• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A decision support system to improve medical diagnosis using a combination of k-medoids clustering based attribute weighting and SVM

Thumbnail

Göster/Aç

Tam metin / Full text (909.1Kb)

Tarih

2016

Yazar

Peker, Musa

Üst veri

Tüm öğe kaydını göster

Özet

The use of machine learning tools has become widespread in medical diagnosis. The main reason for this is the effective results obtained from classification and diagnosis systems developed to help medical professionals in the diagnosis phase of diseases. The primary objective of this study is to improve the accuracy of classification in medical diagnosis problems. To this end, studies were carried out on 3 different datasets. These datasets are heart disease, Parkinson's disease (PD) and BUPA liver disorders. Key feature of these datasets is that they have a linearly non-separable distribution. A new method entitled k-medoids clustering-based attribute weighting (kmAW) has been proposed as a data preprocessing method. The support vector machine (SVM) was preferred in the classification phase. In the performance evaluation stage, classification accuracy, specificity, sensitivity analysis, f-measure, kappa statistics value and ROC analysis were used. Experimental results showed that the developed hybrid system entitled kmAW+ SVM gave better results compared to other methods described in the literature. Consequently, this hybrid intelligent system can be used as a useful medical decision support tool.

Kaynak

Journal of Medical Systems

Cilt

40

Sayı

5

Bağlantı

https://doi.org/10.1007/s10916-016-0477-6
https://hdl.handle.net/20.500.12809/2527

Koleksiyonlar

  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu [104]
  • PubMed İndeksli Yayınlar Koleksiyonu [2082]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.