Basit öğe kaydını göster

dc.contributor.authorBulbul, Berna
dc.contributor.authorSezer, Mehmet
dc.date.accessioned2020-11-20T16:33:44Z
dc.date.available2020-11-20T16:33:44Z
dc.date.issued2011
dc.identifier.issn0020-7160
dc.identifier.issn1029-0265
dc.identifier.urihttps://doi.org/10.1080/00207161003611242
dc.identifier.urihttps://hdl.handle.net/20.500.12809/4467
dc.descriptionWOS: 000287923900010en_US
dc.description.abstractThe purpose of this study is to give a Taylor polynomial approximation for the solution of hyperbolic type partial differential equations with constant coefficients. The technique used is an improved Taylor matrix method, which has been given for solving ordinary differential, integral and integro-differential equations [M. Gulsu and M. Sezer, A method for the approximate solution of the high-order linear difference equations in terms of Taylor polynomials, Int. J. Comput. Math. 82(5) (2005), pp. 629-642; M. Gulsu and M. Sezer, On the solution of the Riccati equation by the Taylor matrix method, Appl. Math. Comput. 188 (2007), pp. 446-449; A. Karamete and M. Sezer, A Taylor collocation method for the solution of linear integro-differential equations, Int. J. Comput. Math. 79(9) (2002), pp. 987-1000; N. Kurt and M. Cevik, Polynomial solution of the single degree of freedom system by Taylor matrix method, Mech. Res. Commun. 35 (2008), pp. 530-536; N. Kurt and M. Sezer, Polynomial solution of high-order linear Fredholm integro-differential equations with constant coefficients, J. Franklin Inst. 345 (2008), pp. 839-850; , S. Nas, S. Yalcinbas, and M. Sezer, A method for approximate solution of the high-order linear Fredholm integro-differential equations, Int. J. Math. Edu. Sci. Technol. 27(6) (1996), pp. 821-834; M. Sezer, Taylor polynomial solution of Volterra integral equations, Int. J. Math. Edu. Sci. Technol. 25(5) (1994), pp. 625-633; M. Sezer, A method for approximate solution of the second order linear differential equations in terms of Taylor polynomials, Int. J. Math. Edu. Sci. Technol. 27(6) (1996), pp. 821-834; M. Sezer, M. Gulsu, and B. Tanay, A matrix method for solving high-order linear difference equations with mixed argument using hybrid Legendre and Taylor polynomials, J. Franklin Inst. 343 (2006), pp. 647-659; S. Yalcinbas, Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equation, Appl. Math. Comput. 127 (2002), pp. 196-206; S. Yalcinbas and M. Sezer, The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comput. 112 (2000), pp. 291308]. Some numerical examples, which consist of initial and boundary conditions, are given to illustrate the reliability and efficiency of the method. Also, the results obtained are compared by the known results; the error analysis is performed and the accuracy of the solution is shown.en_US
dc.item-language.isoengen_US
dc.publisherTaylor & Francis Ltden_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTaylor Polynomial Solutionsen_US
dc.subjectHyperbolic Partial Differential Equationsen_US
dc.subjectTaylor Matrix Methoden_US
dc.subjectDouble Taylor Seriesen_US
dc.titleTaylor polynomial solution of hyperbolic type partial differential equations with constant coefficientsen_US
dc.item-typearticleen_US
dc.contributor.departmenten_US
dc.contributor.departmentTemp[Bulbul, Berna; Sezer, Mehmet] Mugla Univ, Fac Sci, Dept Math, TR-48000 Mugla, Turkeyen_US
dc.identifier.doi10.1080/00207161003611242
dc.identifier.volume88en_US
dc.identifier.issue3en_US
dc.identifier.startpage533en_US
dc.identifier.endpage544en_US
dc.relation.journalInternational Journal of Computer Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster