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Summary. Gao gave a criterion for the integral indecomposability, with respect

to the Minkowski sum, of polytopes lying inside a pyramid with an integrally

indecomposable base. Here, we weakened this criterion to the polytopes lying

inside the convex hull of two polytopes, one of which is integrally indecompos-

able, being in two parallel nonintersecting hyperplanes.
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1. Introduction

Let R denote the n-dimensional Euclidean space and  be a subset of R
The smallest convex set containing  denoted by conv(S), is called the convex

hull of  If  = {1 2  } is a finite set then we shall denote () by
(1  ) It is straightforward to show that

() =

(
X
=1

 :  ∈   ≥ 0
X
=1

 = 1

)


The principle operation for convex sets in R is defined as follows.

Definition 1. For any two sets A and B in R, the sum

+ = {+  :  ∈   ∈ }
is called Minkowski sum, or vector addition of A and B.

The convex hull of finitely many points in R is called a polytope.
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A point in R is called integral if its coordinates are integers. A polytope in

R is called integral if all of its vertices are integral. An integral polytope 
is called integrally decomposable if there exist integral polytopes  and  such

that  = + where both  and  have at least two points. Otherwise,  is

called integrally indecomposable.

Definition 2.. Let  be any field and consider any multivariate polynomial

(1 2  ) =
X

12
1
1 22  ∈  [1  ]

We can think an exponent vector (1 2  ) of  as a point in R The
Newton polytope of  denoted by   is defined as the convex hull in R of all
the points (1  ) with 12 6= 0

A polynomial over a field  is called absolutely irreducible if it remains irre-

ducible over every algebraic extension of  .

Using Newton polytopes of multivariate polynomials, we can determine infinite

families of absolutely irreducible polynomials over an arbitrary field  by the

following result due to Ostrowski [5], c.f. [2].

Lemma 1. Let    ∈  [1  ] with  =  Then  =  + 

As a direct result of Lemma 1, we have the following corollary which is an

irreducibility criterion for multivariate polynomials over arbitrary fields.

Corollary. Let  be any field and  a nonzero polynomial in  [1  ] not

divisible by any  If the Newton polytope  of  is integrally indecomposable

then  is absolutely irreducible over 

When  is integrally decomposable, depending on the given field,  may be

reducible or irreducible. For example, the polynomial  = 9 + 9 + 9 has the

Newton polytope

 = ((9 0 0) (0 9 0) (0 0 9))

= ((6 0 0) (0 6 0) (0 0 6)) + ((3 0 0) (0 3 0) (0 0 3))

But, while  = 9 + 9 + 9 = ( +  + )9 over F3 it is irreducible over
F2F5F7F11 where F represents the finite field with  elements.

In [2], [3] and [4], infinitely many integrally indecomposable polytopes in R

are presented and then, being associated to these polytopes, infinite families of

absolutely irreducible polynomials are determined over any field 

We need some new terminologies. For details, see [1].
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Definition 3. For  ∈ R  ∈ R the set

 = { ∈ R :  ·  = }

is called a hyperplane, where

 ·  = 11 + + 

is the dot product of the vectors  = (1  )  = (1  ) In a natural

manner, the closed halfspaces formed by  are defined as

− = { ∈ R :  ·  ≤ } + = { ∈ R :  ·  ≥ }

A hyperplane  is called a supporting hyperplane of a closed convex set  ⊂
R if  ⊂ +

 or  ⊂ − and  ∩  6= ∅ i.e.  contains a boundary

point of . A supporting hyperplane  of  is called nontrivial if  is not

contained in   The halfspace 
−
 (or +

) is called a supporting halfspace of

 possibly we may have  ⊂  

Let  ⊂ R be a compact convex set. Then for any nonzero vector  ∈ R the
real number  = ∈( · ) is defined as { ·  :  ∈ } where

 ·  = 11 + + 

is the dot product of the vectors  = (1  ) and  = (1  )

Let  ⊂ R be a nonempty convex compact set. The map

 : R → R → ∈( · )

is called the support function of 

Let  ⊂ R be a nonempty convex compact set. For every fixed nonzero vector
 ∈ R the hyperplane having normal vector  is defined as

() = { ∈ R :  ·  = ()}

Note that () is a supporting hyperplane of 

It is known that every supporting hyperplane of  has a representation of this

form. See [1].

