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Summary. Gao gave a criterion for the integral indecomposability, with respect
to the Minkowski sum, of polytopes lying inside a pyramid with an integrally
indecomposable base. Here, we weakened this criterion to the polytopes lying
inside the convex hull of two polytopes, one of which is integrally indecompos-
able, being in two parallel nonintersecting hyperplanes.
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1. Introduction

Let R™ denote the n-dimensional Euclidean space and S be a subset of R™.
The smallest convex set containing S, denoted by conv(S), is called the convex
hull of S. If S = {a1, a2, ...,a,} is a finite set then we shall denote conv(S) by
conv(ay, ..., ap). It is straightforward to show that

k k
conv(S) = {Z ANix; cx; € S, > O,Z)\i = 1} .
i=1 i=1

The principle operation for convex sets in R™ is defined as follows.
Definition 1. For any two sets A and B in R”, the sum

A+B={a+b: ac A, be B}

is called Minkowski sum, or vector addition of A and B.

The convex hull of finitely many points in R” is called a polytope.



A point in R"™ is called integral if its coordinates are integers. A polytope in
R™ is called integral if all of its vertices are integral. An integral polytope C
is called integrally decomposable if there exist integral polytopes A and B such
that C' = A + B where both A and B have at least two points. Otherwise, C' is
called integrally indecomposable.

Definition 2.. Let F' be any field and consider any multivariate polynomial

[z, 22, ....2n) = ZceleQ__,en:Ei‘la:;?...mi" € Flzy, ..., xp).

We can think an exponent vector (ej,es,...,e,) of f as a point in R™. The
Newton polytope of f, denoted by Py, is defined as the convex hull in R™ of all
the points (eq, ..., €,) With ce,e,. e, 7 0.

A polynomial over a field F' is called absolutely irreducible if it remains irre-
ducible over every algebraic extension of F'.

Using Newton polytopes of multivariate polynomials, we can determine infinite
families of absolutely irreducible polynomials over an arbitrary field F' by the
following result due to Ostrowski [5], c.f. [2].

Lemma 1. Let f,g,h € Flz1,...,x,] with f = gh. Then Py = P, + P,

As a direct result of Lemma 1, we have the following corollary which is an
wrreducibility criterion for multivariate polynomials over arbitrary fields.

Corollary. Let F be any field and f a nonzero polynomial in F[z1, ..., 2,] not
divisible by any ;. If the Newton polytope Py of f is integrally indecomposable
then f is absolutely irreducible over F.

When Py is integrally decomposable, depending on the given field, f may be
reducible or irreducible. For example, the polynomial f = 2 + y° + 2° has the
Newton polytope

P; = conv((9,0,0),(0,9,0),(0,0,9))
= conv((6,0,0),(0,6,0),(0,0,6)) 4+ conv((3,0,0), (0,3,0), (0,0, 3)).

But, while f = 2% + ¢ + 2% = (v + y + 2)” over F3, it is irreducible over
Fy, F5,F7,F11, where [F,,, represents the finite field with m elements.

In [2], [3] and [4], infinitely many integrally indecomposable polytopes in R"™
are presented and then, being associated to these polytopes, infinite families of

absolutely irreducible polynomials are determined over any field F.

We need some new terminologies. For details, see [1].



Definition 3. For a € R, 5 € R" the set
H={zeR":8-z=qa}
is called a hyperplane, where

frx=pv+ ...+ BLon

is the dot product of the vectors 8 = (84, ..., 3,,), v = (v1, ..., ). In a natural
manner, the closed halfspaces formed by H are defined as

H ={zeR":8-2<a}, H ' ={ze€R":B-2>a}.

A hyperplane Hg is called a supporting hyperplane of a closed convex set K C
R" if K C Hj or K C H;; and K N Hg # 0, i.e. Hy contains a boundary
point of K. A supporting hyperplane Hg of K is called nontrivial if K is not
contained in Hy. The halfspace H; (or H}) is called a supporting halfspace of
K, possibly we may have K C Hy.

Let C' C R™ be a compact convex set. Then for any nonzero vector v € R”, the
real number s = sup;cco(z - v) is defined as maz{x - v : x € C}, where

TV =XV + ...+ U,
is the dot product of the vectors = = (z1, ..., z,) and v = (vy, ..., vp).

Let K C R™ be a nonempty convex compact set. The map
hg :R" — R, U — SuPper (T - u)

is called the support function of K.
Let K C R™ be a nonempty convex compact set. For every fixed nonzero vector
u € R™, the hyperplane having normal vector u is defined as

Hig(u)={zeR":z-u=hg(u)}.
Note that Hg (u) is a supporting hyperplane of K.

It is known that every supporting hyperplane of K has a representation of this
form. See [1].

Let P be a polytope. The intersection of P with a supporting hyperplane Hp
is called a face of P. A vertex of P is a face of dimension zero. An edge of P is
a face of dimension 1, which is a line segment. A face I’ of P is called a facet
if dim (F)= dim (P) —1. If u is any nonzero vector in R, Fp(u) = Hp(u)N P
shows the face of P in the direction of u, that is the intersection of P with its
supporting hyperplane Hp(u) having outer normal vector u. And, it is known
that Fp(u) = Fg(u) + Fr(u) if P =@ + R for some polytopes @ and R.



If P is a polytope and v is a point in R™ then, the translation of P by v is the
set
P+v={a+v:acP}

The following theorem explains the most important properties about the decom-
position of polytopes. Especially, it shows how faces of a polytope decompose
in a Minkowski sum of polytopes.

Theorem 1. (a) If hx and hj, are the support functions of the convex sets K
and L in R"™ respectively, then, hx + hy, is the support function of K + L, i.e.

hx+r =hg +hr.

(b) Hxyr = Hx + Hy,.
(c) If F is a face of K + L, then there exist unique faces Fi, Fy, of K, L respec-
tively such that

F =Fg + Fy.

In particular, each vertex of K + L is the sum of unique vertices of K, L respec-
tively.

(d) If K and L are polytopes, then so is K + L.

(e) If A is a polytope in R™ with A = B + C, then so are B and C' (which are
called summands of A).

Proof: See, e.g., the proof of [1].
A New Criterion for Integral Indecomposability
In [2], Gao gave the following result.

Theorem 2. Let (Q be an integrally indecomposable polytope in R™ which
is contained in a hyperplane H and having at least two points. Let v € R"
be an arbitrary point which is not contained in H. If S is any set of integral
points in the pyramid conv(v, @), then the polytope P = conv(Q, S) is integrally
indecomposable.

Our new criterion is given as follows.

Theorem 3. Let v € R", Hy and Hy, = H; + v be nonintersecting parallel
hyperplanes in R™, and let (Q; be an integrally indecomposable polytope lying
inside H; and having at least two points. Consider the polytope Q2 C Q1 +v C
Hjy. Assume that at least one of the vertices of @2 does not lie on the boundary of
the polytope Q14wv. If S is any set of integral points in the polytope conv(Q1, Q2)
then the polytope P = conv(Q1, S) is integrally indecomposable.

Proof. Let P = conv(Q1,5) be the polytope as described in Figure 1. Observe
that, since @1 = P N Hy, @1 is a face of P. If P = K + L for some integral
polytopes K and L then, by Theorem 1, K and L have unique faces K and I



respectively, such that Q1 = Kj + L1. While @1 is integrally indecomposable,
K, or Ly must consist of only one point, say K1 = {a} for some point a € R™,
and hence L; = Q1 + (—a). Shifting K and L suitably, i.e. writing

P=(K+(-a))+ (L+a),

we may suppose that K; = {0} and L1 = @Q;. Our aim is to show that K must
contain only one point, i.e. K = K; = {0}. But, this is geometrically obvious
from Figure 1, since for 0 # u € R"™, any shifting v + @1 cannot lie in the
polytope conv(Q1, Q2).

Q1

Figure 1.

Examplel. Let m and n be relatively prime positive integers, and ¢ > 0 and
d > n + 1 be arbitrary integers. Then, the quadrangle

Q = conv((m,0),(m+1,d + ¢), (0,d), (0,n))

is integrally indecomposable by Theorem 2, or Theorem 3. Consequently, by
Theorem 3, the integral polytopes

A = conv((m,0,0), (m+1,d+¢,0),(0,d,0),(0,n,0), (m,0,r),(0,d,7), (0,n,r)),

B = conv((m,0,0), (m+1,d+c,0),(0,d,0), (0,n,0), (m,0,r), (m+1,d+c,7), (0,d,7)),
C = conv((m,0,0), (m+1,d+c,0),(0,d,0), (0,n,0), (m,0,r), (m+1,d+c,r), (0,n,7))

are integrally indecomposable, where r is any positive integer, see Figure 2.



For example, taking m = 10, n = 21, d = 30, ¢ = 5 and r = 70, we see that the
integral polytope

P = conv((10,0,0), (11, 35,0), (0, 30,0), (0, 21, 0), (10, 0, 70), (0, 30, 70), (0, 21, 70))
is integrally indecomposable.
As a result, the multivariate polynomial

f —_ alxlO_,’_anl1y35+a3y30+a4y21_’_a5m10270_’_a6y30270+a7y21Z7O+§ :Cijkxlyjzk,

with (4,7,k) € P and a; € F'\ {0}, is absolutely irreducible over any field F' by
Corollary 1.

0,n,r) (0,d,r)

The Polytope A (m#,de,0)

Figure 2.
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