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ABSTRACT ARTICLE HISTORY
Evolutionary algorithms (EAs) is a family of population-based nature Received 20 December 2018
optimization methods. In contrast to classical optimization techni- Accepted 10 June 2020

ques, EAs provide a set of approximated solutions for different test
suites of optimization and real-world problems in single simulation.
In the last few years, hybrid EAs have received much attention by
utilizing the valuable aspects of different nature of search strategies.
Hybrid EAs are quite efficient in handling various optimization and MATHEMATICS SUBJECT
search problems having had high complexity, noisy environment, CLASSIFICATION
imprecision, uncertainty and vagueness. In this article, a hybrid dif- 90C59; 68W50

ferential evolutionary strawberry algorithm (HDEA) is suggested to

utilize the propagating behavior of the strawberry plant and perturb-

ation process of differential evolution (DE) algorithm in order to

evolve their population set of solutions. The proposed algorithm

employs DE as a substitute while replacing the runners of the straw-

berry plant to effectively explore and exploit the search space of the

problem at hand. The numerical results found by the proposed algo-

rithm over most benchmark functions after extensive experiments

are much promising in terms of proximity and diversity.

KEYWORDS
Optimization; computing;
evolutionary computation

1. Introduction

Optimization finds out the most suitable value for the function with bounded search
domain. Optimization problems are naturally posed as real-world problems (Lasisi et al.
2019). Optimization has wide applications in various engineering technologies, mathematics,
operations research, economics and medical sciences. In essence, optimization problems
can be categorized into constrained and unconstrained ones. In constrained problems, dif-
ferent restrictions are imposed over objective functions while in unconstrained problems
the search space is bounded (Mashwani et al. 2019, 2020). The main study in this article is
dedicated to the analysis of the unconstrained optimization problems with real parameters.
A general optimization problem can be formulated as follows:
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Minimize F(x) = fi(x),f2(x), ..., fm(x)
gi(x) <0,i=1,2,...,p
By(x) = 0= 1,2,...q M
xf < x < xi,,i =1,2,..,N
where x = (x1,x,, ...,x,,)T € Q is the candidate solution with »n decision variables or real
parameters, F(x) is the objective function, gi(x) <0,i=1,2,...,p and hj(x) =0,j =
1,2,...,,q are the p inequality constraints and g equality constraints.

If m=1, then problem (1) becomes a single objective optimization problem, while if
m > 2, then problem (1) is a multi-objective problem. Furthermore, if Q is a closed
and connected region in R" with all objective functions described in real-valued varia-
bles, then problem (1) is called a continuous multi-objective problem (Mashwani et al.
2017). In single-objective optimization, problem (1) is said to be continuous, if all deci-
sion variables, x;,x,, ..., x,, are expressed in real numbers (Khanum et al. 2018). With
this convention, binary or Boolean variables are treated as integer variables (Lasisi et al.
2019; Yoshida 2010).

In general, optimization techniques can be categorized into linear and non linear
optimization techniques.' Linear optimization techniques are simple and straightforward
as compared to non linear optimization techniques. Non linear optimization methods
(Fiacco and McCormick 1968; Ruszczynski 2006; Miller 1999) are further subdivided
into two classes including non linear local and global search algorithms. The major dif-
ference between aforementioned sub-divisions is that local search methods furnish local
optimum while global search methods render global optimum solutions for dealing with
optimization search problems. In the last few decades, different types of swarm intelli-
gence and nature-inspired techniques (Beni and Wang 1993; Li and Liu 2011; Yu and
Gen 2010; Yoshida 2010; Lasisi et al. 2019; Eiben and Smith 2015; Xie, Zhou, and Chen
2013; Khanum et al. 2018; Mashwani and Salhi 2012; Mashwani et al. 2017) were devel-
oped and are still developing to cope with various unconstrained and constrained opti-
mization problems.

Evolutionary algorithms (EAs) have many characteristics including the population-
based collective learning process, self-adaptation and robustness as compared to other
global optimization techniques (Zhu and Kwong 2010; Shah et al. 2018; Patwal, Narang,
and Garg 2018; Garg 2019). ant colony optimization (ACO) (Kim et al. 2014; Fang
et al. 2015), practical swarm optimization (PSO) (Eberhart and Kennedy 1995), firefly
algorithms (Yang 2010a), plant propagation algorithms (Nag 2017; Sulaiman et al.
2014), strawberry algorithm (SBA) (Bayat 2014; Sulaiman et al. 2014), plant intelligence-
based EAs (Akyol and Alatas 2017) and differential evolution (DE) (Mallipeddi et al.
2011; Mallipeddi and Suganthan 2009) are mostly recently developed EAs and they have
efficiently tackled a variety of benchmark functions (Suganthan et al. 2005; Awad et al.
2016) and real-world problems (Yoshida 2010). In Bayat (2014), Sulaiman et al. (2014)
and Merrikh-Bayat (2015), plants like strawberry develop both runners and roots to
propagate and search for water resources and minerals. Runners and roots of the straw-
berry plant perform both the local and global searches simultaneously. As discussed in

'https://www.britannica.com/science/optimization
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Bayat (2014) and Merrikh-Bayat (2015), the agents in SBA do not communicate with
each other and duplication-elimination procedure motivates their agents converging
toward the global best solution.

In the field of evolutionary computation (Eiben and Smith 2015), hybrid EAs have
got popularity due to their capabilities and effective treating with several real-world
problems taking into account complexity, noisy environment, imprecision, uncertainty
and vagueness (Grosan and Abraham 2007). In this article, the idea of different popula-
tion differences used in DE (Storn and Price 1997) and propagation behavior of runners
and roots strawberry plant (Nag 2017; Sulaiman et al. 2014; Bayat 2014; Merrikh-Bayat
2015) are employed for population evolution and yielding to a hybrid differential evolu-
tionary strawberry algorithm (HDEA) is developed. The algorithmic performance of the
suggested HDEA is tried upon 20 benchmark functions with real parameters. The sug-
gested algorithm is much effective and has provided promising optimal solutions for
most used test problems. The numerical results provided by the proposed algorithm
indicate their effectiveness and strength for dealing with non linear numerical optimiza-
tion problems.

The rest of the article organized as follows: Section 2 introduces the framework of
the proposed hybrid strawberry differential EA and Section 3 demonstrates the experi-
mental results and characteristics of the used benchmark functions. Section 4 finally
concludes this article.

2. Hybrid differential evolutionary strawberry algorithm

Traditional optimization techniques (Miller 1999) are unable to deal with non linear
and large-scale optimization problems. EAs (Back 1996; Eiben and Smith 2015;
Mallipeddi and Suganthan 2009) are in general categorized into nine different groups
including biology-based (Sulaiman et al. 2014; Akyol and Alatas 2017), physics-based
(Siddique and Adeli 2016; Hong et al. 2019), social-based (Farahlina Johari et al. 2013;
Yang 2010b; Li and Liu 2011; Yu and Gen 2010), music-based (Jeong and Ahn 2015),
chemical-based (Silva, Silva, and Belchior 2019), sport-based (While and Kendall 2014),
mathematics-based (Miihlenbein and Mahnig 2002), swarm-based (Eberhart and
Kennedy 1995; Shi and Eberhart 1998; Parsopoulos and Vrahatis 2002; Blum 2005;
Pham et al. 2005; Yang 2014; Rohan et al. 2017) and hybrid methods (Grosan and
Abraham 2007; Qian et al. 2018; Khan 2012; Mashwani 2011a, 2011b, 2013; Mashwani
and Salhi 2012, 2014). Among them, hybrid EAs have shown great success in the recent
past due to their capabilities in handling several real-world problems involving complex-
ity, noisy environment, imprecision, uncertainty and vagueness. This article presents a
HDEA that empolys at same time the recently developed SBA (Bayat 2014; Merrikh-
Bayat 2015) and DE (Storn and Price 1997) algorithms. Strawberry plant can model in
an effective manner based on three facts including the way strawberry plant propagating
by using their runners which rise randomly to perform their global search for resources;
each strawberry parent plant develops its roots and root hairs randomly in order to
carry on local search process for resources and finally the strawberry offspring plants
have access to richer resources that grow faster and generate more runners and roots.
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2.1. Differential evolution

DE is a well-known population-based EA that was first introduced by Rainer Storn and
Kenneth Price for solving Chebychev polynomial fitting problems (Storn and Price
1997). DE is a stochastic direct search method using population or multiple search
points. DE has been successfully applied to the optimization problems including non
linear, non differentiable, non convex and multi-modal functions and it perturbs the
population by using the idea of difference of different population to perform their
search process. To improve the convergence of DE over-complicated constrained and
non linear (unconstrained) optimization problems, mathematicians introduced the adap-
tation schemes in the framework of DE (Mashwani 2014). The important operators of
DE are mutation, crossover and selection to generate and select solutions for its next
generation of population evolution, while the parameters of DE are NP (population
size), F,, (mutation factor) and Cr (crossover ratio). The process to maintain genetic
diversity from one generation to the other is called mutation. In each generation of DE,
a mutant vector, v;, for each individual of the current population, {x;,|i = 1,2,...,N}
is designed by using, one of the following strategies, which are frequently used
in literature:

1. DE/rand/1:
Vi,t — 1, t —l—F X (xrz,t _ Xr3,t)

2. “DE/rand/1” mutates a random solution with a difference vector.
DE/best/1:

vz,t _ xbest,t +Fx (Xr]’t _ sz,t)

“DE/best/1” mutates a best solution with a difference vector,
3. DE/rand-to-best/1:

Vi,t — Xn,t 4+ Fx (sz,t o Xr;,t) +Fx (Xbest,t o Xrl,t)

“DE/rand-to best/1” mutates a random solution with difference vector of random
solution and a best solution.
4. DE/current-to-best/1:

Vi,t _ Xi,t +Fx (Xrl,t _ sz,t) +Fx (Xbest,t _ Xi,t)

“DE/current-to best/1” mutates a current solution with difference vector of random
solution and a best solution. In the above equations, x* # x™ # x are randomly
chosen individuals belonging to the set of solutions called population.

The mutation strategies as given above are employing three chosen solution vectors
to perturb the target vector, where the differences do mimic the gradient descent behav-
ior for guiding the search toward better solutions. These mutation strategies are much
robust, stable and highly competitive and have shown strong ability to cope with explor-
ation versus exploitation dilemma while solving scalable and multi-modal optimization
problems. The design and algorithmic structure of the suggested algorithm explained
here within Algorithm 1. The exploration and exploitation are two major issues for
baseline EA. Exploration refers to search the specific region of the search space.
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Exploitation is the process to search some areas of land or resources that are more prof-
itable or productive or useful. In the proposed algorithm, DE has been used to explore
the best spot for the survival of better offspring solution during the evolution of popula-
tion and whole course of optimization.

Algorithm 1. The framework of the Hybrid Differential Evolutionary Strawberry Algorithm

1: Define parameters: N, n, M, x5, X, dyp, dyp, o0 = 0.5;

2: Generate N parent solutions: x = xj + (x|, — x}) x rand(N,n),i = 1,2,..,N
3: Evaluate objective function values of parent solutions: f(x'),i = 1,2,..,N
4: Initialize the best function value: fy. = 1€6; Xpest = ones(1,n)

5: for k < 1: M;; do

6:  if mod(k,5) == 0 then

7: ri = randperm(N), ry = randperm(N), ri = randperm(N);

8 y=x+dy X (rand(n,N) — o) X x(r1, :) + Fpy X [(x(r2, 1) — x(r1, 2))];
9: else

10: y=[x+d, x (rand(n,N) — o) X x + dyy X (rand(n,N) — a)];

11:  end if

12:  Evaluate N offspring solutions y, f(y/),i = 1,2,...,N

13: [f(y),I] = sort[f(y] % sort the objective function values and offspring solutions.
14: forj« 1:N/2 do

15: x(j:,) =y 2);

16:  end for

17: forj«— 1:2x N do

18: if f(j) > 0 then

19 ) = 1/(B+ )

20: else

21: 3G) = 1/B+1f();
22: end if

23:  end for

24: forj+— N/2+4+1:N do
25: iw = fu(¢());
26: x(j, 1) = yli» 1);

27:  end for

28: if min(f) < f, then

29: Output: Xpesr = [X1, X2, .o, X and fpese = min(f);
30: end if

31: end for

3. Discussion on experimental results

In essence, optimization functions are also called artificial landscapes having had differ-
ent characteristics. They are quite useful for carrying out experiments and evaluating
the performance of the particular EAs in terms of convergence rate, precision, robust-
ness. Here some test functions are presented with the aim of giving an idea about the
different situations that optimization algorithms have to face when coping with these
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kinds of problems. The Matlab codes and detailed information of the used benchmark
functions in our carried out experiments can be found at the link: https://www.mathworks.
com/matlabcentral/fileexchange/23147-test-functions-for-global-optimization-algorithms.

The Benchmark functions, namely, f;: Himmelblan Function, f,: Rastrigin Function-1,
f5: Rastrigin Function-2, f;: Rosenbrock Function, fs: Griewank Functionfs: Schafferl
Function,f;: Schaffer 3 Function, fg: Sine-Valley Function, f;: Powell Function, fio:
Sphere Function, f;;: Haupt F-1 Function, fi,: Haupt F-2 Function, f;;: Bukin4
Function, f4: Beale’s 3 Function, f;5: Booth’s Function,f;s: Helical’s Valley Function, f;-:
Three Hump Camel Function, f;s: Level 3 function, fio: Sum of Difference Function,f:
Matyas Function were employed for the purposes to evaluate the performance of the
proposed hybrid strawberry evolutionary algorithm (HDEA) in comparison with base-
line SBA with same parameter settings and PC configuration as described under:

3.1. PC configuration and platform for the proposed hybrid
evolutionary algorithm

Operating system: Windows XP Professional

Programing language of the algorithms: Matlab

CPU: Core 2 Quad 2.4 GHz

RAM: 4 GB DDR2 1066 MHz

25 independent runs were performed to solve each test problem.

3.2. Parameter settings in the proposed hybrid evolutionary algorithm

The experiments were carried out with parameters settings as follow:

N=50: number of mother plants; N must be an even number;
n=10: number of decision variables;

M;, = 500: maximum number of iterations at each run;

d,, = 400: length of runners;

d,; = 10: length of roots;

f=0: used in the definition of fitness function;

F,, = 0.5: scaling factor of DE

CR=0.1: probability of crossover

o =0.3, 0.4, 0.5, respectively.

p =0: adjusts the roulette wheel selection property.

A function with multiple peaks or valleys is called multi-modal function and its landscape
is multi-modal. Mostly the optimization problems are comprising many complications like
their multi-modal landscapes and in most cases, their derivatives may be either impossible
or too computationally expensive. The used benchmark functions are mostly multi-modals
including f; — fs, fi0> fi»» fis — f19 and the rest are uni-modal functions.

All benchmark functions were optimized by executing the suggested algorithm 25
times independently. We have saved the minimum function values, average function
values, standard deviations function values, median functions values and maximum
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Table 1. Experimental results of the HDEA versus SBA over 20 benchmark functions with
o =0.3 settings.

