Basit öğe kaydını göster

dc.contributor.authorKaya, Cengiz
dc.contributor.authorTuna, Levent
dc.contributor.authorHiggs, David
dc.date.accessioned2020-11-20T16:38:23Z
dc.date.available2020-11-20T16:38:23Z
dc.date.issued2006
dc.identifier.issn0190-4167
dc.identifier.issn1532-4087
dc.identifier.urihttps://doi.org/10.1080/01904160600837238
dc.identifier.urihttps://hdl.handle.net/20.500.12809/5181
dc.descriptionWOS: 000239759900008en_US
dc.description.abstractThe effect of silicon (Si) on physiological attributes and nutritional status of maize (Zea mays cv. DK 647 F1) under water stress was studied in a pot experiment. Treatments were (1) well watered (WW): 100% of FC (soil field capacity), (2) WW + Si1: 100% of FC + 1 mM Si, (3) WW + Si2: 100% of FC + 2 mM Si, (4) water stress (WS): 50% of FC, (5) WS + Si1: 50% of FC + 1 mM Si and (6) WS + Si2: 50% of FC + 2 mM Si. In the control treatment, plants were irrigated to field capacity (100% FC). Water stress was imposed by maintaining a moisture level equivalent to 50% of field capacity, whereas the well-watered pots (control) were maintained at full field capacity. Water stress was found to reduce the total dry matter (DM), chlorophyll content, and relative water content (RWC), but to increase proline accumulation and electrolyte leakage in maize plants. Both Si treatments largely improved the above physiological parameters, but levels remained significantly lower than the control (WW) values except for electrolyte leakage and root:shoot ratios, which were higher. Only root DM appeared to show very little variation in any of the treatments. The concentration of Si in the plants was increased by Si addition into the nutrient solution. Water stress reduced leaf calcium (Ca) and potassium (K) of maize plants, but addition of Si increased these nutrient levels; Ca levels were similar to WW under the high-Si treatment, but K was lower. Root Ca and K were both increased by WS; root Ca was further increased by high Si (WS + Si2 treatment). Addition of Si to the WS treatments did not change root K. Results indicate that while application of Si may be one approach to improve growth of this crop and increase its production in arid or semi-arid areas where water is at a premium, this technique would not fully substitute for an adequate water supply.en_US
dc.item-language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.item-rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectwater stressen_US
dc.subjectmaizeen_US
dc.subjectsilicionen_US
dc.subjectmembrane permeabilityen_US
dc.subjectcrop yielden_US
dc.subjectchrolophyllen_US
dc.titleEffect of silicon on plant growth and mineral nutrition of maize grown under water-stress conditionsen_US
dc.item-typearticleen_US
dc.contributor.departmentMÜ, Fen Fakültesi, Biyoloji Bölümüen_US
dc.contributor.institutionauthorTuna, Levent
dc.identifier.doi10.1080/01904160600837238
dc.identifier.volume29en_US
dc.identifier.issue8en_US
dc.identifier.startpage1469en_US
dc.identifier.endpage1480en_US
dc.relation.journalJournal of Plant Nutritionen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster