Basit öğe kaydını göster

dc.contributor.authorAtmaca, Sibel Paşalı
dc.contributor.authorAkgüller, Ömer
dc.date.accessioned2020-11-20T15:06:28Z
dc.date.available2020-11-20T15:06:28Z
dc.date.issued2015
dc.identifier.issn1687-1847
dc.identifier.urihttps://doi.org/10.1186/s13662-015-0384-z
dc.identifier.urihttps://hdl.handle.net/20.500.12809/3135
dc.descriptionWOS: 000351303200003en_US
dc.description.abstractCurvature is a fundamental characteristic of curves in differential geometry, as well as in discrete geometry. In this paper we present time scales analogy of the curvature defined by the concept of symmetric derivative on time scales. The goal of our paper is to define this intrinsic characteristic accurately. For this purpose, we consider tangent spaces via symmetric differentiation.en_US
dc.item-language.isoengen_US
dc.publisherPushpa Publishing Houseen_US
dc.item-rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSymmetric Differentiationen_US
dc.subjectTime Scales Calculusen_US
dc.subjectCurvatureen_US
dc.titleCurvature of curves parameterized by a time scaleen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, Matematik Bölümüen_US
dc.contributor.institutionauthorAtmaca, Sibel Paşalı
dc.contributor.institutionauthorAkgüller, Ömer
dc.identifier.doi10.1186/s13662-015-0384-z
dc.relation.journalAdvances in Difference Equationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster