• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tackling biased baselines in the risk-sensitive evaluation of retrieval systems

Date

2014

Author

Dinçer, B.T.
Ounis, I.
MacDonald, C.

Metadata

Show full item record

Abstract

The aim of optimising information retrieval (IR) systems using a risk-sensitive evaluation methodology is to minimise the risk of performing any particular topic less effectively than a given baseline system. Baseline systems in this context determine the reference effectiveness for topics, relative to which the effectiveness of a given IR system in minimising the risk will be measured. However, the comparative risk-sensitive evaluation of a set of diverse IR systems - as attempted by the TREC 2013 Web track - is challenging, as the different systems under evaluation may be based upon a variety of different (base) retrieval models, such as learning to rank or language models. Hence, a question arises about how to properly measure the risk exhibited by each system. In this paper, we argue that no model of information retrieval alone is representative enough in this respect to be a true reference for the models available in the current state-of-the-art, and demonstrate, using the TREC 2012 Web track data, that as the baseline system changes, the resulting risk-based ranking of the systems changes significantly. Instead of using a particular system's effectiveness as the reference effectiveness for topics, we propose several remedies including the use of mean within-topic system effectiveness as a baseline, which is shown to enable unbiased measurements of the risk-sensitive effectiveness of IR systems. © 2014 Springer International Publishing Switzerland.

Source

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Volume

8416 LNCS

URI

https://doi.org/10.1007/978-3-319-06028-6_3
https://hdl.handle.net/20.500.12809/6103

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.