assumption that the ti’s are not all identical.

Let g = g(rj) = (a1, a2, . . . , aq)′ be a vector. Then, the estimates of the β and g, based
on the synthetic observations (9), are obtained by minimizing the penalized residuals sum
of squares criterion

f1(β ; g) = (YĜ − Xβ − Ng)′(YĜ − Xβ − Ng) + λ

∫ b

a
g′′(t)2dt. (10)

The first term on the right-hand sidemeasures the goodness of fit to data, while the second
term penalizes curvature in the function g. Note that the curvature (or smoothness of the
function) is controlled by smoothing parameter λ > 0.

The idea behind penalized least square is to provide a minimum through the combina-
tion of the goodness of fit and the penalty terms. Using the properties of cubic splines, the
resulting value of penalty is g′Kg = ∫

g′′(t)2dt (see [5]). Thus, the criterion (10) can be
rewritten as

f2(β ; g) = (YĜ − Xβ − Ng)′(YĜ − Xβ − Ng) + λ g′Kg, (11)

whereK is a symmetric q × q positive definite penaltymatrix with a solution λK = S−1
λ −

I, and Sλ is a well-known positive-definite linear smoother matrix which depends on λ, as
defined in Equation (16). Also, the elements of the matrix K are obtained by means of the
knot points r1, . . . , rq, and defined by

K = Q′R−1Q,

where hj = rj+1 − rj, j = 1, 2, . . . , q − 1, Q is a tri-diagonal (q − 2) × q matrix with
entries Qjj = 1/hj, Qj,j+1 = −(1/hj + 1/hj+1), Qj,j+2 = 1/hj+1, and R is a symmetric
tri-diagonal (q − 2) × (q − 2) matrix with Rj−1, j = Rj,j−1 = hj/6, Rjj = (hj + hj+1)/3.

By taking simple algebraic operations it is seen that the solution to the minimization
problem f2(β ; g) in Equation (11) satisfies the block matrix equation:(

X′X X′N
N′X (N′N + λK)

) (
β

g

)
=

(
X′
N′

)
YĜ. (12)

For some constant λ > 0, the corresponding estimators for β and g, based on model (2)
with censored data, can be easily obtained by (subscripts SS denotes the smoothing spline)

β̂SS = [X′(I − Sλ)X]−1X′(I − Sλ)YĜ (13)

and

ĝSS = (N′N + λK)−1N′(YĜ − Xβ̂SS). (14)
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Using Equations (13)–(14), the vector of fitted values is

μSS = (Xβ̂SS + ĝSS) = (HSS
λ YĜ) = (ŶĜ = E[Y|X, t]) (15)

for

HSS
λ = Sλ + (I − Sλ)X[X′(I − Sλ)X]−1X′(I − Sλ), (16)

where Sλ = N(N′N + λK)−1N′. Specifically, if ti’s are distinct and ordered, then the inci-
dence matrixN = I. In this case, the matrix Sλ reduces to Sλ = (I + λK)−1. Note also that
β̂SS and are called as modified smoothing spline regression estimators of the vectors β and
g, respectively.

Details on the derivation of the Equations (13–16) can be found in the Appendix A1.

2.2. Kernel smoothing

As shown in the previous sections, when the response variable is censored by a random
variable, the model (1) reduces to the censored model. For simplicity, we shall use the yiĜ
defined in Section 2. Before starting, let us define εiĜ = yiĜ − (xiβ + g(ti)), i = 1, . . . , n.
From this, we have

yiĜ = xiβ + g(ti) + εiĜ, i = 1, . . . , n, (17)

where εiG
′s are identical but not independent random error observations with unknown

constant variance. Conceptually, as n → ∞, E(εĜ) ∼= 0. This information will help us to
define estimates for β and g. For convenience, we assume that β is known. In this case, the
relationship between (yiĜ − xiβ) and ti can be denoted by

(yiĜ − xiβ) = g(ti) + εiĜ, i = 1, . . . , n.

This can be considered as equivalent to the first part of (17). Then, kernel smoothing can be
used as an alternative nonparametric approach to spline to get a reasonable estimate of the
function g(.). In analogy with (14), this leads to the Nadarya–Watson estimator proposed
by Nadaraya [32] and Watson [33] (subscripts KS denotes the smoothing spline)

ĝKS =
n∑
j=1

wjλ(tj)((yjĜ − xjβ)) = Wλ(YĜ − Xβ), (18)

whereWλ is a kernel smoother matrix with jth entries wjλ, given by

wjλ(tj) = K
(
t − tj

λ

)/ n∑
j=1

K
(
t − tj

λ

)
= K(u)/

∑
K(u), (19)

where λ is a smoothing (bandwidth) parameter as noted earlier and K(u) is a kernel
or weight function such that

∫
K(u)du = 1, and K(u) = K(−u). The kernel function is

selected to give the most weight to observations close to t and least weight to observa-
tions far from t. While the kernel K(u) determines the shape of the regression curves,
the smoothing parameter λ determines their width. In this study, the selection of the λ
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is obtained by minimizing the generalized cross validation (GCV) criterion (see Craven
and Wahba [34]).

Using the matrix and vector form of Equation (17), we can obtain the following partial
residuals in matrix form,

εĜ = YĜ − Xβ − ĝKS = (I − Wλ)(YĜ − Xβ) = ỸĜ − X̃β , (20)

where

X̃ = (I − Wλ)X = xi −
n∑
j=1

wjλ(tj)xj = x̃i,

ỸG = (I − Wλ)YĜ = yiĜ −
n∑
j=1

wjλ(tj)yjĜ = ỹiĜ.

Thus, we obtain a transformed set of data based on kernel residuals. Considering these
partial residuals for the vector β yields the following weighted least squares criterion:

f3(β) = ||(I − Wλ)(YĜ − Xβ)||2. (21)

The solution to the criterion f3(β) in Equation (21) is observed as

β̂KS =
n∑

i=1
x̃iỹiĜ

/ n∑
i=1

x̃2i = (X̃′X̃)−1X̃′ỸĜ. (22)

Replacing β in Equation (18) with β̂KS in Equation (22), we obtain an estimator of g

ĝKS =
n∑
j=1

wjλ(tj)((yjĜ − xjβ̂KS)) = Wλ(YĜ − Xβ̂KS) (23)

and hence, from Equation (22) and (23) the vector of fitted values is

μKS = (Xβ̂KS + ĝKS) = (HKS
λ YĜ) = (ŶĜ = E[Y|X, t]), (24)

where

HKS
λ = Wλ + (I − Wλ)X(X′(I − Wλ)

′(I − Wλ)X)−1X′(I − Wλ)
2. (25)

The vectors β̂KS and ĝKS are known as modified kernel regression estimators of the vectors
β and g, respectively.

The implementation details of Equations (22)–(25) are given in Appendix A2.

2.3. Regression spline

Smoothing spline becomes less practical when the sample size n is large because it uses n
knot points. A regression spline is a piecewise polynomial function whose highest order
non-zero derivative takes jumps at fixed ‘knots’. Usually, regression splines are smoothed
by deleting non-essential knots.When the knots are selected, regression spline can be fitted
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by ordinary least squares. For further discussion on the selection of knots, see the study of
Ruppert et al. [35].

