dc.contributor.author | Atmaca, Sibel Paşalı | |
dc.contributor.author | Akgüller, Ömer | |
dc.date.accessioned | 2020-11-20T15:06:28Z | |
dc.date.available | 2020-11-20T15:06:28Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1687-1847 | |
dc.identifier.uri | https://doi.org/10.1186/s13662-015-0384-z | |
dc.identifier.uri | https://hdl.handle.net/20.500.12809/3135 | |
dc.description | WOS: 000351303200003 | en_US |
dc.description.abstract | Curvature is a fundamental characteristic of curves in differential geometry, as well as in discrete geometry. In this paper we present time scales analogy of the curvature defined by the concept of symmetric derivative on time scales. The goal of our paper is to define this intrinsic characteristic accurately. For this purpose, we consider tangent spaces via symmetric differentiation. | en_US |
dc.item-language.iso | eng | en_US |
dc.publisher | Pushpa Publishing House | en_US |
dc.item-rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Symmetric Differentiation | en_US |
dc.subject | Time Scales Calculus | en_US |
dc.subject | Curvature | en_US |
dc.title | Curvature of curves parameterized by a time scale | en_US |
dc.item-type | article | en_US |
dc.contributor.department | MÜ, Fen Fakültesi, Matematik Bölümü | en_US |
dc.contributor.institutionauthor | Atmaca, Sibel Paşalı | |
dc.contributor.institutionauthor | Akgüller, Ömer | |
dc.identifier.doi | 10.1186/s13662-015-0384-z | |
dc.relation.journal | Advances in Difference Equations | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |