• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of traumatic pathology by classifying thorax trauma using a hybrid method for emergency services

Thumbnail

Göster/Aç

Tam metin / Full Text (1.684Mb)

Tarih

2021

Yazar

Karacı, Abdülkadir
Özkaraca, Osman
Acar, Ethem
Demir, Ahmet

Üst veri

Tüm öğe kaydını göster

Özet

In recent years, data mining and algorithm-based methods have been used frequently for the prediction and diagnosis of various diseases. Traumas, being one of the significant health problems in the world, are also one of the most important causes of death. This study aims to predict the presence of traumatic pathology in the lung of the patients admitted to the emergency department due to blunt thorax trauma with no X-ray and computed tomography (CT) history by machine learning methods. The models developed in the study using the 5-fold cross-validation method are most accurately classified by the ensemble (voting) classifier, whether there is a pathology in X-ray (mean accuracy = 0.82) and CT (mean accuracy = 0.83). The K-nearest neighbourhood method classifies patients with pathology in X-ray by 83% accuracy, while the ensemble (voting) method classifies non-pathology patients by 94% accuracy in models. Of CT results, random forest, ensemble (voting), and ensemble (stacking) classifiers are precisely classified by 96%, while those patients with pathology are classified perspicuously by 77%. As a result, a mathematical framework using data mining methods was proposed based on estimating the X-ray and CT results for the thorax graph scan

Kaynak

IET Signal Processing

Cilt

14

Sayı

10

Bağlantı

https://doi.org/10.1049/iet-spr.2020.0014
https://hdl.handle.net/20.500.12809/9156

Koleksiyonlar

  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu [75]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.