As noted in previous sections, we fit partially linear model (1) with randomly right-
censored data. For this purpose, regression spline can be used as an alternative approach
to the others described above. By using the synthetic data in Equation (9) we will estimate
components of themodel (1) so that sumof squares of the differences between the censored
response observations yiĜ and (xiβ + g(ti)) is a minimum. Here, the unknown regression
function g(ti) is approximated by a qth degree regression spline with a truncated power
basis

g(ti) = b0 + b1ti1 + . . . + bqti1q +
K∑

k=1

bq+k(ti − κk)
q
+ + εi, i = 1, 2, . . . , n, (26)

where b = (b0, b1, . . . , bq, bq+1, . . . , bq+K)′ is a vector of unknown coefficients to be esti-
mated, q ≥ 1 is an integer that indicates the degree of regression spline and (t − κk)+ = ti
when (t − κk) > 0 and (t − κk)+ = 0 otherwise. Also, κ1 < · · · < κK are the specifically
selected knots {min(ti) ≤ κ1 <, . . . ,< κK ≤ max(ti)}.

Substituting Equation (26) into Equation (17) we get an expression of the form

yiĜ = xi1β1 + · · · + xipβp + b0 + b1ti1 + · · · + bqti1q +
K∑

k=1

bq+k(ti − κk)
p
+ + εiĜ. (27)

The equality (27) is a censored semiparametric model due to comprise of the paramet-
ric linear component and a nonparametric component. Using matrix and vector notation,
Equation (27) can be rewritten as

YĜ = Xβ + Ub + εĜ, (28)

where β = (β1, . . . ,βp, b0, b1, . . . , bq)′ represents the coefficients of the parametric com-
ponent, while b = (bq+1, . . . , bq+K) denotes the coefficients of the nonparametric com-
ponent of the model, ε = (ε1, . . . , εn)′ is a vector of random error, X and U are design
matrices such that ith rows of them are defined as:

Xi = [
1 xi1 . . . xip ti . . . tqi

]
and

Ui = [(ti − κ1)
p
+ . . . (ti − κK)

p
+], 1 ≤ i ≤ n.

The fitted censored partially linear model is then

ŷiĜ = xi1β̂1 + · · · + xipβ̂p + b̂0 + b̂1ti1 + · · · + b̂qti1q + (t1, . . . , tK)(bq+1, . . . , bq+K)′.
(29)

Equation (29) gives a point estimate of the mean of YĜ for a particular X and U.
In the regression spline context, a penalty approach similar to smoothing spline is used

to estimate the vector of β and an unknown regression function vector g; but this approach
has fewer knots and it applies a somewhat more general penalty. Regression spline estima-
tors (β̂RS = (β̂1, . . . , β̂p, b̂0, b̂1, . . . , b̂q)′, ĝRS = (b̂q+1, . . . , b̂q+K)) of (β , b) are obtained
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by minimizing the penalized objective function

f4(β ; λ) =
n∑

i=1
(yiĜ − xiβ − g(ti))2 + λ

K∑
k=1

b2
p+k

= ||(YĜ − Xβ − Ub)||2 + λ b′Db,

(30)
where g is an unspecified regression function,λ

∑K
j=1 b

2
p+j is penalty term corresponding to

the sum of squared coefficients of the truncated powers,D = diag(0p+1, 1K) – that is,D is
a diagonal penalty matrix whose first (p + 1) elements are 0, and the remaining elements
are 1, and λ is a positive smoothing parameter that controls the influence of the penalty.

Minimization of the objective function f4(β ; λ) in Equation (30) leads to the system of
equations (

X′X X′U
U′X (U′U + λD)

) (
β

b

)
=

(
X′
U′

)
YĜ. (31)

From Equation (31) we can easily obtain (subscripts RS denotes the regression spline)

β̂RS = (X′A−1X)−1X′A−1YĜ, (32)

where A−1 = I − U(U′U + λD)−1U and

ĝRS = (U′U + λD)−1U′(YĜ − Xβ̂RS). (33)

Thus, the vector of fitted values is given by

μRS = (Xβ̂RS + UĝRS) = (HRS
λ YĜ) = (ŶĜ = E[Y|X, t]), (34)

where

HRS
λ = U(U′U + λD)−1U′ + (I − U(U′U + λD)−1U′)X(X′A−1X)−1X′A−1. (35)

Details on the derivation of Equations (32)–(35) can be found in Appendix A3.
The smoothing parameter (penalty parameter λ) and the number of knots {κi, i =

1, . . . ,K} must be selected in implementing the regression spline. However, λ plays an
essential role. (See Ruppert et al. [35] for a detailed discussion of the knot selection). A
recent study was conducted by Aydın and Yılmaz [36] on the choice of optimum knots for
regression spline under censored data.

3. Statistical properties of the estimator

In this section, we study the statistical characteristics of the estimators expressed in the pre-
vious sections. To see the computations of each estimator, we first expand β̂SS in Equation
(13) by the matrix and vector form of (17) to find

β̂SS = (X′X̃)−1X′ỸĜ = β + (X′X̃)−1X′g̃ + (X′X̃)−1X′ (I − Sλ)εĜ,

where X̃ = (I − Sλ)X, ỸĜ = (I − Sλ)YĜ and g̃ = (I − Sλ)g.
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Thus, the bias and variance–covariance matrix of the βSS can be expressed respectively
as,

B(β̂SS) = E(β̂SS)- β= (X′X̃)−1X′g̃, (36)

Var(β̂SS) = σ 2(X′X̃)−1X′(I − Sλ)
2X(X′X̃)−1. (37)

Similarly, expanded form of the β̂KS in Equation (22) is

β̂KS = (X̃′X̃)−1X̃′ỸĜ = β+ (X̃′X̃)−1X̃′g̃ + (X̃′X̃)−1X̃′
(I − Sλ)ε↼

G

with corresponding equations for bias and variance–covariance matrix:

B(β̂KS) = E(β̂KS)- β= (X̃′X̃)−1X̃′g̃, (38)

Var(β̂KS) = σ 2(X̃′X̃)−1X̃′
(I − Wλ)

2X̃(X̃′X̃)−1. (39)

Finally, as in the above expressions, the β̂RS in Equation (32) can be expanded as

β̂RS = (X′A−1X)−1X′A−1YĜ = β + (X′A−1X)−1X′A−1g + (X′A−1X)−1X′A−1εĜ.

Hence, the bias and variance–covariance matrix of this estimator are,

B(β̂RS) = E(β̂RS)- β= (X′A−1X)−1X′A−1g, (40)

Var(β̂RS) = σ 2(X′A−1X)−1X′A−1XA−1(X′A−1X)−1. (41)

As seen from Equations (37) and (39), the variance matrices are not practical because they
depend on the unknown σ 2. It is seen that the estimate of σ 2 is needed to construct the
mentioned variance–covariance matrices.

