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Abstract: Exposure to extreme weather conditions increases power systems’ vulnerability in front
of high impact, low probability contingency occurrence. In the post-restructuring years, due to
the increasing demand for energy, competition between electricity market players and increasing
penetration of renewable resources, the provision of effective resiliency-based approaches has
received more attention. In this paper, as the major contribution to current literature, a novel
approach is proposed for resiliency improvement in a way that enables power system planners
to manage several resilience metrics efficiently in a bi-objective optimization planning model
simultaneously. For demonstration purposes, the proposed method is applied for optimal placement
of the thyristor controlled series compensator (TCSC). Improvement of all considered resilience metrics
regardless of their amount in a multi-criteria decision-making framework is novel in comparison
to the other previous TCSC placement approaches. Without loss of generality, the developed
resiliency improvement approach is applicable in any power system planning and operation
problem. The simulation results on IEEE 30-bus and 118-bus test systems confirm the practicality
and effectiveness of the developed approach. Simulation results show that by considering resilience
metrics, the performance index, importance of curtailed consumers, congestion management cost,
number of curtailed consumers, and amount of load loss are improved by 0.63%, 43.52%, 65.19%,
85.93%, and 85.94%, respectively.

Keywords: contingency; multi-objective optimization; planning; power system resiliency; TCSC
placement; vulnerability

1. Introduction

1.1. Motivation and Background

Resiliency is generally defined as the strength of a power system in front of high-impact,
low-probability, sudden events which lead to component outage [1,2]. These huge outages might affect
several consumers and the related costs might be high. The Lawrence Berkeley National Laboratory
has designed a free website for estimating interruption costs in different U.S. states [3]. In recent years,
extreme weather-related events have increased due to climate change, and these events can decrease
the resiliency of different civilized structures [3].
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The most widely spread manmade systems, transmission and distribution assets are generally
highly likely to be exposed to climate disasters. Besides climate change, an increase in electricity
demand, competition of electricity market players for increased profit, and less concern for power
system security and reliability constraints and the increasing penetration of renewable energy with
high intermittency increases the degree of vulnerability of power systems while faced with weather
disasters. Since 2002, 80% of major power outages in the U.S. have occurred due to weather events [3],
with severe consequences. Weather disasters could affect the number of interruptions not only in
transmission systems, but also in the distribution level [4].

In order to reduce the impacts of such events, it is crucial to develop resiliency-oriented power
systems plans to reinforce the network against disasters’ consequences. Improving resiliency is shown
by a set of metrics such as the number of consumers affected by an interruption, etc. Besides this,
the importance of the interrupted consumers might be considered as a resilience metric. The planner
might give a different importance degree to each of the metrics. It is necessary to develop an effective
planning framework to be able to simultaneously consider all metrics by paying attention to the degree
of importance planners give to different metrics.

1.2. Relevant Background

Numerous efforts have been made to incorporate resiliency in power systems. Generally,
the developed resiliency-oriented methods have focused on cyber or physical aspects of power
systems. In Ref. [5], seven groups have been mentioned for cyber-physical attacks based on the end
goal of attackers. These groups include bad measurement, bad command injection, control center
impersonation attack, communication delay attack, unresponsive command attack, denial of services
attack, and coordinated cyber-attack [5]. All such attacks could threaten power systems in all levels of
operation. In this regard, some of the papers improved resiliency near to end-user consumers in micro
grids or distribution networks and the rest focused on transmission-network resiliency enhancement.
While facing the natural disaster, a few preventive and corrective actions can be performed [1].
Hardening of the system by expanding new generation units, transmission components, and lines are
suggested as effective preventive actions. It has been customary, even in traditional power systems,
to locate new transmission, generation, and flexible AC transmission system (FACTS) devices to meet
future demands or for improving reliability. However, by emphasizing sustainability in modern power
systems, Sedzero has shown that resiliency consideration is also essential [6].

On the other hand, apart from resiliency-oriented studies, FACTS devices have been extensively
applied for power flow control by taking advantage of recent power electronics progress and FACTS
devices oriented studies in literature. Different objectives have been considered for FACTS placement,
such as stability improvement, voltage deviation reduction [7], voltage unbalance improvement [8],
loss minimization [9], congestion reduction [10], and high renewable penetration enabling [11].

From the viewpoint of security enhancement, a few studies considered the potential of FACTS
devices. In [12], a continuously variable series reactor (CVSR) was applied for improvement of
transmission expansion planning while satisfying N− 1 contingences. In Ref. [13], static security was
improved by the optimal allocation of thyristor-controlled phase shifting transformer (TCPST) and
thyristor-controlled series compensation (TCSC) devices. In [14], operational cost in contingencies
was considered in FACTS placement. In [15], compensation payment to market participants due to
generation re-scheduling and load shedding was considered together with the placement of the FACTS
devices. Recently, the effectiveness of the application of FACTS devices for resiliency enhancement
was demonstrated in [16]. In Ref. [17], FACTS placement was done based on vulnerability indices.
The used vulnerability indices are extracted from the security margin indices. However, the indices are
not comprehensive enough to consider the number and importance of curtailed consumers, the amount
of load loss, and congestion management cost. Overall load shedding and the duration due to network
outages were considered as the resiliency metric in [16].
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In the above papers and other papers on FACTS placement and/or power systems planning
that could not all be mentioned here, different resiliency-based congestion-driven indices such as the
number and importance of curtailed consumers, the amount of load loss, congestion management cost,
and performance index have not been simultaneously considered in the assessment of contingencies.
On the other hand, the developed models are not capable enough to consider different types of
resilience metrics without imposing further computational burden.

The scenario degree of severity (DOS) concept established based on the Technique for Order
of Preference by Similarity to Ideal Solution (TOPSIS), a well-known multi-criteria decision making
approach, has been shown in previous literature [18,19] that is capable enough to handle different
metrics by considering the decision makers’ viewpoint. TOPSIS is a multi-criteria decision making
approach that the chosen alternative should have the shortest geometric distance from the positive
ideal solution (PIS) and the longest geometric distance from the negative ideal solution (NIS). One of
the earliest works in this topic is developed by Lai and Hwang [20]. More information about TOPSIS
is referred to [19]. In [18], DOS was used for selecting the most-secure operating point from a set of
the Pareto optimal fronts in a multi-objective transmission congestion management framework. Also,
in [19], DOS was used for making security-dependent decisions for the assessment of a proposed
power generation plan. The application of multi-objective optimization in power systems is referred
to [21]. Also, the impacts of contingencies on power system stability are referred to in [22].

It is very promising to use the DOS concept for proposing an effective mechanism to include
resiliency in the power system planning approach.

According to the understanding gained from the above literature, FACTS devices placement could
be an effective case study for applying the proposed method.

1.3. Content and Contributions

In this paper, after provision of a new resiliency improvement approach for power system
planning, the proposed approach is applied for TCSC (known as one of the most popular FACTS
devices) placement in power systems.

From the mentioned literature, it is observed that in spite of many attempts for resiliency
improvement in power systems, none of the aforementioned valuable studies considers several
resiliency metrics simultaneously in their proposed approach.

The major contributions of this paper are as follows:

• Development of a novel multi-criteria resiliency improvement approach for transmission systems.
• Improvement of all considered resilience metrics regardless of their amount in a multi-criteria

decision making framework.
• Development of a vulnerability function (VF) that reflects all considered resilience metrics.
• Provision of a novel bi-objective mathematical model for resiliency improvement via TCSC placement.

1.4. Organization

After having provided the introductory information in Section 1, Section 2 describes the proposed
methodology. The mentioned section is divided into two major parts. In the first part, by introducing
resilience metrics, the VF is developed and in the second part, as an application, a bi-objective
mathematical model is provided for TCSC placement by considering resiliency improvement.
In Section 3, a solution approach is proposed for solving the bi-objective optimization model.
In Section 4, the proposed methodology is applied to IEEE 30-bus and 118-bus test systems and
the results are compared. Finally, Section 5 concludes the paper.
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2. Methodology

2.1. Vulnerability Function

In this paper, in order to consider resiliency, first, a VF which considers outage-based indices is
developed and second, the developed VF is minimized in a bi-objective mathematical framework. It is
worth noting that outage consideration is very important and powerful power system operational
tools such as security-constrained optimal power flow have been developed for this purpose [23].
For contingency sifting, the decision makers could employ the methods proposed in [19]. In this paper,
N− 1 contingencies are considered. The proposed VF is formulated based on DOS index which has
been developed in [18,19]. The calculation procedure of DOS is depicted in Figure 1.
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As depicted in Figure 1, the calculation procedure of DOS starts from constituting the decision
matrix. For this purpose, the set of resilience metrics is considered. In this paper, the number of
curtailed consumers, the importance of curtailed consumers, the amount of load loss, congestion
management cost, and performance index are considered as the resilience metrics.

Similar to the previous multi-criteria decision making literature [24], power system planners
are asked to provide a judgment matrix which is a comparison matrix of the resilience metrics.
By applying the eigenvector technique, proposed by Saaty and Vargas [25], the pure weights of all
metrics (w j, j = 1, . . . , 5) are obtained and used for calculating DOS. More detail on the mathematical
formulation is discussed in [18,19]. The decision matrix is calculated as

D =



ρ1,1 · · · ρ1,5
...

. . .
...

ρnb,1 · · · ρnb,5

ρ(nb+1),1 · · · ρ(nb+1),5
...

. . .
...

ρ2nb,1 · · · ρ2nb,5


(1)

where ρi j is the jth resilience metrics of the ith contingency. In this matrix, metrics values related to the
contingencies belonging to the cases before and after implementing the intended planning decision
are indicated at the top and bottom of the matrix, respectively. In the next section, we consider TCSC
placement as a case study for intended planning decision. By normalizing the decision matrix, each
element of the matrix is obtained as

yij =
ρij

max ρij
j=1:2nb

(2)

Multiplying the columns of the normalized decision matrix by their corresponding weights yields
the weighted decision matrix and each element is

zij = wjyij (3)

The positive and negative ideal scenarios are obtained as

z+i = max zij
i=1:2nb

(4)
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z−i = min zij
i=1:2nb

(5)

The closeness of ith scenario to the positive and negative ideal scenario is calculated as

k+
i =

√√√√ 5∑
j=1

(zij − z+j )
2 i = 1, . . . , 2nb (6)

k−i =

√√√√ 5∑
j=1

(zij − z−j )
2 i = 1, . . . , 2nb (7)

By defining hi =
k−i

k+i +k−i
(∀i = 1, . . . , 2nb), the DOS of each scenario is obtained

DOSi =
hi∑2nb

j=1 hj
∀i = 1, . . . , 2nb (8)

The VF is formulated as

VF =

2nb∑
i=nb+1

DOSi (9)

where DOSi is the ith scenario degree of severity. It is noted that by minimizing VF, resiliency is
improved. One of the advantages of this function is that it is able to reflect different consequences of
disasters which are considered as the resilience metrics.

Since VF is able to consider different metrics regardless of their number (amount), the intended
planning decision is able to be modeled as a bi-objective mathematical model as depicted in Figure 2.
In this model, aggregative cost, which is the main objective function of all power system planning
problems such as [26], could include investment, installation, operation, and also maintenance costs.
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The proposed formulated VF can be traded-off with the aggregated cost objective to improve
resiliency. Similar to the other mathematical planning models, satisfaction of Kirchhoff current law;
active power limitation of generation units, voltage magnitude limitations, and many other technical,
economical, and environmental constraints could be considered in the proposed model. One of
the advantages of this proposed modeling framework is that it is capable enough to improve even
numerous resiliency metrics in a bi-objective model without imposing any further complexity.

In the next subsection, the proposed modeling framework is applied for TCSC placement.
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2.2. Bi-Objective TCSC Placement Model

An application of the proposed model, which is the determination of optimal location and size of
the TCSCs, is considered through the following developed bi-objective mathematical model

Min f1 =

nt∑
j=1

ICTCSCj +

ng∑
i=1

aiP2
gi + biPgi + ci (10)

Min f2 = VF (11)

subject to
Pgi −Pdi =

Vi
N∑

j=1
Vj

(
Gijcos

(
δi − δj

)
+ Bijsin

(
δi − δj

))
∀i = 1 : N

(12)

Qgi −Qdi =

Vi
N∑

j=1
Vj

(
Gijsin

(
δi − δj

)
−Bijcos

(
δi − δj

))
∀i = 1 : N

(13)

∣∣∣Pl
∣∣∣≤ Pmax

l ∀l = 1 : m (14)

Vmin
i ≤ Vi ≤ Vmax

i ∀i = 1 : N (15)

Pmin
gi ≤ Pgi ≤ Pmax

gi ∀i = 1 : N (16)

Qmin
gi ≤ Qgi ≤ Qmax

gi ∀i = 1 : N (17)

Ploss_a ≤ Ploss_b (18)

In this model, f1 is composed of the aggregation of Investment Cost (IC) of TCSCs and operational
cost of power generation units, and f2 is the VF. Equations (12) and (13) guarantee Kirchhoff’s current
law in each of the transmission buses. Equations (14)–(17) retain the power flow of each line, the voltage
magnitude of each bus, the active and reactive power generation of each generation unit within
their limits, respectively. Also we can consider (18) in order to guarantee that active power losses
do not worsen after TCSC placement. Active power loss could also be considered as the objective
function. Since the focus of this paper is on providing an effective multi-objective TCSC placement
model for vulnerability consideration, active power loss is not included in the objective function
set. It is worth mentioning that the proposed model is capable enough to include environmental
constraints such as CO2 emission restriction. However, such consideration is beyond the scope of this
paper. In Equations (12) and (13), Gi j and Bi j are known as the real and imaginary parts of the nodal
admittance matrix

Gij = Re
[
yij

]
(19)

Bij = Im
[
yij

]
(20)

where yi j is the ijth element of the nodal admittance matrix. TCSC affects the reactance of the
transmission line as

xij = xijb
(
1 + rTCSCkij

)
(21)

kij ∈ {0, 1} (22)

− 0.7 ≤ rTCSC ≤ 0.2 (23)
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where xi j is total reactance of transmission line after TCSC placement, xi jb is the reactance of line ij
before installing TCSC. ki j is a binary index which is 0 if the TCSC is not located in line ij and is 1 if the
TCSC is located in this line. Equation (23) represents the safe operation limits of TCSC for stability
purposes [27].

3. Solution Approach

By combination of TOPSIS, ε-constraint method and genetic algorithm (GA) for solving the
proposed multi-objective mixed-integer optimization model of (10)–(18), the Pareto-optimal front
is obtained and a final solution is achieved using the fuzzy satisfying decision making approach.
As a whole, the proposed approach is divided into three levels of decision making, which is shown
in Figure 3. The ε-constraint method treats the multi-objective model as a single-objective model by
retaining one of the objective functions and treating the others in the constraints. More information
about ε-constraint method is found in [28]. For solving the problem, the following steps are taken:
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Step 1—Obtaining point A: Consider (10) as the single objective function with the set of (12)–(18)
as the constraints. This single-objective optimization is solved by GA. The reason for selecting GA is
because of the GA capabilities for solving non-linear non-convex problems [29]. For applying GA to
this problem, a chromosome has been designed as [LO, RA], where LO is an array with the size of nbranch
the elements of which are either 1 or 0. If in a chromosome the element t of LO array (1 ≤ t ≤ nbranch) is 1,
it means that in that chromosome the transmission line t is considered as a location for TCSC placement.
In this designed chromosome, RA is also an array with the size of nbranch whereby its element t is the
degree of compensation (−0.7 ≤ rTCSC ≤ 0.2) in the transmission line t. The other GA parameters such
as population, mutation, and crossover are set. By solving this single-objective optimization point A is
obtained. The respective fitness function is named f1 and if any of the constraints of Equations (12)–(18)
are not satisfied, a large number will be yielded.

Step 2—Obtaining point B: Consider (11) as the single objective function with the set of
Equations (12)–(18) as the constraints. For solving this single objective optimization, the chromosome
has been designed the same as in Step 1. For each of the chromosomes, the N− 1 contingencies before
and after placement of the chromosome’s related TCSCs are evaluated and afterwards the decision
matrix of (1) is constituted. For evaluation of each contingency and for obtaining the related resilience
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metrics, classical transmission congestion management model of [30] is solved. After constituting
the decision matrix, by applying Equations (2)–(9) VF is evaluated. By solving this single-objective
optimization, point B is obtained. The related fitness function is named f2 and if any of the constraints
of Equations (12)–(18) are not satisfied, a large number will be yielded. It is noted that f2, which is VF,
is obtained based on Equations (2)–(9).

Step 3—Calculate ε = f1(B)− f1(A)
n

Step 4—Consider k = 1
Step 5—Consider VF, Equation (11), as the single objective function with Equations (12)–(18)

and (24) as the constraints
ng∑

i=1

aiP2
gi + biPgi + ci ≤ f1(B) − kε (24)

Solving the resultant single-objective optimization model by GA yields a non-dominated solution
from the Pareto-optimal set.

Step 6—Consider k = k + 1. If k ≤ n− 1, go to Step 5
Step 7—Apply fuzzy satisfying decision making for selecting one of the non-dominated solutions

among the obtained Pareto-front. Fuzzy decision making has been applied for selecting a compromise
solution among the obtained Pareto-optimal front [31]. The decision makers’ degree of satisfaction
from both objective functions is shown by linear membership function [31]

ηgi

(
X
)
=


0 gi

(
X
)
> gmax

i
gmax

i −gi(X)
gmax

i −gmin
i

gmin
i ≤ gi

(
X
)
≤ gmax

i

1 gi

(
X
)
< gmin

i

(25)

where gi
(
X
)

is the ith objective function, thereafter, a desirable level of achievement for both objective
functions is chosen and shown by ηri . The final solution is found from the following minimax
optimization problem [31].

min
X∈φ

2∑
i=1

∣∣∣∣ηri − ηgi

(
X
)∣∣∣∣p (26)

where ηri is the desirable level of achievement for the ith objective function.

4. Tests and Results

In this section, the proposed approach is examined and evaluated on IEEE 30-bus and 118-bus
test systems and the results are analyzed.

All simulations are carried out using MATPOWER package [32] and MATLAB Optimization Toolbox.

4.1. IEEE 30-Bus Test System

IEEE 30-bus test system is a standard test system with 6 generation units, 41 transmission lines,
and 20 loads. The topology and some basic information related to this test system has been taken
from [33]. The active and reactive power demands and cost function of the system’s generation units
are provided in Tables 1 and 2, respectively. As shown in Table 1, the total active load of the system is
212 MW, which is distributed among different transmission buses.

For calculating the VF, the judgment matrix A is assumed and by applying the technique in [25],
the pure weights of resiliency metrics are obtained as 0.201, 0.1238, 0.4682, 0.0179, and 0.1891 for
the number of curtailed consumers, the importance of curtailed consumers, the amount of load loss,
congestion management cost, and performance index, respectively. The type and importance of
the loads is shown in Table 3. It is also assumed that 1 MW in residential and commercial buses
feeds 700 consumers. The rate of interest and investment period are considered 5% and 20 years,



Energies 2019, 12, 2601 9 of 16

respectively. After examining different population size and generation numbers in the GA, which is
part of the solution approach in Section 3, the values are set at 20 and 100, respectively. Also, in fuzzy
satisfying decision making, desirable levels of achievement for cost and VF are considered 0.5 and
0.4, respectively.

Table 1. Active and Reactive Power Demands.

Bus Active Power
(MW)

Reactive
Power (Mvar) Bus Active Power

(MW)
Reactive

Power (Mvar)

1 0 0 16 10.5 1.8

2 21.7 12.7 17 18 5.8

3 2.4 1.2 18 3.2 0.9

4 7.6 1.6 19 9.5 3.4

5 0 0 20 4.4 0.7

6 0 0 21 17.5 11.2

7 22.8 10.9 22 0 0

8 24 30 23 3.2 1.6

9 0 0 24 8.7 6.7

10 5.8 2 25 0 0

11 0 0 26 3.5 2.3

12 11.2 7.5 27 0 0

13 0 0 28 0 0

14 6.2 1.6 29 2.4 0.9

15 8.2 2.5 30 21.2 1.9

Table 2. Cost Function of the Systems’ Generation Units.

Bus
Active Generation

Power (MW)

Cost Coefficients

a b c

1 23.54 2 0.02 23.54

2 60.97 1.75 0.0175 60.97

22 21.59 1 0.0625 21.59

27 26.91 20 0.0384 26.91

23 19.2 20 0.25 19.2

13 37 40 0.01 37

Table 3. Importance and Type of the Consumers Connected to Each Bus.

Bus Type of Connected Consumers Importance of the Consumers

2, 10, 30 Industrial High
12, 14 Industrial Medium

8, 20, 24 Industrial Low
4, 15, 21 Residential/commercial High

19, 26, 29 Residential/commercial Medium
3, 7, 16, 17, 18, 23 Residential/commercial Low

By applying the proposed procedure given in Section 3, the Pareto-optimal fronts before and
after applying loss constraint (18) are obtained as shown in Figure 4. As seen from this figure, in this
case study, considering loss constraint causes the obtained Pareto-optimal solutions to deteriorate,
which results in a non-dominated solution set with worse vulnerability and cost in some of the
non-dominated solutions.
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Table 4 provides more details about the obtained non-dominated solutions of Figure 4 in the case
of considering loss constraint. It is observed from this table that the range of cost of the obtained
non-dominated solution set is 451.3742 $/h, i.e., 33.2%. To compromise between the obtained solutions,
the fuzzy satisfying decision making of Section 3 is implemented. The result shows that the eighth and
ninth non-dominated solutions of Table 4 are obtained as the final solution for the case before and after
considering loss constraint, respectively.

Table 4. Detailed Information about the Obtained Pareto-Front in the Case of Considering Loss
Constraint Shown in Figure 4.

Non-Dominated
Solutions Cost ($/h) Vulnerability

Function
Power Loss

(MW)
Investment Cost

of TCSC ($/h)

1 908 0.5108 570.79 5.6377

2 937.5 0.4893 576.53 33.9128

3 939.2 0.4861 638.11 22.6151

4 941.8 0.4721 623.32 28.2960

5 979.8 0.472 664.02 33.9768

6 996.8 0.4689 678.57 25.4300

7 1041.3 0.4649 681.22 31.0500

8 1051.1 0.4564 673.88 29.7319

9 1090.5 0.4287 692.17 28.1871

10 1170.9 0.4135 667.45 25.3823

11 1224 0.4051 685.38 28.1995

12 1227.5 0.3933 646.29 29.6592

13 1234.6 0.3748 666.75 38.0800

14 1251.5 0.3668 672.66 32.5044

15 1359.4 0.3546 650.40 26.8742

For the obtained final solutions, the averages of the resilience metrics have been obtained for three
cases, which are shown in Table 5.

Case 1: Only considering cost as the objective function without considering resiliency.
Case 2: The proposed approach without considering loss constraint.
Case 3: The proposed approach by considering loss constraint.
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Table 5. Average of the Resilience Metrics and Operation Cost.

