In Vitro and In Silico Evaluation of Anticholinesterase and Antidiabetic Effects of Furanolabdanes and Other Constituents from Graptophyllum pictum (Linn.) Griffith
Citation
Metiefeng, N.T.; Tamfu, A.N.; Fotsing Tagatsing, M.; Tabopda, T.K.; Kucukaydin, S.; Noah Mbane, M.; de Theodore Atchade, A.; Talla, E.; Henoumont, C.; Laurent, S.; et al. In Vitro and In Silico Evaluation of Anticholinesterase and Antidiabetic Effects of Furanolabdanes and Other Constituents from Graptophyllum pictum (Linn.) Griffith. Molecules 2023, 28, 4802. https://doi.org/10.3390/molecules28124802Abstract
Graptophyllum pictum is a tropical plant noticeable for its variegated leaves and exploited for various medicinal purposes. In this study, seven compounds, including three furanolabdane diterpenoids, i.e., Hypopurin E, Hypopurin A and Hypopurin B, as well as with Lupeol, β-sitosterol 3-O-β-d-glucopyranoside, stigmasterol 3-O-β-d-glucopyranoside and a mixture of β-sitosterol and stigmasterol, were isolated from G. pictum, and their structures were deduced from ESI-TOF-MS, HR-ESI-TOF-MS, 1D and 2D NMR experiments. The compounds were evaluated for their anticholinesterase activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BchE), as well as their antidiabetic potential through inhibition of α-glucosidase and α-amylase. For AChE inhibition, no sample had IC50 within tested concentrations, though the most potent was Hypopurin A, which had a percentage inhibition of 40.18 ± 0.75%, compared to 85.91 ± 0.58% for galantamine, at 100 µg/mL. BChE was more susceptible to the leaves extract (IC50 = 58.21 ± 0.65 µg/mL), stem extract (IC50 = 67.05 ± 0.82 µg/mL), Hypopurin A (IC50 = 58.00 ± 0.90 µg/mL), Hypopurin B (IC50 = 67.05 ± 0.92 µg/mL) and Hypopurin E (IC50 = 86.90 ± 0.76 µg/mL). In the antidiabetic assay, the furanolabdane diterpenoids, lupeol and the extracts had moderate to good activities. Against α-glucosidase, lupeol, Hypopurin E, Hypopurin A and Hypopurin B had appreciable activities but the leaves (IC50 = 48.90 ± 0.17 µg/mL) and stem (IC50 = 45.61 ± 0.56 µg/mL) extracts were more active than the pure compounds. In the α-amylase assay, stem extract (IC50 = 64.47 ± 0.78 µg/mL), Hypopurin A (IC50 = 60.68 ± 0.55 µg/mL) and Hypopurin B (IC50 = 69.51 ± 1.30 µg/mL) had moderate activities compared to the standard acarbose (IC50 = 32.25 ± 0.36 µg/mL). Molecular docking was performed to determine the binding modes and free binding energies of Hypopurin E, Hypopurin A and Hypopurin B in relation to the enzymes and decipher the structure-activity relationship. The results indicated that G. pictum and its compounds could, in general, be used in the development of therapies for Alzheimer's disease and diabetes.