3.1. Estimating the variance of the error terms

As shown in the previous sections, although the smoothing methods provide estimates of
the regression coefficients, they do not directly provide an estimate of the variance of the
error terms (i.e. σ 2). As in linear regression, an estimate of σ 2 can be formed by residual
sum of squares (RSS)

RSS =
n∑

i=1
ε2
iĜ

=
n∑

i=1
(yiĜ − ŷiĜ)

2 = (YĜ − ŶĜ)
′
(YĜ − ŶĜ). (42)

Substituting ŶĜ = HλYĜ, we have

RSS = (YĜ − HλYĜ)′(YĜ − HλYĜ) = ||(I − Hλ)YĜ||2,
where Hλ is a hat matrix for the semiparametric model (2) with censored data. Hence, as
in linear regression, an estimate of σ 2 for smoothing spline method, as

σ̂ 2 = RSS
/
tr(I − Hλ)

2 = ||(I − Hλ)YĜ||2/ tr((I − Hλ)
′(I − Hλ)), (43)

where tr(I − Hλ)
2 = n − 2tr(Hλ) + tr(Hλ

′Hλ) is called the degrees of freedom (DF) for
a λ pre-chosen with any smoothing parameter selection criteria. Note also that trace of a
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square matrix A, denoted by tr(A), is the sum of the diagonal elements of A. When we
adopt the smoothing spline method, the computation of HSS

λ in Equation (16) instead of
Hλ as stated in Equations (42) and (43) is needed. In a similar fashion, for kernel smooth-
ing and regression spline methods, we have to calculate the HKS

λ in Equation (25) and
HRS

λ in Equation (35) matrices, respectively. The traces of the matrices, tr(HSS
λ ), tr(HRS

λ ),
and tr(HKS

λ ) can be found in O(n) algebraic operations, and hence, these matrices can be
calculated in only a linear time.

The estimator of σ 2 in Equations (42) and (43) has a positive bias. However, also note
that the Equation (42, 43) yields asymptotically negligible bias. Considering this point of
view, it is noteworthy that σ̂ 2 is equivalent to mean square error (MSE), which is a widely
used criterion for measuring the quality of estimation (see [4]).

3.2. Measuring the risk and efficiency

This section investigates the superiority of an estimator β̂ with respect to another estimator
β̂ . As indicated in the previous section, the estimators have bias and there is a need to
measure the squared error loss of estimators. Generally, the expected loss of an estimator
vector β̂ is measured by quadratic risk function. Our task now is to approximate the risk in
the models with censored data. Such approximations have the advantage of being simpler
in optimizing the practical selection of smoothing parameters. For convenience, we will
work with the scalar valued version (SMDE) of mean distribution error.

In general, a comparison of estimators can bemade via amean distribution error (MDE)
matrix. Let β̂ be an estimator of a p-dimensional parameters vector β . With respect to
a squared error loss, the MDE is defined as a matrix that consists of the sum of the
variance–covariance matrix and the squared bias:

MDE(β̂ ,β) = E(β̂ − β)′(β̂ − β) = Var(β̂) + [E(β̂) − β]2. (44)

Equation (44) gives detailed information about the quality of an estimator. In addition to
the MDE matrix, the average or expected loss, which is referred to as the scalar valued
version, can also be used for comparing the different estimators.

Definition 3.1: The quadratic risk of an estimator β̂ of β is defined as the mean distribu-
tion error matrix (SMDE), and given by

R(β̂ ,β ,V) = E(β̂ − β)′V(β̂ − β) = tr(V(MDE(β̂ ,β))) = SMDE,

where V is a p × p symmetric and non-negative definite matrix. Based on the risk above,
it can be defined using the following criterion to compare estimators.

Definition 3.2: Let β̂1 and β̂2 be two competing estimators of β . It can be said that β̂2 is
superior to β̂1 if the difference of their MDE matrices is non-negative definite, given by

	(β̂1, β̂2) = MDE(β̂1,β) − MDE(β̂2,β) ≥ 0.

An important connection between the above definitions (36) and (37) is given by Theobald
[37]. According to this, we have the following result.
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Theorem 3.1: Theobald [37] let β̂1 and β̂2 be estimator vectors of a parameter vector β. As
such, the following two statements are equivalent

(a) R(β̂1,β ,V) − R(β̂2,β ,V) ≥ 0 for all non-negative definite matrices V
(b) MDE(β̂1,β) − MDE(β̂2,β) is a non-negative definite matrix.

An important consequence of the above theorem denotes that

E(β̂2 − β)′(β̂2 − β) ≤ E(β̂1 − β)′(β̂1 − β)

if and only if for non-negative definite matrices V,

E(β̂2 − β)′V(β̂2 − β) ≤ E(β̂1 − β))′V(β̂1 − β).

The results of Theorem 3.2 reveal that estimator β̂2 has a smallerMDE(β̂2,β). than β̂1 if
and only if the R(β̂2,β ,V) of β̂2 averaging over every quadratic risk is less than that of β̂1.
Thus, the superiority of β̂2 over β̂1 can be observed by comparing the MDE matrices.

Note also that Arnold andKatti [38] prove thatR(β̂ ,β ,V) − MDE(β̂ ,β) is non-negative
definite. According to the ideas stated above, if Theorem 3.1 and Definition 3.1 are consid-
ered together, wemaywrite the expressionR(β̂ ,β ,V) ≥ MDE(β̂ ,β). Non-negative definite
also implies that the scalar valued version of the MDEmatrix can be used for comparisons
between different estimators.

Applying Equations (36) and (37), as described in Equation (44), theMDEmatrix of the
estimator β̂SS is obtained as

MDE(β̂SS,β) = (X′X̃)−1(X′(I − Sλ)
2X(σ 2 + g′g))(X′X̃)−1. (45)

Also, according to Definition 3.1, the quadratic risk (or SMDE) for β̂SS can be defined by

R(β̂SS,β , V) = tr(V(MDE(β̂SS,β))) = tr(MDE(β̂SS,β)) = SMDE. (46)

Similarly, theMDEmatrices of the estimators β̂KS, and β̂RS, are given by:

MDE(β̂KS,β) = (X̃′X̃)−1(X̃′
(I − Sλ)

2X̃(σ 2 + g′g))(X̃′X̃)−1 (47)

and

MDE(β̂RS,β) = (X′A−1X)−1(X′A−1XA−1(σ 2 + g′g))(X′A−1X)−1 (48)

with corresponding quadratic risks, similar to Equation (46).
Hence, using Theorem 3.1 and Definitions 3.2, for example, the superiority of the esti-

mator β̂KS over β̂SS with respect to the difference in their MDE matrices can be observed
as follows:

	(β̂SS, β̂KS) = MDE(β̂SS,β) − MDE(β̂KS,β) ≥ 0. (49)

The remaining comparison scenarios can be made similar to Equation (49). As a result, it
is possible to check whether a non-negative definite matrix condition is satisfied.

Furthermore, we can compare the quality of two estimators by looking at the ratio of
their quadratic risks. This ratio provides the following definition concerning the asymp-
totic relative efficiencies of any two estimators.
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Definition 3.3: The asymptotic relative efficiency (RE) of an estimator β̂1 compared to
another estimator β̂2 is defined by the ratio,

RE(β̂1, β̂2,V) = R(β̂2,β ,V)
/
R(β̂1,β ,V) = tr(MDE(β̂2,β))

/
tr(MDE(β̂1,β)) (50)

if RE(β̂1, β̂2,V) < 1, then β̂2 is said to be more efficient than β̂1.

4. Inference using bootstrap technique

Bootstrap is a computer-intensive technique that allows us to assess the statistical accuracy
of the standard errors of regression estimates. The bootstrap technique was originally pro-
posed by Efron [39]. It can also be used for creating nonparametric confidence intervals.
In this paper, we focus on the semiparametric regression model with randomly right-
censored data. A similar study was carried out by Orbe et. al. [20] where the authors used
the Kaplan–Meier weights for estimating the semiparametric censored model based on
bootstrap method. The difference is that we use synthetic data to generate the bootstrap
samples with a replacement for the case of random censorship and the model. For each
estimationmethod, the steps required to construct the bootstrap samples can be expressed
as follows:

Step 1. Fit the semiparametric regression model (1) as described in Section 2 and
compute its residuals.

