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In this paper, the Bernstein collocation method (BCM) is used for the �rst time to solve the nonlinear magnetohydrodynamics
(MHD) Je�ery–Hamel arterial blood �ow issue. �e �ow model described by nonlinear partial di�erential equations is �rst
transformed to a third-order one-dimensional equation. By using the Bernstein collocation method, the problem is transformed
into a nonlinear system of algebraic equations. �e residual correction procedure is used to estimate the error; it is simple to use
and can be used even when the exact solution is unknown. In addition, the corrected Bernstein solution can be found. As a
consequence, the solution is estimated using a numerical approach based on Bernstein polynomials, and the �ndings are veri�ed
by the 4th-order Runge–Kutta results. Comparison with the homotopy perturbation method shows that the present method gives
much higher accuracy.�e accuracy and e�ciency of the proposed method were supported by the analysis of variance (ANOVA)
and 95% of con�dence on interval error. Finally, the results revealed that the MHD Je�ery–Hamel �ow is directly proportional to
the product of the angle between the plates α and Reynolds number Re.

1. Introduction

Je�ery and Hamel were the �rst to study viscous incom-
pressible �ow through a channel, which is today known as
Je�ery–Hamel �ow [1]. Hamel looked at an accurate non-
steady solution of the Navier–Stokes equations (NSE), which
describes the process of a vortex decaying due to viscous
action [2]. In the special situation of two-dimensional �ow
through a channel with oblique plane walls meeting at a
vertex with a source or sink at the vertex, Je�ery–Hamel
�ows are the exact similarity solution as the NSE [2]. �e
interplay between the magnetic characteristics and the be-
haviour of electrically conducting �uids is described by
magnetohydrodynamics (MHD). Electrically conducting
non-Newtonian �uid �ow is important because in most
practical circumstances, �uids behave di�erently under the
in�uence of magnetic �elds than nonconductive �uid [3].

�e magnetohydrodynamic (MHD) direction of the �ow
should also be considered in these cases [3]. �e most recent
works on magnetic blood �ow are given in [4–6].

Some numerical methods for situations involving Jef-
fery–Hamel �ows have been developed in the literature.
Khan et al. [3] investigated the equations that regulate the
slip e�ects on Casson �uid MHD �ow in converging/di-
verging channels. First, they used a suitable similarity
transformation to convert the system of governing nonlinear
partial di�erential equations to a system of ordinary dif-
ferential equations. �e �nal problem was then solved using
Adomian’s decomposition method and the variation of
parameters method. �ey discovered that raising parameter
values causes the velocity in the narrowing channel and the
velocity in the widening channel to behave in opposing ways.
�ey found, on the other hand, that the Casson �uid’s
hydrodynamic slip �ow can be exploited to stop the
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separation phenomenon in the diverging channel. Hamre-
laine et al. [7] investigated the third-order MHD Jeffer-
y–Hamel flow with suction/injection. )e homotopy
analysis method (HAM) was used to obtain a semianalytic
solution, and the Runge–Kutta method is used to calculate a
numerical solution. A comparison of the methodologies was
carried out. )ey discovered that the analytical and nu-
merical outcomes are similar. Ara et al. [8] studied the
Jeffery–Hamel flow of an incompressible non-Newtonian
fluid inside nonparallel walls. )ey converted the governing
nonlinear partial differential equations to nonlinear coupled
ordinary differential equations and implemented the Taylor
optimization method to get the analytic solution. )e results
agree with those of the Runge–Kutta method. Heat transfer
in a two-dimensional magnetohydrodynamic viscous in-
compressible flow in convergent/divergent channels was
studied by Mahmood et al. [9]. )ey used the spectral
homotopy analysis method (SHAM) to solve the governing
nonlinear differential equations and found that increasing
the Reynold number, Prandtl number, or Nusselt number
yields an increase in the temperature profile. Recently, Adel
et al. [10] implemented a Bernoulli collocation method to
provide a numerical simulation of the Jeffery–Hamel blood
flow problem.

