• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • Moleküler Biyoloji ve Genetik Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • Moleküler Biyoloji ve Genetik Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Targeting MDM2-p53 Axis through Drug Repurposing for Cancer Therapy: A Multidisciplinary Approach

Thumbnail

View/Open

Tam metin / Article (4.268Mb)

Date

2023

Author

Yıldız, Ayşegül
Ghafoor, Naeem Abdul

Metadata

Show full item record

Citation

Ghafoor NA, Yildiz A. Targeting MDM2-p53 Axis through Drug Repurposing for Cancer Therapy: A Multidisciplinary Approach. ACS Omega. 2023 Sep 15;8(38):34583-34596. doi: 10.1021/acsomega.3c03471. PMID: 37779953; PMCID: PMC10536845.

Abstract

Cancer remains a major cause of morbidity and mortality worldwide, and while current therapies, such as chemotherapy, immunotherapy, and cell therapy, have been effective in many patients, the development of novel therapeutic options remains an urgent priority. Mouse double minute 2 (MDM2) is a key regulator of the tumor suppressor protein p53, which plays a critical role in regulating cellular growth, apoptosis, and DNA repair. Consequently, MDM2 has been the subject of extensive research aimed at developing novel cancer therapies. In this study, we employed a machine learning-based approach to establish a quantitative structure-activity relationship model capable of predicting the potential in vitro efficacy of small molecules as MDM2 inhibitors. Our model was used to screen 5883 FDA-approved drugs, resulting in the identification of promising hits that were subsequently evaluated using molecular docking and molecular dynamics simulations. Two antihistamine drugs, cetirizine (CZ) and rupatadine (RP), exhibited particularly favorable results in the initial in silico analyses. To further assess their potential use as the activators of the p53 pathway, we investigated the antiproliferative capability of the abovementioned drugs on human glioblastoma and neuroblastoma cell lines. Both the compounds exhibited significant antiproliferative effects on the abovementioned cell lines in a dose-dependent manner. The half-maximal inhibitory concentration (IC50) of CZ was found to be 697.87 and 941.37 μM on U87 and SH-SY5Y cell lines, respectively, while the IC50 of RP was found to be 524.28 and 617.07 μM on the same cell lines, respectively. Further investigation by quantitative reverse transcriptase polymerase chain reaction analysis revealed that the CZ-treated cell lines upregulate the expression of the p53-regulated genes involved in cell cycle arrest, apoptosis, and DNA damage response compared to their respective vehicle controls. These findings suggest that CZ activates the p53 pathway by inhibiting MDM2. Our results provide compelling preclinical evidence supporting the potential use of CZ as a modulator of the MDM2-p53 axis and its plausible repurposing for cancer treatment.

Source

ACS Omega

Volume

8

Issue

35

URI

https://hdl.handle.net/20.500.12809/11008

Collections

  • Moleküler Biyoloji ve Genetik Bölümü Koleksiyonu [125]
  • PubMed İndeksli Yayınlar Koleksiyonu [2082]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.