Step 2. Select a random sample of n observations with replacement from the centred
residuals and keep them in bootstrap residuals ε∗

i = [ε∗
1 , . . . , ε

∗
n]′.

Step 3. Compute the bootstrap responses y∗
i = xiβ̂ + ĝ(ti) + ε∗

i , i = 1, . . . , n. In other
words, the bootstrap response observations y∗

i are calculated by adding the bootstrapped
residuals ε∗

i to the predicted values xiβ̂ + ĝ(ti).
Step 4. Generate a vector of Bernoulli variables (δ∗)ni=1 where P(δ∗

i = 1|y∗
i , x

∗
i , t

∗
i ) =

1 − Ĝ(y∗
i ) and construct the bootstrapped censoring indicator. Here, Ĝ(y∗

i ) is the
Kaplan–Meier estimator of the probability distribution function of the censoring variable,
as described in Equation (7).

Step 5.Generate the censoring variable c. If z∗
i = y∗

i and δ∗
i = 1, bootstrapped censoring

variable c∗ is taken from Ĝ, which is restricted by the interval [y∗
i ,∞), while if z∗

i = c∗i and
δ∗
i = 0, the c∗ is drawn from Ĝ, which is bounded by the interval [0, z∗

i ).
Step 6. Estimate the model (1) according to four estimation methods, as described in

Section 2, and go back to step 2 and repeat the bootstrap procedure B times.
Note that the basic idea in step 2 is to randomly draw the bootstrap sampleswith replace-

ment from the residuals. The bootstrap procedure is made B times, producing B bootstrap
samples. We then refit the censored model to each of the bootstrap samples and exam-
ine the behaviour of the model fits over the B = 1000 replications. For more details about
bootstrap procedure, see Efron [40], Akritas [41], Efron and Tibshirani [42].

5. Real data example

To illustrate the findings of our methods on real data, we consider the kidney data from
a study by McGilchrist and Aisbett [43]. To estimate the recurrence times of infection for
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kidney patients, they used a Cox regressionmodel with the inclusion of a frailty term addi-
tive of five explanatory variables. The mentioned data consists of 76 kidney patients and
four explanatory variables. The response variable is referred to as recurrence times of infec-
tion (retime) and explanatory variables are age, sex (1 = male, 2 = female), frailty (frail),
and disease type (distype) coded as 0 = GN, 1 = AN, 2 = PKD, 3 = other. Definitions of
these variables are presented in the study of McGilchrist and Aisbett [43]. Note that there
is a censoring indicator (1 = infection occurs; 0 = censored) associated with the response
variable. According to the censoring indicator variable, there are 58 censored recurrence
time values. For that reason, it is clearly observed that the censoring percentage is about
76% and that the kidney data has been heavily censored.

To detect the nonparametric part of the semiparametric model, we used approximate
F-test statistics proposed by Hastie and Tibshirani [44]. This F-test can also be extended to
the semiparametric setting for the linear fit versus nonparametric fit. Suppose that we want
to test the hypothesis H0 : E(yi) = μ (linear function) versus the alternative H1 : E(yi) =
g(ti) (smooth function), when one uses this F-test statistics formula

Fdf1−df0,n−df1 =
(∑n

i=1 ε̂2i −
∑n

i=1 v̂2i
)/

(df1 − df0)∑n
i=1 v̂2i

/
(n − df1)

, (51)

where ε̂i = (yi − x′
iβ̂OLS) and v̂i = x′

iβ̂SM + ĝ(ti) − xi′β̂OLS. β̂OLS is the estimates of
parameters from ordinary least squares (OLS) method, β̂SM is the estimates obtained by
any smoothing method (SM) discussed in Section 2, df0 is the number of the parameters
in the OLS model and df1 = tr(2Hλ − HλHλ

′) whereHλis as described in Equations (42)
and (43). To obtain the estimates in the F-test statistics (51), we considered only SSmethod
here but, as we said before, any smoothing method can be used for this purpose. For this
paper, the purpose of F-test statistics is to provide the right decision about the shape of the
nonparametric component g in the semiparametric model (1) with censored data.

We use frail as a variable of the nonparametric component because it has the largest
value of F-test statistics among all the other explanatory variables. The statistics of the
above test for all explanatory variables can be found in Table 1. To display function g graph-
ically, we follow the suggestions in the study of Ruppert et al. [35] by plotting the fitted
model versus frail with age, sex and distype fixed at its average value. In this context, the
plot of age β̂1 + sex β̂2 + distypeβ̂3 + ĝSS(frail) using the smoothing spline for modelling
function g with 95% confidence intervals, together with partial residuals, is illustrated in
Figure 1. Also, partial residuals in this figure are defined by

retimei − [β̂1(agei − age) + β̂2(sexi − sex) + β̂3(distypei − disytpe)].

Inspection of this figure indicates that the relationship between retime and frail may be
nonlinear, especially when a smooth curve with 95% confidence intervals is added. Based

Table 1. The outcomes from the F-test.

Variable df0 df1 F-Statistic p-Value

age 5 32.999 1.516 0.213
distype 5 7.000 0.328 0.881
frail 5 16.425 16.129 0.000
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Table 2. The outcomes from the model (52) by four different methods.

Methods Variables Est. Coeff (β̂) 95% C.I B Var SMDE

KS age −0.833 [−0.851,−0.392] 3.945 21.452 37.015
sex 102.857 [76.553, 105.382]
distype −1.074 [−2.090, 1.227]

SS age −0.731 [−0.826,−0.235] 3.955 25.446 41.088
sex 139.174 [105.648, 141.521]
distype −10.300 [−16.986,−8.356]

RS age −1.094 [−1.120,−0.540] 2.249 18.383 23.441
sex 70.138 [55.811, 75.124]
distype −13.720 [−15.707,−6.015]

OLS age −0.706 [−2.108, 1.374] 3.831 676.942 691.619
sex 144.101 [55.830, 155.813]
distype −14.896 [−30.261, 49.090]

on these ideas, we consider the frail as a variable modelled nonparametrically. Hence, the
nonparametric part of the semiparametric model is composed of a univariate variable frail,
while the parametric part is constructed using three explanatory variables, age, sex, and
distype, to estimate the retime of kidney patients. For this example, a semiparametricmodel
with censored data is specified by

retimei = β1iagei + β2isex + β3idistype + g(fraili) + εi, i = 1, . . . , 76. (52)

In order to estimate the model (52), we first transformed the response variable retimei into
synthetic variable retimeiĜ, as described in Section 2. The estimate for the semiparametric
regressionmodel with censored data can then be obtained. In this context, the comparative
outcomes come from parametric components of the model (52) by each of the smoothing
methods summarized in Table 2. It should be emphasized that from left to right this table
shows the method names, variable names, the estimated regression coefficients and 95%
confidence intervals for the bootstrapped estimates of β (see Section 4). Moreover, bias,
variance and quadratic risk values (see Section 3.2) for each estimator of β are expressed in
Section 2. These outcomes show that the RSmethod performs better in the sense of having
a smaller bias, variance and SMDE values. Continuing, using Equation (49) we obtained
the difference between the β̂RS and other estimators:

	(β̂KS, β̂RS) = 8.458, 	(β̂SS, β̂RS) = 8.528, and 	(β̂OLS, β̂RS) = 648.506.

