• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Freeze-thaw behavior of lime stabilized clay reinforced with silica fume and synthetic fibers

Thumbnail

View/Open

Tam metin / Full text (514.2Kb)

Date

2019

Author

Saygılı, Altuğ
Dayan, Meral

Metadata

Show full item record

Abstract

Several soil stabilization studies have been conducted in the literature with silica fume and fibers separately on coarse and fine grained soils. However, few studies have been conducted on freeze-thaw performance of soils modified with fibers or silica fume. This experimental study was conducted to investigate the effect of silica fume and polypropylene fiber modification on strength and freeze-thaw behavior of lime stabilized kaolinite clay. To observe the strength behavior, unconfined compressive strength tests were conducted. Strength losses were also measured after exposure to freeze-thaw cycles to investigate the durability of the modified samples. Control and modified samples were compacted at optimum moisture content and cured for 28 days. After curing, samples were inserted into the freeze-thaw chamber and after two, five and eight cycles samples were tested for compression. Synthetic polypropylene fiber content varied between 0.25% to 1% and silica fume content varied between 2.5% to 10% by dry weight of kaolinite in the prepared samples. Adding silica fume, fiber and mixtures having various silica fume-fiber ratios increased the compressive strength values and enhanced the freeze-thaw durability of the lime rich kaolinite specimens. Silica fume particles reacted with lime rich kaolinite as an extra silica source needed for hydration reactions. As a result, CSH gel products were formed, which surrounded the kaolinite particles. Fibers improved the friction resistance, interlock effect was created by cementation reactions between lime stabilized soil, fibers and silica fume. Silica fume and fiber modified lime rich clay reached the maximum strength at 0.25% fiber and 10% silica fume added specimens, strength values started to decrease with increasing fiber ratios. Silica fume, synthetic fiber and fiber-silica fume modified samples had an increase in compressive strength values with curing and modified samples exposed to freeze-thaw cycles had a lower strength loss compared to control specimens. Samples having higher strength values in unconfined compressive strength measurements were the most durable samples in the freeze-thaw tests with lower strength loss. The results indicated that fiber-silica fume modified kaolinite clay can be an economic and environmentally friendly alternative in soil stabilization projects by utilizing an industrial waste.

Source

Cold Regions Science and Technology

Volume

161

URI

https://doi.org/10.1016/j.coldregions.2019.03.010
https://hdl.handle.net/20.500.12809/1030

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [68]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.