Best optimum value Mean values Median values
Problems HDEA SBA HDEA SBA HDEA SBA
fo1 1.916508 131.339082 3.764107 177.989706 3.673479 184.431497
f02 0.000247 0.021167 0.007197 0.035544 0.012106 0.048077
fo3 0.062359 0.059809 0.352998 0.415248 0.322457 0.524059
fo4 7.242438 28.239518 10.281460 36.521586 11.542646 40.449541
fos 0.000212 0.000552 0.014077 0.052774 0.014980 67.218020
foe 0.001172 0.002023 0.005958 0.002754 0.005808 0.005803
fo7 24.306000 24.306000 0.012169 0.010311 0.017290 0.012130
fo8 0.003896 0.002119 0.011792 0.003528 0.014764 0.003777
f09 0.001081 0.009527 0.003602 0.027239 0.005495 0.049728
f10 0.439753 77041.797390 2.172962 308401.435157 3.228927 541616.890148
f11 0.000005 0.000081 0.000841 0.001310 0.000970 0.001464
f12 1.000009 1.000089 1.000131 1.000219 1.000184 1.000215
f13 0.001644 0.017275 0.003277 0.518707 0.006605 1.197443
f14 0.000077 0.006361 0.000925 0.451498 0.001017 0.853668
f15 0.000105 0.000636 0.001197 0.006521 0.002042 0.008504
f16 0.424150 4.083429 1.419265 6.559556 1.644115 7.674123
f17 0.000031 0.000197 0.001090 0.000971 0.001553 0.001168
f18 0.000559 0.000799 0.003345 0.003075 0.005556 0.010322
f19 0.196780 0.673984 0.412791 1.168772 0.391195 1.172944
f20 0.285340 5.912568 0.747929 10.691604 0.694130 11.504513

Bold values represent better approximated results as compared to the other values.

Table 2. Experimental results of the MSBA versus SBA for the 20 benchmark functions with o« =
0.4 settings.

Best optimum value Mean values Median values
Problems HDEA SBA HDEA SBA HDEA SBA
01 1.957371 40.714728 3.164092 44.062940 3.235599 45.676136
f02 0.001044 0.003140 0.003249 0.046030 0.006297 0.034004
fo3 0.014202 0.028694 0.263798 0.409307 0.307297 0.403738
fo4 2.042091 9.527664 7.852659 12.286566 8.102214 13.881178
fos 0.000683 0.004013 0.005653 0.020932 0.007191 0.014502
foe 0.001205 0.000710 0.002744 0.004183 0.003734 0.004958
fo7 24.306000 24.306000 0.013923 0.000561 0.012541 0.003327
fos 0.001641 0.001801 0.007359 0.002693 0.009289 0.003167
f09 0.000132 0.000347 0.001648 0.006031 0.002000 0.004891
f10 0.570350 5.134292 2.519990 20.908284 3.366124 32065.856704
f11 0.000022 0.000340 0.001016 0.001110 0.000876 0.001898
f12 1.000003 1.000046 1.000084 1.0000162 1.000215 1.0000239
f13 0.000350 0.002556 0.005066 0.019510 0.006795 0.104392
f14 0.000311 0.000094 0.001813 0.001606 0.002595 0.106553
f15 0.000089 0.000539 0.000978 0.001120 0.001219 0.001996
f16 0.055241 1.084988 0.544932 1.199816 0.530986 1.324854
f17 0.000143 0.000028 0.000773 0.001794 0.000880 0.002703
f18 0.000249 0.002825 0.004808 0.008333 0.006880 0.013790
f19 0.082985 0.170129 0.278843 0.343515 0.283016 0.354169
f20 0.143550 0.616229 0.373909 1.604822 0.410282 1.547100

Bold values represent better approximated results as compared to the other values.

function values of each benchmark function independently with 25 random seeds. The
numerical results of the proposed HDEA versus SBA as summarized in Tables 1-3 were
calculated in terms of best, average, standard deviation, median and maximum function
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Table 3. Experimental results of the HDEA versus SBA for the 20 benchmark functions with o« =
0.5 settings.