The above numerical results denote that the theoretical results and non-negative definite
condition are satisfied.

After the parametric coefficients are estimated, the nonparametric component of the
model (52) is calculated with the help of these coefficients. Since there is no possibility to
express themparametrically, they are only showngraphically in Figure 2.Notice that Figure
2 compares nonlinear effects of the frail variable on retime for three smoothingmethods. In
addition to plotting the fitted curves, 95% bootstrap confidence intervals of the estimated
curves and their relative bootstrapped errors are computed and illustrated in Figure 3.

The fitted lines in Figure 3 show the nonparametric component fits with the shaded
regions’ 95% bootstrapped confidence intervals by smoothingmethods on the kidney data.
For three smoothing methods, it is proposed to estimate the parameter λ by using the
GCV. The value of λ is approximately found to be 0.500, 0.950 and 1.019 for the KS, SS
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Figure 1. The kidney data: plot of the estimated model (52), modelling g as a smoothing spline with
95% confidence intervals. Also plotted are the retime partial residuals after regression on explanatory
variables, age, sex, and distype.

Figure 2. The estimates of the nonparametric component of the model (52).

and RS methods, respectively. In Figure 3, the shaded regions represent the confidence
intervals based on the idea that bootstrapped standard errors tend to perform better than
the pointwise confidence interval. The shaded the region in each panel is described by
ĝ(t) ± 2.se(ĝ(t)) where se(ĝ(t)) shows the bootstrapped standard error for functionĝ(t).
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Figure 3. The upper panels and bottom left panel show the fitted curves with shaded regions’ 95%
bootstrapped confidence intervals for the nonparametric part of the model (52) by three different
smoothing methods. Boxplots in the bottom right panel show the distribution of the relative boot-
strapped errors over the six scenarios of the smoothing methods.

Note also that standard error bands are obtained by 1000 bootstrap repetitions. For KS, SS
and RS methods, MSE values are 59.732, 42.088 and 32.373, respectively. The conclusion
drawn from the information and figures is that RS curve provides a narrow standard error
band and a good estimate of the regression function.

As shown in the previous results, we estimated the RS method as best among all the
methods. For the kidney data set we computed the bootstrapped errors of RS and other
possible methods. The boxplots in Figure 3 show the distribution of the errors using other
possible methods relative to the favoured method. For each method (i.e. SS, RS, and KS)
the distribution of the mentioned errors is constructed by

100 ×
[

Bootstrapped Error(Method) − min(Bootstrapped Error(Method))
max(Bootstrapped Error(Method)) − min(Bootstrapped Error(Method))

]

over the three scenarios. When KS and OLS are compared to RS, it is seen that increase in
the errors obtained from RS is decreasing. Since the range of the relative errors from the
scenarios RS/KS and RS/OLS are lower and narrower than RS/SS, the RS seems to work
well in all scenarios but SS.

6. Simulation study

A simulation study is carried out to demonstrate the impact of censoring and to assess the
finite sample behaviours of the modified estimators. In our context, we first generate data
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set(yi, xi, ti), i = 1, . . . , n from the semiparametric regression model

yi = β1xi1 + β2xi2 + β3xi3 + g(ti) + εi, (53)

where β = (β1,β2,β3)
′ = (1, 2,−0.5)′ and xi1, xi2, and xi3 are obtained by the standard

normal distribution N(0, 1); the εi’s are generated from the standard normal distribution
N(0, 1); and the nonparametric component g(.) is represented by two different functions:

g1(ti) = 3ti sin(ti), ti = 6((i − 0.5)
/
n)

and

g2(ti) = sin(ti) + 2 exp(−30t2i ), ti = ((i − 0.5)
/
n).

To introduce right censoring, we generate the censoring variable ci from the exponential
distribution with proportions at 5%, 25%, and 45%. For each censoring level (C.Ls) in
the simulation, we generated 1000 random samples of size n = 50, 100, and 200. Finally,
from the censored model (53), we define ith indicator as δi = I(yi ≤ ci) and then the
observed response as

zi = min(yi, ci).

Because of the censoring, the ordinary methods cannot be applied directly here to esti-
mate the parameters of this model. For this reason, we consider transformed response
(or synthetic) data points, as described in Section 2, to estimate the components of the
model (53).

6.1. Results from the parametric component

Thousand estimates of β = (1, 2,−0.5)’s forming the parametric part of model (53) for all
sample sizes and censoring levels are obtained. The following figures and tables summarize
the simulation results obtained from the semiparametric regressionmodels using functions
g1 and g2. For different sample sizes and censoring levels, the boxplots of the estimated
regression coefficients are discussed in Appendix A4.

The main results from the simulation experiment are summarized in Table 3. The find-
ings reported in this table are the SMDEs and variance values for the estimated coefficients
by KS, SS and RSmethods, as we illustrate in Section 3. Furthermore, the RE values of the
mentioned smoothingmethods with respect to theOLS are computed by (3.11). According
to the findings in Table 3, the RSmethod performs better than the others, especially for the
C.L= 25% and 45% under each sample size for two different models. It is also observed
that for C.L = 45%, as the sample size increases, the SMDEs decrease for all methods.

In summary, the conclusion drawn from Table 3 is that the effect of the censoring
tends to increase the variance of the estimators. Precision declines as the censoring level
increases. In addition, precision is improved as the sample size increases. In order to
examine the simulation results in detail, the simulated biases of parameters vector β =
(1, 2,−0.5) are calculated for two semiparametric models given in Table 4. In general, the
RSmethod provides the smallest bias, especially for C.L = 45%.

As in the real data example, simulation results show that the RS method usually per-
forms better than the others in the sense of having smaller bias, variance, SMDE and RE
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Table 3. Evaluation of parametric coefficients obtained by the proposed methods.

g1(ti) = 3ti sin(ti)

KS SS RS

n C.Ls SMDE Var(β̂) RE SMDE Var(β̂) RE SMDE Var(β̂) RE

50 5% 0.0006 0.0001 0.0069 0.0009 0.0003 0.0104 0.0009 0.0008 0.0104
25% 0.0017 0.0016 0.0038 0.0126 0.0097 0.0283 0.0008 0.0008 0.0018
45% 0.0026 0.0030 0.0019 0.0795 0.0791 0.0580 0.0013 0.0013 0.0009

100 5% 0.0001 0.0004 0.0025 0.0001 0.0001 0.0025 0.0004 0.0004 0.0100
25% 0.0012 0.0010 0.0085 0.0087 0.0085 0.0619 0.0005 0.0005 0.0036
45% 0.0019 0.0018 0.0059 0.0456 0.0454 0.1407 0.0010 0.0010 0.0031

200 5% 0.0001 0.0000 0.0053 0.0000 0.0000 0.0000 0.0002 0.0002 0.0106
25% 0.0004 0.0000 0.0073 0.0034 0.0034 0.0623 0.0002 0.0002 0.0037
45% 0.0015 0.0010 0.0122 0.0184 0.0184 0.1491 0.0006 0.0006 0.0049

g2(ti) = sin(ti) + 2 exp(−30t2i )
50 5% 0.0017 0.0020 0.0560 0.0041 0.0014 0.1311 0.0014 0.0004 0.0106