)e goal of this research is to use a numerical technique
based on the Bernstein collocation method to investigate a
solution for the MHD Jeffery–Hamel blood flow problem.
)e polynomials determined in the Bernstein basis are
widely used in a variety of applications because Bernstein
polynomials are used as base polynomials since they are
dense in L2 and hence produce good approximation results
[11]. )e Bernstein polynomial Bnf(x) converges uniformly
to f(x) on [0, 1] by the Weierstrass theorem [12]. We shall
note that if the solution of the differential equation is a
polynomial of degree n, then the Bernstein collocation
method will give the exact solution [12]. Jafarian et al. [13]
presented approximate solutions of the Fredholm and
Volterra integral equation systems of the second kind by an
application of the Bernstein polynomials expansion method.
In this technique, the original integral equation system is
reduced to a linear system from which the unknown
Bernstein coefficients of the solutions can be easily obtained.
Recently, the regularized and the modified regularized long
wave (RLW and MRLW) equations have been solved by
Hammad [14] using the Bernstein collocation method. He
managed to reduce the equations to a system of nonlinear
algebraic equations which is easier to solve than the original
equations. In addition, the general form of any derivative of
Bernstein polynomials was also given for the first time in
[14].)e Bernstein collocation method has also been applied
to solve functional differential equations of neutral type with
good outcomes [15], to find an approximate solution of the
fractional equal width wave equation and the modified equal
width wave equation [16], and in many interesting problems
in science, engineering, and medical fields [17–20]. By using
the Bernstein collocation method, the problem is trans-
formed into a nonlinear system of algebraic equations. )e
residual correction procedure is used to estimate the error; it
is simple to use and can be used even when the exact solution

is unknown. In addition, the corrected Bernstein solution
can be found. Moreover, the accuracy and efficiency of the
proposed method are evaluated by applying the one-way
ANOVA analysis which has been applied by Ahmad and
Ilyas [21].

)e following is a breakdown of the paper’s structure.
)e governing equation and problem statement are given in
Section 2. )e definitions and formulations of Bernstein
polynomials are given in Section 3. )en, the BCM is in-
troduced by defining the residual function. In Section 4, an
error estimation procedure and a residual correction pro-
cedure are given. Some examples to illustrate how the
method works are shown in Section 5. A comparison of the
BCM against the HPM [21] will also be presented. )e last
section summarizes the results.

2. Governing Equation and
Problem Formulation

)e nonlinear MHD Jeffery–Hamel arterial blood flow
problem was given in [1, 2, 21]. Consider a continuous two-
dimensional flow of an incompressible conducting viscous
fluid from a source or sink at channel walls lying in planes
with an angle of 2α, as illustrated in Figure 1. Using the
continuity Navier–Stokes equations in polar coordinates and
assuming that the velocity is exclusively along the radial
direction and relies on r and θ, the governing equations are
as follows [22]:
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subject to the boundary conditions,

zu(r, θ)

zθ
� 0, at the centerline of the channel,

u(r, θ) � 0, at thewalls of the channel.

(4)

)e fluid density, pressure of the fluid, and coefficient of
kinematics viscosity are represented by ρ, P, ], respectively.
In a cylindrical coordinate, the artery was assumed to have a
constant cross-sectional area and no viscoelastic impact.

2.1. Problem Formulation. Following Ahmad and Ilyas [21],
problems (1)–(3) can be reduced to a nonlinear ordinary
differential equation. First, integrating the equation of
continuity with respect to r,
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Yields as
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Let

φ(η) �
φ(θ)

A
, (7)

where

η �
θ
α

,

A � φmax.

(8)

)en, let us obtain the following functions written in
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Integrating and simplifying (3) with respect to θ gives
pressure as follows:

P �
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ρu(r, θ). (13)

We obtain the following equation by differentiating P

with respect to r and by using (8):
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or simply

Aφ2
(η) + 4]Aφ(η) + ]

Aφ″(η)

α2
� 0. (16)

Differentiating (16) with respect to η, we get

φ′′′(η) + 2αReφ(η)φ′ + 4α2φ′(η) � 0. (17)

Subject to the boundary conditions,

φ(0) � 1,

φ′(0) � 0,

φ(1) � 0,

(18)

where prime denotes derivative with respect to η, and α is the
angle between the inclined plates. Here,Re is the Reynolds
number which is defined as follows [2]:

Re �
αφmax

]

�
rαUmax

]

divergent channel: α> 0, Umax > 0

convergent channel: α< 0, Umax < 0
⎛⎝ ⎞⎠,

(19)

and Umax is the maximum velocity at the centre of the
channel (r � 0). Note that the solution φ(η) of equation (17)
is related to the solution u(r, θ) of the original PDEs via the

u (r, θ)

α

θ

Figure 1: )e physical geometry of the Jeffery–Hamel flow problem.
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following relation obtained from equations (6) and (7) as
follows:

φ(η) �
φ(θ)

A

�
ru(r, θ)

A
.

(20)

From which u(r, θ) � (A/r)φ(η). We can use the form
of solution as given in equation (20) since in the Jeffer-
y–Hamel flow, the velocity is exclusively along the radial
direction.

3. Bernstein Collocation Method (BCM)

In this section, Bernstein polynomials on the interval [0, 1]

are defined and the basic ideas of the approximating
functions using BCM are introduced.

Definition 1. )eBernstein polynomials of degree m defined
on the interval [0, 1] are given as [23, 24]

Bi,m(η) �
m

i
􏼠 􏼡(η)

i
(1 − η)

m− i
, i � 0, 1, . . . , m, (21)

where the binomial coefficient is

m

i
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m!
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. (22)

For convenience, set Bi,m � 0 if i< 0 or i>m.
Let φ(η) be the exact solution of (17) and (18). Ap-

proximate φ(η) by BCM as follows:

φ(η)≃φm(η)

� 􏽘
m

i�0
ciBi,m(η)

� CΦ(η),

(23)

where C is an unknown constant matrix of size 1 × (m + 1)

to be determined and Φ(η) is a matrix of size (m + 1) × 1,
consisting of the Bernstein basis polynomial elements, de-
fined, respectively, as follows:

C � c0, . . . , cm􏼂 􏼃1×(m+1),

Φ(η) � B0,m(η), B1,m(η), . . . , Bm,m(η)􏽨 􏽩
(m+1)×1.

(24)

)e n-th derivatives of φ(η) can be expressed directly
from the Bernstein basis polynomial elements as

φ′(η)≃φm
′(η) � CΦ′(η), . . . ,φ(n)

(η)≃φ(n)
m (η) � CΦ(n)

(η).

(25)

To solve equation (17) subject to the boundary condi-
tions (15) by means of BCM, first substitute equations
(23)–(25) into equation (17) to get the residual function
Re(η),

Re(η) � CΦ′′′(η) + 2αReCΦ(η)CΦ′(η) + 4α2CΦ′(η).

(26)

Now, replacing η by ηi and then applying the collocation
nodes

ηi �
1
2

+
1
2
cos

(2i + 1)π
2(m − 1)

􏼠 􏼡, i � 0, 1, . . . , m − 2. (27)

On equation (26) generates (m − 1) set of linear or
nonlinear algebraic equations. On the other hand, by im-
posing again equations (23)–(25) to the boundary condi-
tions (18) as

φm(0) � CΦ(0) � 1,

φm
′(0) � CΦ′(0) � 0,

φm(1) � CΦ(1) � 0,

(28)

Finally, generate (m + 1) set of linear or nonlinear al-
gebraic equations. )e solution of this set of linear or
nonlinear algebraic equations gives the unknown coeffi-
cients of the vector C. Consequently, φm(η) given in
equation (23) is obtained once C is known.

4. Error Estimates and Residual
Correction Procedure

In this section, the procedure presented in the work of
Bataineh et al. [25] will be adopted and the error estimations
for BCM solutions using the residual correction procedure
shall be given.

Let φ(η) and φm(η) be the exact solution and the BCM
solutions of equation (17), respectively, then define the error
function e(η) as e(η) � φ(η) − φm(η). Now, let us constitute
the residual correction procedure for the method. First,
substituting the term φ(η) � e(η) + φm(η) into equation
(17) yields

e(η) + φm(η)( 􏼁′′′ + 2αRe e(η) + φm(η)( 􏼁

· e(η) + φm(η)( 􏼁″ + 4α2 e(η) + φm(η)( 􏼁′ � 0.
(29)

By applying the method for a given value of n to equation
(29) subject to the boundary conditions

en(0) � 􏽢CΦ(0) − φm(0), en
′(0) � 􏽢CΦ′(0) − φm

′(0), en(1)

� 􏽢CΦ(1) − φm(1).

(30)

)e approximate solution en(η) � 􏽢CΦ(η) for the error
will be obtained. Note that the polynomial φm(η) + en(η) is
an approximate solution of (17). Here, φn

m(η) � φm(η) +

en(η) is the corrected BCM solution.