Resilience Metrics Case1 Case 2 Case 3

Average of the
metrics

Performance index 7.344 6.9 6.622

Amount of loss of load 0.901 0.664 0.623

Importance of curtailed consumers 1.565 1.15 1.143

Number of curtailed consumers 252 90 88

Congestion management cost 41.46 19.8 15.1

Total installation cost of TCSC ($/h) 5.64 29.591 28.19

Operation cost related to the final solution ($/h) 902.39 1037.8 1062.3

In each case, firstly, N − 1 contingencies due to the outage of transmission lines are simulated,
relevant metrics for each contingency are obtained, and then the average of each metric in all
contingencies is obtained as depicted in Table 5. It is observed that the average of resiliency-based
metrics (performance index, the amount of loss of load, the importance of curtailed consumers,
the number of curtailed consumers, and congestion management cost) are reduced in Cases 2 and 3
compared to Case 1. From Figure 4, it is observed that by considering loss constraint, the obtained
Pareto-front is worsened. However, the result of Table 5 shows that the average of resiliency metrics in
the obtained final solution has no significant difference in Case 2 in comparison with Case 3. It is noted
that the obtained final solution highly depends on the satisfactory level of fuzzy decision making.
In this case, by considering desirable levels of achievement 0.5 for cost and 0.4 for VF, the obtained
final solution for cases without and with considering loss constraint is eighth and ninth Pareto-optimal
point. As observed from Figure 4, these points are very close, hence no significant difference in Case 2
in comparison with Case 3 is observed. It is also shown in Table 5 that considering additional loss
constraint causes aggregative cost to be increased.

The resilience metrics of the final solutions in Cases 1 and 3 are shown in Figures 5 and 6. It can be
seen from these figures that the resilience metrics are improved as a whole for contingencies (disaster
scenarios) in the case of implementing the proposed approach.
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4.2. IEEE-118 Bus Test System

In this subsection, the proposed approach is applied to IEEE 118 bus test system. The single-line
diagram of the system is referred to in Figure 1 of [34]. The information related to active and reactive
power demand, cost function of power plants is derived from MATPOWER [32].

The judgment matrix, rate of interest and investment period are assumed to be the same as in the
previous case study. The importance and type of the consumers connected to each bus are the same as
in Table 3. As an additional assumption, the demands connected to the other load buses are assumed
to be residential or commercial and the importance of their consumers is low.

By implementing the proposed approach, the obtained Pareto-optimal solutions for the cases with
and without considering loss constraint are depicted in Figure 7. It is observed that by considering
the loss constraint the range of Pareto-optimal front is reduced in comparison with the case without
considering loss constraint. From the obtained results, the range of cost is reduced from 520 ($/h)
to 280 ($/h) and the range of VF from 0.3914 to 0.3007. As seen from Figure 7, in this case study,
the obtained non-dominated solutions in the case of considering loss constraint overlaps with a region
of Pareto-front obtained for the case without considering loss constraint. From this observation, we
conclude that in the overlapping region, (18) is a redundant constraint. The average of resilience
metrics for the obtained Pareto-optimal front in the case of considering the loss constraint is presented
in Table 6.
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Table 6. Average of Resilience Metrics for the Obtained Non-Dominated Set in IEEE 118-Bus Test System.

Non-Dominated
Solutions

Performance
Index

Amount of
Loss of
Load

Importance
of Curtailed
Consumers

Number of
Curtailed

Consumers

Congestion
Management

Cost ($/h)

Vulnerability
Function Cost ($/h)

1 46.01 1.268 0.726 888 21.043 0.631 159,830

2 46.576 0.4426 0.491 310 10.789 0.5535 159,850

3 45.983 0.295 0.495 207 14.52 0.549 159,860

4 46.268 0.306 0.406 215 7.201 0.5137 159,880

5 45.720 0.178 0.410 125 7.326 0.4925 159,910

6 46.054 0.063 0.331 44 3.5 0.421 159,920

7 45.555 0.046 0.249 33 2.703 0.3756 159,940

8 46.14 0.0414 0.248 29 2.365 0.3706 160,040

9 46.45 0.039 0.166 28 2.296 0.3303 160,110

By considering desirable levels of achievement 0.5 and 0.4 for the cost and VF, the non-dominated
solution 5 is selected as the final solution. Figure 8 shows the resilience metrics improvement of this
final solution in comparison with the single objective case by considering only cost as the objective
function without any regard for resilience merits. By considering resilience metrics, the performance
index, the importance of curtailed consumers, congestion management cost, the number of curtailed
consumers, and the amount of load loss are 45.72, 0.41, 7.33 $/h, 125, 0.18 MW, respectively. As seen
from Figure 8, these metrics are improved by 0.63%, 43.52%, 65.19%, 85.93%, and 85.94%, respectively.
Also, in this case study, the amount of load losses and the number of curtailed consumers are the most
affected resilience metrics. This improvement in resilience metrics is obtained by sacrificing the cost
objective function by 80 $/h, i.e., 0.05%.
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5. Conclusions

Resiliency considerations in any energy management mechanism are crucial, especially in power
systems in which transmission components are always exposed to undesirable outages due to natural
disasters. To address this issue, a resiliency-based multi-criteria energy management scheme by optimal
TCSC placement is proposed in this paper. To this end, first, a VF is developed based on the scenario
DOS concept, which is able to consider different resilience metrics such as the number of curtailed
consumers, the importance of curtailed consumers, the amount of load loss, congestion management
cost, and performance index while evaluating contingencies. Several advantages are attained for the
proposed VF: (i) considering different resilience metrics which might be a matter of importance from
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the viewpoint of the transmission system operators, (ii) including decision makers’ preferences while
evaluating the resilience metrics, (iii) simple and easy-to-understand calculation. In this paper, for the
optimal placement of TCSC, a mathematical model is developed for the trade-off between the cost and
VF. In order to maintain the amount of active loss less or equal to the case before TCSC placement,
a relevant constraint is considered in the proposed mathematical model. A combination of TOPSIS,
the ε-constraint method and GA is used for obtaining the Pareto-optimal front. After obtaining the
Pareto-optimal front, a fuzzy satisfying decision making approach is employed for selecting the most
preferred non-dominated solution from the Pareto-optimal front.

The proposed method is applied to IEEE 30-bus and 118-bus test systems and the results are
analyzed and compared. The analysis of the results shows that the proposed approach is able
to efficiently consider resilience metrics. The proposed approach gives the decision makers the
option to select their most preferred non-dominated solution by considering not only operation
cost, but also a set of resiliency-based congestion-driven indices. Furthermore, the results show
that the average of pertaining resilience metrics of the final solutions improves considerably in both
IEEE-30 bus and IEEE-118 bus test systems. For the obtained final solution of the IEEE-118 bus test
system, the performance index, the importance of curtailed consumers, congestion management cost,
the number of curtailed consumers, and the amount of load loss are 45.72, 0.41, 7.33 ($/h), 125, 0.18
(MW), respectively. As seen from Figure 8, these metrics are improved by 0.63%, 43.52%, 65.19%,
85.93%, and 85.94%, respectively. In this case study, the amount of load loss and the number of curtailed
consumers are the most affected resilience metrics. This improvement in resilience metrics is obtained
by sacrificing the cost objective function by $80/h, i.e., 0.05%. As a future research task, the impact of
different types of FACTS devices for security improvement is suggested to be studied. Furthermore,
the approach developed in this study can be easily applied to the other power system operation
and planning problems in which resiliency is to be considered. For example, optimal transmission
switching is considered as an effective flexible tool for improving the economic situation of electricity
market operation. However, transmission switching might affect resiliency. The proposed procedure of
this paper could be very promising for devising a new resilient transmission switching approach. Also,
in the other planning problems such as transmission and generation expansion planning, the devised
resiliency modeling approach could be implemented and developed.
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Nomenclature

xi jb Reactance of line ij before TCSC placement.
rTCSC Degree of compensation.
ti j jth resilience metric of the ith disaster scenario.
Sa Set of disaster scenarios after TCSC placement.
Sb Set of disaster scenarios before TCSC placement.
A Judgment matrix.
VF Vulnerability function.
na Number of disaster scenarios after TCSC placement.
ng Number of generation units.
nt Number of TCSCs.
ki j A binary index which is 0 if TCSC is not located in line ij and 1 if the TCSC is located in this line.
ηri Desirable level of achievement for the ith objective function, i = 1 : 2.
ηgi

(
X
)

Level of satisfaction of solution X with respect to ith objective function, i = 1 : 2.
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DOSi Degree of severity of ith disaster scenario, i = 1 : 2nb.
nb Number of transmission line outages.
W Pure weights of resilience metrics.
Ploss_a Transmission system losses after TCSC placement.
Ploss_b Transmission system losses before TCSC placement.
N Number of power system buses.
nbranch Number of transmission lines.
D Decision matrix.
ρi j jth resilience metrics of the ith contingency.
z+i Positive ideal scenario.
z−i Negative ideal scenario.
HICTCSCj Investment cost of TCSCs.
yi j ijth element of the nodal admittance matrix.
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