25% 0.0087 0.0101 0.0356 0.0178 0.0129 0.7280 0.0049 0.0005 0.0201
45% 0.0110 0.0139 0.0286 0.0380 0.0773 0.1031 0.0067 0.0057 0.0181

100 5% 0.0008 0.0005 0.0242 0.0010 0.0010 0.1084 0.0017 0.0002 0.0199
25% 0.0072 0.0044 0.0144 0.0055 0.0093 0.1099 0.0021 0.0003 0.0416
45% 0.0101 0.0052 0,1914 0.0215 0.0105 0.2280 0.0037 0.0003 0.0392

200 5% 0.0006 0.0005 0.0211 0.0002 0.0006 0.0779 0.0008 0.0001 0.0282
25% 0.0008 0.0006 0.0490 0.0031 0.0010 0.1903 0.0009 0.0001 0.0519
45% 0.0058 0.0056 0.0200 0.0079 0.0098 0.3017 0.0011 0.0002 0.0436

Table 4. Bias of estimated regression coefficients for all sample sizes and censoring levels.

g1(ti) = 3ti sin(ti)

B(β̂1) B(β̂2) B(β̂3)

n C.Ls KS SS RS OLS KS SS RS OLS KS SS RS OLS

50 5% 0.003 0.032 0.001 0.003 0.017 0.008 0.002 0.004 0.012 0.000 0.000 0.006
25% 0.115 0.050 0.007 0.014 0.056 0.011 0.004 0.028 0.014 0.016 0.007 0.089
45% 0.074 0.013 0.000 0.040 0.001 0.013 0.006 0.027 0.009 0.018 0.005 0.027

100 5% 0.010 0.000 0.000 0.002 0.015 0.000 0.000 0.004 0.008 0.000 0.000 0.005
25% 0.074 0.002 0.001 0.025 0.008 0.005 0.000 0.003 0.009 0.012 0.003 0.019
45% 0.048 0.001 0.000 0.018 0.126 0.010 0.014 0.011 0.058 0.013 0.002 0.015

200 5% 0.002 0.001 0.000 0.005 0.000 0.000 0.000 0.000 0.005 0.000 0.000 0.000
25% 0.019 0.006 0.000 0.022 0.001 0.001 0.002 0.006 0.003 0.001 0.002 0.004
45% 0.004 0.001 0.000 0.001 0.044 0.002 0.010 0.037 0.004 0.001 0.001 0.011

g2(ti) = sin(ti) + 2 exp(−30t2i )
50 5% 0.002 0.000 0.001 0.000 0.006 0.000 0.006 0.007 0.007 0.002 0.006 0.005

25% 0.003 0.058 0.002 0.001 0.027 0.116 0.028 0.009 0.004 0.024 0.003 0.003
45% 0.020 0.078 0.015 0.002 0.020 0.172 0.024 0.017 0.008 0.045 0.002 0.006

100 5% 0.000 0.006 0.000 0.000 0.003 0.006 0.003 0.007 0.000 0.000 0.000 0.000
25% 0.001 0.035 0.002 0.010 0.006 0.063 0.004 0.023 0.004 0.015 0.003 0.011
45% 0.006 0.054 0.003 0.012 0.036 0.129 0.049 0.001 0.020 0.041 0.020 0.010

200 5% 0.000 0.002 0.000 0.001 0.001 0.003 0.001 0.003 0.001 0.001 0.001 0.001
25% 0.001 0.022 0.001 0.005 0.001 0.049 0.007 0.012 0.001 0.013 0.003 0.001
45% 0.008 0.035 0.007 0.005 0.006 0.079 0.018 0.010 0.001 0.016 0.003 0.005

values. In our context, to show the performance of the RSmethod compared with others,
the differences (49) between the RS and other estimators are summarized in Table 5.

The results reported in Table 5 denote that the numerical results are corresponding to
the theoretical results and the non-negative definite condition is satisfied regarding the RS
method. Also note that the mentioned estimator β̂RS maintains superiority. This means
that the mentioned estimator β̂RS is also more efficient than the others in terms of having
a minimum SMDE value.
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Table 5. Differences of MDE matrices between the RS and others.

g1(ti) = 3ti sin(ti)

C.Ls for n = 50 C.Ls for n = 100 C.Ls for n = 200

Differences 5% 25% 45% 5% 25% 45% 5% 25% 45%

	(β̂KS , β̂RS) 0.0000 0.0000 0.0020 0.0000 0.0010 0.0020 0.0000 0.0000 0.0040
	(β̂SS , β̂RS) 0.0000 0.0120 0.0790 0.0000 0.0080 0.0450 0.0000 0.0030 0.0180
	(β̂OLS , β̂RS) 0.0860 0.4450 1.3690 0.0400 0.0140 0.3240 0.0190 0.0540 0.1230

g2(ti) = sin(ti) + 2 exp(−30t2i )
	(β̂KS , β̂RS) 0.0032 0.0041 0.0056 0.0017 0.0020 0.0019 0.0008 0.0008 0.0011
	(β̂SS , β̂RS) 0.0030 0.0129 0.0313 0.0017 0.0034 0.0178 0.0008 0.0023 0.0067
	(β̂OLS , β̂RS) 0.0198 0.0195 0.0301 0.0869 0.0290 0.0570 0.0054 0.0078 0.0150

Figure 4. Panels show the SMDE (solid line), squared bias (dotted line), and variance values (dashed
line) of the regression coefficients obtained by each method under different simulated data sets with
censoring level 45%. Panels are for functio g1.

6.2. Bias and variance decomposition

A useful way to assess the sources of estimation errors is to examine the bias and variance
decomposition, as expressed in Equation (44). Figure 4 displays the bias and variance
contributions to the SMDE values for the mentioned estimators (KS, SS, RS, and OLS) of
regression coefficients for several samples of size 25, 50, 75, 100, 125, 150, and 200 under
simulated data sets having a censorship rate of 45%. It is also noted that Figure 4 shows the
results obtained by the model (53) using function g1. The outcomes from the model with
function g2 are similar and, as such, the figure is not given here.

As can be seen from Figure 4, the values of both squared bias and variance can be
reduced when the sample size is increased. It is also noted that both bias and variance
contribute equally to the SMDE values as the size of the sample increases. From the right
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Table 6. The estimated MSE values.

g1(ti) = 3ti sin(ti)

C.Ls for n = 50 C.Ls for n = 100 C.Ls for n = 200

Methods 5% 25% 45% 5% 25% 45% 5% 25% 45%

KS 0.0593 1.1143 4.1445 0.0497 1.1023 3.8060 0.0425 1.0280 3.2565
SS 0.0513 1.1730 4.6388 0.0400 1.1905 4.4387 0.0351 1.0368 4.0637
RS 0.0418 1.1245 3.4443 0.0357 1.1727 3.3895 0.0344 1.0223 3.0016

g2(ti) = sin(ti) + 2 exp(−30t2i )
KS 0.0060 0.0752 0.1567 0.0090 0.0873 0.2002 0.0075 0.0890 0.1874
SS 0.0030 0.0990 0.1961 0.0137 0.0963 0.2307 0.0104 0.0988 0.2587
RS 0.0064 0.0746 0.1482 0.0032 0.0711 0.1891 0.0027 0.0778 0.1364

bottom panel of Figure 4, we see that the OLS performs extremely poorly due to high
variance. It turns out that OLS method will provide a large SMDE if the variance is large.
However, this variance can be reduced through smoothing in the defined estimators, such
as KS, RS and SS, for the semiparametric regression models. In general, there is a tradeoff
between bias and variance and this trade-off is governed by which smoothing parameter
is selected to control bias and variance. In our context, under highly censored data, the RS
gives better SMDE values than the SS and KS methods with regard to balancing both the
squared bias and variance.

6.3. Results from the nonparametric component

As in the parametric components, we obtained 1000 estimates of the function g, which
is the nonparametric component of model (53). For each method, 1000 replications
were carried out and the estimated MSE values were computed for each estimator and
corresponding each function g under the different censoring levels, given by

MSE(ĝ, g) = 1
1000

1000∑
j=1

n∑
i=1

{ĝ(tij) − g(ti)}2, (54)

where ĝ(tij) shows the estimated value at the ith point of the function g in jth iterations.
The results from Equation (54) are illustrated in Table 6.

We see in the second rowofTable 3 that SSdoes poorly in terms ofMSE values, especially
for censoring levels 25%and 45%. In general, as in parametric component cases,RSmethod
performs the best among all estimators.

In this simulation study, because 27 different configurations aremade for nonparametric
components g1 and g2, all of the configurations for two different nonparametric regression
functions are given in Figures 5 and 6. The results appear to be quite reasonable for small
(n = 50) sized samples under a low censoring level, C.L = 5%. However, as shown in the
right panels of the graphs, the estimated curves are not good, especially when the censor-
ship rate is a high value for the same sized samples. In general, as sample sizes based on
censored data sets get larger, estimates are get closer to each other and real function (see,
the left panels of Figures 5 and 6 from top to bottom).
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Figure 5. Panels show the observations, true regression function g1, and three different estimated
curves corresponding to the nonparametric part from KS, RS, and SS, respectively, for different sample
sizes and censoring levels.

Figure 6. Similar to Figure 5 but for the function g2(t) = sin(t) + 2 exp(−30t2).

In Figures 5 and 6, it can be seen that estimated curves deviate mostly around the right
end. As shown in Section 2, while response values are transformed to synthetic observa-
tions, they are sorted in an ascendingway. Accordingly, great values of synthetic data would
be around the right end of the axis. Therefore, major deviations of curves occur in the
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right end. In detail, if Figure 5 and 6 are inspected, we see that curves in Figure 5 deviate
downward and curves in Figure 6 upward. The reason for this is the negative values that
relate to g1 in the right end.

7. Summary and conclusions

Variously modified estimators are introduced to estimate the components of a semiparam-
etic regressionmodel when response observations are right censored.One of the estimators
is defined by OLS method, while the remaining estimators are obtained with smoothing
methods such as SS,KS, and RS, based on synthetic response observations. Thementioned
synthetic response values have been definedwith the appropriatemodifications of the orig-
inal observations (see [8]). After discussing the statistical estimation procedures required
to obtain estimators, heavily censored, real kidney data and the Monte Carlo simulation
experiments were used to compare the performances of the modified estimators.

The 1000 bootstrap samples were used to construct confidence intervals for heavily cen-
sored kidney data and the estimation results from this data are summarized in Tables 1 and
2 and Figures 1–3. Inspection of Table 1 and Figure 1 indicates that there is a nonlinear
relationship between retime and frail variables. So, it is quite clear that a simple parametric
model does not fit the censored data well while a semiparametric model fits observations
more efficiently. As can be seen in Table 2 and Figure 2, the RS method usually leads to a
better estimate of a censored semiparametric regressionmodel. Furthermore,OLSprovides
the worst estimate for the parametric part of the semiparametric model (see Table 2 and
bottom right panel of Figure 3). For the simulation studies, the outcomes of the numerical
experiments are summarized in Tables 3–6 and Figures A1 and A2, and 4–6 . We conclude
the following expressions from these tables and figures:

• For all the smoothing methods, the SMDE, variance, and bias values of the regression
coefficients start to decrease as the sample size n gets larger.

• For small sample sizes, as expected the bias values of coefficients increase as the
censoring levels increase.

• Also expected, when the sample size n increases, theMSE decreases even under higher
censoring rates for all smoothing methods.

• The RS outperforms the KS and SS in the nonparametric part of the model for all simu-
lation scenarios. However, the SS does quite poorly with regard toMSE values, especially
for censoring levels 25% and 45% (see Table 4).

• Finally, when comparing the four methods, we see that the RS performs better than the
other methods regarding the SMDE, RE variance and bias values of the estimates for
all sample sizes, particularly when data sets are censored by rates of 25% and 45% (see
Table 3 and 4).
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Appendices. Supplemental technical materials

Appendix 1. Derivation of Equations (13)–(16)

First note that Equation (11) is minimized when β and g satisfy the following matrix equation:(
X′X X′N
N′X (N′N + λK)

) (
β

g

)
=

(
X′
N′

)
YĜ, (A1)

whereK is a q × q symmetric positive definite matrix,X andN are any matrices of dimension n × p
and n × q, respectively, as indicated before.

Equation (A1) can also be written as the pair of simultaneous matrix equations

X′Xβ + X′Ng = X′YĜ, (A2)

N′Xβ + (N′N + λK)g = N′YĜ. (A3)
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From Equation (A3) we can easily obtain the smoothing spline estimator of the vector g:

ĝss = (N′N + λK)−1N′(YĜ − Xβ). (A4)

Substituting Equation (A4) into Equation (A2), we get

X′Xβ + X′N((N′N + λK)−1N′(YĜ − Xβ)) = X′YĜ

X′Xβ + X′N(N′N + λK)−1N′YĜ − X′N(N′N + λK)−1N′Xβ = X′YĜ

X′Xβ − X′N(N′N + λK)−1N′Xβ = X′YĜ − X′N(N′N + λK)−1N′YĜ

X′(I − N(N′N + λK)−1N′)Xβ = X′(I − N(N′N + λK)−1N′)YĜ,

which provides the smoothing spline estimator for the vector β , given by

β̂SS = (X′(I − Sλ)X)−1X′(I − Sλ)YĜ, (A5)

where Sλ = N(N′N + λK)−1N′ is a spline smoother matrix. Hence, replacing βin Equation (A4) by
the β̂SS will give the estimator for the unknown g defined by

ĝSS = (N′N + λK)−1N′(YĜ − Xβ̂SS) (A6)

and hence fitted values

ŶĜ = Xβ̂SS + NĝSS. (A7)

Substituting β̂SS in Equation (A5) and ĝSSin Equation (A6) into Equation (A7), we get

ŶĜ = Xβ̂SS + Nĝ = X[X′(I − Sλ)X]−1X′(I − Sλ)YĜ + (N′N + λK)−1N′(YĜ − Xβ̂SS)

= X[X′(I − Sλ)X]−1X′(I − Sλ) + Sλ − SλX[X′(I − Sλ)X]−1X′(I − Sλ)YĜ

= Sλ + X[X′(I − Sλ)X]−1X′(I − Sλ) − SλX[X′(I − Sλ)X]−1X′(I − Sλ)YĜ

= HSS
λ YĜ,

where

HSS
λ = Sλ + (I − Sλ)X[X′(I − Sλ)X]−1X′(I − Sλ) (A8)

as claimed.