Corollary 1. If φm(η) is the approximate solution of (17),
then φn

m(η) is also an approximate solution of (17). Moreover,
φn

m(η) is a better approximation than φm(η) provided that
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Figure 2: Numerical results of BCM plotted against the RK4 for the four cases.
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Figure 3: Continued.
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5. Numerical Experiments

In this section, the present method is applied to the Jef-
fery–Hamel blood flow problem for four different cases:
Case 1 (α � 0.0524,Re � 110), Case 2 (α � −0.0873,Re �

80), Case 3 (α � 0.1309,Re � 50), and Case 4 (α � 0.0873,

Re � 50) [21]. Since the exact solutions are unknown, the
approximate solutions obtained by the fourth-order Run-
ge–Kutta (RK4) method is taken as the reference solutions.

)e solutions obtained by BCM and RK4 with step size
h � 0.01 are given in Figure 2. )e absolute errors and their
estimations obtained by the residual correction procedure are
shown in Figure 3. As shown in Figure 2, increasing η yields a
decrease in the flow rate of blood for four cases. Moreover,

any changes in Re and α lead to a change in the flow rate of
blood. For all the cases considered, the results obtained by the
BCM match very well with the results obtained by RK4.
Observe from Figure 3 that the estimations of absolute errors
agree well with the absolute errors. Figures 4 and 5 show the
impact of the Reynolds number and the steep angle of the
channel on the fluid velocity profile. It can be concluded that,
when α< 0 and the channel’s steepness is divergent, an in-
crease in Reynolds number causes a decrease in velocity as
shown in Figure 4(a), the findings are inverse when α> 0 and
the steepness of the channel is convergent. An increase in
Reynolds number leads to an increase in velocity as shown in
Figure 4(b) and as shown in Figures 5(a) and 5(b), the di-
vergence angle of the channel and the velocity of the fluid have
an inverse relationship when the Reynolds number is fixed.

)e BCM solutions for the four cases are listed in Table 1.
)e absolute errors with a comparison with the HPM [21]
are given in Table 2. As shown in Table 2, the approximations
obtained by the BCM are more accurate than the
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Figure 3: Numerical results of BCM for different cases.
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Figure 4: Velocity diagram via BCM for different values of Re when (a) α � 0.0524and (b) α � −0.0873.
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approximations obtained by the HPM for all the cases
studied. )e corrected BCM solutions with a comparison by
HPM [21] are also given in Table 1. As shown in Table 3, the
corrected BCM solutions are much more accurate than both
the BCM and the HPM [21] solutions for all the cases.

One-way ANOVA analysis was conducted to determine
whether there was any statistically significant difference
between the absolute errors or not. A Tukey analysis from
post hoc tests was also conducted to determine group
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Figure 5: Velocity diagram via BCM for different values of α when Re � 50.

Table 1: A comparison of approximate solutions of the BCM
φ11(η) with corrected approximate solutions φ11(η) + e15(η) for
the four cases.

η BCM Corrected
BCM BCM Corrected

BCM
Case 1 Case 2

0.0 1.000000000 1.0000000000 1.000000000 1.0000000000
0.2 0.919225399 0.9192254258 0.983283205 0.9832809532
0.4 0.710099389 0.7100992462 0.923545641 0.9235424804
0.6 0.446767409 0.4467672312 0.788136035 0.7881322939
0.8 0.197511261 0.197511191 0.512041076 0.5120402409
1.0 −1.34 × 10− 5 0.0000000000 −6.41 × 10− 5 0.0000000000

Case 3 Case 4
0.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000
0.2 0.911478534 0.9114790754 0.9312123216 0.9312121687
0.4 0.686913821 0.6869143720 0.7467483082 0.7467479488
0.6 0.415107740 0.4151082910 0.4981734784 0.4981730282
0.8 0.173121071 0.1731216776 0.2380746233 0.2380742195
1.0 −4.92 × 10− 5 0.0000000000 −6.02 × 10− 5 0.0000000000

Table 2: Absolute errors of BCM and HPM [21].

η BCM HPM [21] BCM HPM [21]
Case 1 Case 2

0.0 0 0 0 0
0.2 3.23 × 10− 8 7.92 × 10− 3 2.25 × 10− 6 2.24 × 10− 4

0.4 1.36 × 10− 7 2.87 × 10− 2 3.16 × 10− 6 9.90 × 10− 4

0.6 2.00 × 10− 7 5.68 × 10− 2 3.85 × 10− 6 2.11 × 10− 3

0.8 2.83 × 10− 7 7.57 × 10− 2 2.01 × 10− 6 1.30 × 10− 3

1.0 1.34 × 10− 6 9.17 × 10− 9 6.41 × 10− 6 6.30 × 10− 8

Case 3 Case 4
0.0 0 0 0 0
0.2 5.50 × 10− 7 1.42 × 10− 2 1.47 × 10− 7 2.30 × 10− 3

0.4 5.67 × 10− 7 5.11 × 10− 2 3.51 × 10− 7 8.53 × 10− 3

0.6 6.05 × 10− 7 9.94 × 10− 2 4.28 × 10− 7 1.74 × 10− 2

0.8 7.51 × 10− 7 1.29 × 10− 1 1.11 × 10− 7 2.42 × 10− 2

1.0 4.92 × 10− 6 7.88 × 10− 9 2.90 × 10− 6 1.03 × 10− 8

Table 3: A comparison of absolute error of corrected BCM so-
lutions |φ11(η) + e15(η) − RK4| with absolute error of HPM so-
lutions [21] for the cases.

η Corrected BCM HPM [21] Corrected BCM HPM [21]
Case 1 Case 2

0.0 0 0 0 0
0.2 6.27 × 10− 9 7.91 × 10− 3 4.32 × 10− 9 2.24 × 10− 4

0.4 7.29 × 10− 9 2.87 × 10− 2 4.76 × 10− 9 9.90 × 10− 4

0.6 2.22 × 10− 8 5.68 × 10− 2 5.42 × 10− 9 2.11 × 10− 3

0.8 2.14 × 10− 7 7.57 × 10− 2 3.63 × 10− 9 1.30 × 10− 3

1.0 1.00 × 10− 6 9.17 × 10− 9 7.27 × 10− 9 6.30 × 10− 8

Case 3 Case 4
0.0 0 0 0 0
0.2 8.02 × 10− 9 1.42 × 10− 2 6.13 × 10− 9 2.30 × 10− 3

0.4 1.05 × 10− 8 5.11 × 10− 2 1.01 × 10− 8 8.53 × 10− 3

0.6 6.26 × 10− 9 9.94 × 10− 2 8.45 × 10− 9 1.74 × 10− 2

0.8 2.18 × 10− 9 1.29 × 10− 1 1.11 × 10− 9 2.42 × 10− 2

1.0 1.17 × 10− 9 7.88 × 10− 9 5.29 × 10− 10 1.03 × 10− 8

Table 4: Results of ANOVA for BCM.

Source df Adj SS Adj MS F-value p value
Factor 3 0.000 0.000 7.060 0.001
Error 40 0.000 0.000
Total 43 0.000 0.000
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differences. )e SPSS 22 program for the statistical analysis
was used. Analysis results are given in Tables 4 and 5.
According to the ANOVA results in Table 4, there is a
significant difference between at least two groups (F(3−40) �

7.060, p< 0.05). )e Tukey pairwise comparison results
show that Case 2 is different from the other groups. Contrary
to the HPM [21] results, it is seen from Figure 6 that the
mean of the absolute errors for Case 2 is different from the
means of the other groups.

6. Conclusions

In this study, the Bernstein collocation method (BCM) has
been applied to solve the MHD Jeffery–Hamel blood flow
problem. )e original two-dimensional blood flow problem
was first reduced to a one-dimensional third-order non-
linear differential equation (ODE) by applying some
transformation rules. Using the BCM, the nonlinear ODE
was then converted to a system of nonlinear algebraic
equations. )e Bernstein approximate solutions were im-
proved by the residual correction procedure. )is procedure
was applied to estimate the error and to get more accurate
approximations, namely, corrected BCM solutions. )e
method was tested on the problem for some different values
of Re and α. After applying the method to the examples, it
was found that the present method is better than HPM [21].
On the other hand, the residual correction procedure esti-
mates the error well. As a result, more accurate approxi-
mations can be obtained by using the procedure. As a result

of the statistical analysis, Case 2 is different from the other
groups for the BCM.
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