• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • Fizik Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • Fizik Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

NOA61 photopolymer as an interface for Al/NOA61/p-Si/Al heterojunction MPS device

Thumbnail

View/Open

Tam metin / Full text (2.065Mb)

Date

2021

Author

Özden, Şadan
Avcı, Nejmettin
Pakma, Osman
Kariper, Afşin

Metadata

Show full item record

Citation

Özden, Ş., Avcı, N., Pakma, O. et al. NOA61 photopolymer as an interface for Al/NOA61/p-Si/Al heterojunction MPS device. J Mater Sci: Mater Electron (2021). https://doi.org/10.1007/s10854-021-07150-4

Abstract

The effect of the NOA61 photopolymer organic interlayer on the electrical and dielectric properties of the Al/NOA61/p-Si/Al metal-polymer-semiconductor (MPS) device has been reported the first time. The device parameters of the device such as rectification ratio (RR), ideality factor (n), and barrier height (phi(B)) were determined from the current-voltage (I-V) measurements according to thermionic emission theory (TE). Series resistance, R-S, values were also calculated by Norde and Cheung methods in the range of 2.4-3 k omega. According to the reverse bias I-V measurements, the current was governed by Frenkel-Poole Emission (FPE) in the entire region. The voltage-dependent capacitance (C) and the conductance (G/omega) measurements were investigated at particular frequencies between 20 kHz and 1 MHz. The dielectric constant (epsilon '), dielectric loss (epsilon ''), loss tangent (tan delta), and the complex electric modulus (M) were calculated using the measured C and G parameters, and it was seen that the interface states and surface dipoles at the interfacial layer were effective in the behavior of the device in alternating current. Additionally, the morphological properties of the thin film were studied by scanning electron microscopy (SEM). We observed that (NOA61) organic interlayer may be a noticeable alternative to a variety of electronic applications.

Source

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS

URI

https://doi.org/10.1007/s10854-021-07150-4
https://hdl.handle.net/20.500.12809/9603

Collections

  • Fizik Bölümü Koleksiyonu [189]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.