Let  be a polytope. The intersection of  with a supporting hyperplane 

is called a face of  . A vertex of  is a face of dimension zero. An edge of  is

a face of dimension 1 which is a line segment. A face  of  is called a facet

if dim (F)= dim (P) −1 If  is any nonzero vector in R,  () =  () ∩ 
shows the face of  in the direction of  that is the intersection of  with its

supporting hyperplane  () having outer normal vector  And, it is known

that  () = () + () if  = + for some polytopes  and 
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If  is a polytope and  is a point in R then, the translation of  by  is the

set

 +  = {+  :  ∈ }
The following theorem explains the most important properties about the decom-

position of polytopes. Especially, it shows how faces of a polytope decompose

in a Minkowski sum of polytopes.

Theorem 1. (a) If  and  are the support functions of the convex sets 

and  in R respectively, then,  +  is the support function of  +  i.e.

+ =  + 

(b) + =  +

(c) If  is a face of  + then there exist unique faces    of  respec-

tively such that

 =  + 

In particular, each vertex of + is the sum of unique vertices of  respec-

tively.

(d) If  and  are polytopes, then so is  + 

(e) If  is a polytope in R with  =  + , then so are  and  (which are

called summands of ).

Proof: See, e.g., the proof of [1].

A New Criterion for Integral Indecomposability

In [2], Gao gave the following result.

Theorem 2. Let  be an integrally indecomposable polytope in R which
is contained in a hyperplane  and having at least two points. Let  ∈ R
be an arbitrary point which is not contained in  If  is any set of integral

points in the pyramid (), then the polytope  = () is integrally

indecomposable.

Our new criterion is given as follows.

Theorem 3. Let  ∈ R, 1 and 2 = 1 +  be nonintersecting parallel

hyperplanes in R and let 1 be an integrally indecomposable polytope lying
inside 1 and having at least two points. Consider the polytope 2 ⊂ 1+ ⊂
2 Assume that at least one of the vertices of 2 does not lie on the boundary of

the polytope1+ If  is any set of integral points in the polytope (1 2)

then the polytope  = (1 ) is integrally indecomposable.

Proof. Let  = (1 ) be the polytope as described in Figure 1. Observe

that, since 1 =  ∩ 1, 1 is a face of  If  =  +  for some integral

polytopes  and  then, by Theorem 1,  and  have unique faces 1 and 1
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respectively, such that 1 = 1 + 1. While 1 is integrally indecomposable,

1 or 1 must consist of only one point, say 1 = {} for some point  ∈ R
and hence 1 = 1 + (−) Shifting  and  suitably, i.e. writing

 = ( + (−)) + (+ )

we may suppose that 1 = {0} and 1 = 1 Our aim is to show that  must

contain only one point, i.e.  = 1 = {0} But, this is geometrically obvious
from Figure 1, since for 0 6=  ∈ R any shifting  + 1 cannot lie in the

polytope (1 2)

Figure 1.

Example1. Let  and  be relatively prime positive integers, and  ≥ 0 and
 ≥ + 1 be arbitrary integers. Then, the quadrangle

 = (( 0) (+ 1 + ) (0 ) (0 ))

is integrally indecomposable by Theorem 2, or Theorem 3. Consequently, by

Theorem 3, the integral polytopes

 = (( 0 0) (+1 +  0) (0  0) (0  0) ( 0 ) (0  ) (0  ))

 = (( 0 0) (+1 + 0) (0  0) (0  0) ( 0 ) (+1 + ) (0  ))

 = (( 0 0) (+1 + 0) (0  0) (0  0) ( 0 ) (+1 + ) (0  ))

are integrally indecomposable, where  is any positive integer, see Figure 2.
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For example, taking  = 10  = 21  = 30  = 5 and  = 70, we see that the

integral polytope

 = ((10 0 0) (11 35 0) (0 30 0) (0 21 0) (10 0 70) (0 30 70) (0 21 70))

is integrally indecomposable.

As a result, the multivariate polynomial

 = 1
10+2

1135+3
30+4

21+5
1070+6

3070+7
2170+

X




with (  ) ∈  and  ∈  \ {0} is absolutely irreducible over any field  by

Corollary 1.

Figure 2.
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