Best optimum value Mean values Median values

Problems HDEA SBA HDEA SBA HDEA SBA

fo1 0.013254 0.068806 0.041984 0.086804 0.039113 0.083749
f02 0.000448 0.000118 0.005625 0.000875 0.009081 0.003745
fo3 0.003707 0.044660 0.171438 0.077780 0.277801 0.388042
fo4 4.976185 6.315056 8.237157 9.615790 8.071841 9.426563
fos 0.001144 0.006997 0.008526 0.008894 0.008720 0.010107
fo6 0.000559 0.001182 0.007431 0.008894 0.006355 0.004545
fo7 24.306000 24.306000 0.011741 0.000369 0.015245 0.000826
f08 0.001617 0.001605 0.007713 0.001714 0.007316 0.001784
f09 0.000044 0.000395 0.003459 0.002102 0.004043 0.002668
f10 0.480470 2.835595 1.758164 6.622362 1.758549 15.225471
f11 0.000027 0.000045 0.000361 0.001086 0.000568 0.001559
f12 1.000010 1.000015 1.000131 1.000078 1.000219 1.000086
f13 0.000233 0.001655 0.005502 0.004091 0.005836 0.014079
f14 0.000313 0.000222 0.001267 0.001610 0.001429 0.002025
f15 0.000249 0.000622 0.002441 0.004245 0.002130 0.004518
f16 0.198596 0.610722 0.823828 1.189735 0.986613 1.330663
f17 0.000230 0.000514 0.000835 0.001100 0.000957 0.001624
f18 0.000573 0.003222 0.003824 0.012058 0.005325 0.013810
f19 0.099552 0.263226 0.289528 0.333424 0.246384 0.324872
f20 0.100253 0.596826 0.326194 0.954119 0.338526 1.156325

Bold values represent better approximated results as compared to the other values.

values by using min, mean, std, median and max built-in functions of the Matlab envir-
onment. The experimental results in Table 1 were found by setting o = 0.3, Table 2
represents experimental results by settling o« = 0.4 in the framework of the suggested
hybrid algorithm as outlined in Algorithm 1. Similarly, the numerical results found by
the hybrid strawberry differential EA with o = 0.5 are compared with existing baseline
SBA (Bayat 2014; Merrikh-Bayat 2015). The suggested hybrid algorithm has found the
best approximate solutions while solving almost all test problems more efficiently as
compared to the baseline SBAs. The comparison results as summarized in Tables 1-3
clearly indicate that the proposed algorithm has shown good results and outperformed
SBA (Bayat 2014) over most benchmark functions.

Figures 1-3 display the convergence evolution in maximum, average and minimum
objective function values of the benchmark functions applied in carried out experi-
ments. These convergence graphs were depicted by settling o = 0.3,0.4,0.5, respectively.
These three panels of figures demonstrate the capability and creditability of the pro-
posed HDEA while converging toward the optimal solution of each respective bench-
mark function. As seen in figures, our proposed HDEA avoids the occurrence of
premature phenomena during the solution process.

4, Conclusion

Artificial landscapes are quite useful in assessing the best qualities and weakness of the
particular optimization algorithms keeping in view the convergence rate, precision,
robustness and other general behaviors. Due to the rapid active commotion of EAs in
the recent past few years, their performance is trailed upon wide range of optimization
problems in the engineering, marketing, operations research and social sciences. The
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Figure 1. The evolution in minimum, average and maximum function values display by HDEA with
o= 0.3 for each test problem.

existing literature of evolutionary computing comprises of diverse test suites of uncon-
strained and constrained problems. In this regard, IEEE conference of evolutionary
computation series furnishes every year a test suite of benchmark functions for competi-
tion of newly developed EAs. In this article, we have chosen 20 different unconstrained
test functions in order to examine the performance of our suggested hybrid EA. Most
of the tested functions are multi-modal optimization problems with more than one
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Figure 2. The evolution in minimum, average and maximum function values display by HDEA with
o= 0.4 for each test problem.

global and local solution. Multi-modal problems are difficult to deal with as compared
to the uni-modal problems.

In future, we intend to analyze the intrinsic ss of the suggested algorithm to judge
their search ability and credibility in order to build trust of the evolutionary computing
communities over this new addition to nature-inspired algorithm paradigm. We also
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Figure 3. The evolution in minimum, average and maximum function values display by HDEA with
o =0.5 for each test problem.

intend to verify and analyze the performance of the proposed algorithm by employing
the mutation strategies in combination with nature-inspired algorithm to conduct the
numerical experiments using CEC2014 and CEC2013 and CEC2017 Benchmark func-
tions (Awad et al. 2016) http://www.ntu.edu.sg/home/EPNSugan/index-files/ CEC2017/
CEC2017.htm to establish a fairly comparison with state-of-the-art EAs as developed
recently in the field of the evolutionary computation.
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