Appendix 2. The implementation details of Equations (22)–(25)

LetWλ be a smoother matrix defined by elements (21) and partial residuals of the variables X and
YĜ after adjusting the dependence on t,

X̃ = (I − Wλ)X = (x̃i1, . . . ., x̃ip), i = 1, 2, . . . , n

and

ỸG = (I − Wλ)YĜ = (ỹ1Ĝ, . . . , ỹnĜ)′.

As suggested by Green et al. [45] , ifWλ is replaced by (N′N + λK)−1N′ in Equation (A4), it can be
found to be a suitable estimator for the function g in Equation (21). given by

ĝ = Wλ(YĜ − Xβ). (A9)

Assuming that X̃ has full rank, we can estimate the unknown vector β in Equation (A9) from the
partial residuals X̃ and ỸG. Considering the vector of the residuals in Equation (20), the minimizing
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the weighted least square criterion (21) is

f3(β) =
n∑

i=1
(εiĜ)2 =

n∑
i=1

(ỹiĜ − x̃iβ)2 = (ỸĜ − X̃β)′(ỸĜ − X̃β).

Simplifying,

f3(β) = (ỸĜ − X̃β)′(ỸĜ − X̃β) = Ỹ′
ĜỸĜ − 2(X̃′ỸĜ)β + β ′X̃′X̃β . (A10)

In order to minimize Equation (A10), we could differentiate with respect to β and set the derivative
equal to zero:

∂

∂β
f4(β) = −2(X̃′ỸĜ) + 2X̃′X̃β = 0. (A11)

Setting Equation (A11) equal to zero and replacing β by β̂KS, the normal equations are obtained as

X̃′X̃β̂KS = X̃′ỸĜ. (A12)

To solve for β̂KS, multiply each side of Equation (A12) by (X̃′X̃)−1 to obtain theweighted least square
regression solutions

β̂KS = (X̃′X̃)−1X̃′ỸĜ =
n∑
i=1

x̃iỹiĜ

/ n∑
i=1

x̃2i , (A13)

where X̃ and ỸG denote the partial residuals, as defined in above. If the β in Equation (A9) is
modified by β̂KS in Equation (A13), Equation (A9) can be re-expressed the following way:

ĝKS =
n∑
j=1

wjλ(tj)((yjĜ − xjβ̂KS)) = Wλ(YĜ − Xβ̂KS) (A14)

and the vector of fitted values is

ŶĜ = Xβ̂ + ĝ = X(X̃′X̃)−1X̃′ỸĜ + Wλ(YĜ − Xβ̂KS)

= X(X̃′X̃)−1X̃′
(I − Wλ)YĜ + WλYĜ − WλX(X̃′X̃)−1X̃′

(I − Wλ)YĜ

= WλYĜ + X(X̃′X̃)−1X̃′
(I − Wλ)(I − Wλ)YĜ

= HKS
λ YĜ,

where

HKS
λ = Wλ + (I − Wλ)X(X′(I − Wλ)

′(I − Wλ)X)−1X′(I − Wλ)
2 (A15)

as expressed in Section 2.3.

Appendix 3. The derivation details of Equations (32)–(35)

Let D be a diagonal penalty matrix, as in Section 2.3. For a given D matrix, the solution to the
penalized objective function (30) provides the following system of equations:(

X′X X′U
U′X (U′U + λD)

) (
β

b

)
=

(
X′
U′

)
YĜ, (A16)

where X and U are the design matrices, as defined in Section 2.3.
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It is easy to show that Equation (A16) satisfies the following system of equations

X′Xβ + X′Ub = X′YĜ, (A17)

U′Xβ + (U′U + λD)b = U′ŶG. (A18)
Using Equation (A16), we obtain the modified regression spline estimator ĝRS of the coefficients
vector b in Equation (28), given by

ĝRS = (U′U + λD)−1U′(YĜ − Xβ) (A19)

as expressed in Equation (33). Then, substituting this estimator of b into Equation (A17), we obtain

X′Xβ + X′U((U′U + λD)−1U′(YĜ − Xβ)) = X′YĜ

X′Xβ + X′U(U′U + λD)−1U′YĜ − X′U(U′U + λD)−1U′Xβ = X′YĜ

X′Xβ − X′U(U′U + λD)−1U′Xβ = X′YĜ − X′U(U′U + λD)−1U′YĜ

(X′X − X′U(U′U + λD)−1U′X)β = (X′ − X′U(U′U + λD)−1U′)YĜ.

The last row of the above equation is solved for the vector β , and the estimator β̂RS of thementioned
β vector in Equation (28) is obtained as

β̂RS = (X′A−1X)−1X′A−1YĜ, (A20)

where A−1 = I − U(U′U + λD)−1U′.
Thus, fitted values

ŶĜ = Xβ̂RS + UĝRS. (A21)

Substituting β̂RS in Equation (A20) and ĝRSin Equation (A19) into Equation (A21), it is obtained by

ŶĜ = X(X′A−1X)−1X′A−1YĜ + U(U′U + λD)−1U′(YĜ − X(X′A−1X)−1X′A−1YĜ)

= (X(X′A−1X)−1X′A−1 + U(U′U + λD)−1U′ − U(U′U + λD)−1U′X(X′A−1X)−1X′A−1)YĜ

= (U(U′U + λD)−1U′ + X(X′A−1X)−1X′A−1 − U(U′U + λD)−1U′X(X′A−1X)−1X′A−1)YĜ

= HRS
λ YĜ,

where

HRS
λ = U(U′U + λD)−1U′ + (I − U(U′U + λD)−1U′)X(X′A−1X)−1X′A−1. (A22)

This implies that the hat matrix in (35) is provided by (A21).

Appendix 4. Boxplots of regression coefficients

Figure A1 illustrates the boxplots of the estimated regression coefficients for the simulated data sets,
which have a censorship rate of 5%. Figure A2 is similar to Figure A1 but for the observations with
a censorship rate of 45%. The x-axis labels in the boxplots read as follows: In each panel ‘K1, K2
and K3’ denote the estimates of parameter vector β by KSmethod for n = 50, 100, and 200, respec-
tively; similarly, ‘S1, S2 and S3’ indicate the cases using SSmethod for the sample sizes; ‘R1, R2 and
R3’ denote the RS method cases; ‘L1, L2 and L3’ represent the cases of OLS method. The ordinate
indicates the scale of regression coefficients vector β .

As shown in Figures A1 and A2, when the sample size n gets larger, the range of estimates gets
narrower. It also follows that the estimates under low censored (i.e. 5%) data are more stable than
findings under highly censored (i.e. 45%) data. On the other hand, the outcomes corresponding to
censoring level 25% are similar to the results displayed in Figure A1 and as such are not reported
here. It is demonstrated that the sample size has an important effect on the quality of parametric
estimates when high censoring levels are considered.
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Figure A1. Boxplots of the estimates (n = 50, 100, 200) obtained from model (53) for censoring level
5%. Panels indicate the boxplots of β̂1, β̂2, and β̂3; panel (a) is for g1(t) = 3t sin(t) and panel (b) is
forg2(t) = sin(t) + 2 exp(−30t2).

Figure A2. Similar to Figure 3 but for censoring levels 45%.
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