
Vol.:(0123456789)

New Generation Computing
https://doi.org/10.1007/s00354-022-00183-1

123

Forecasting COVID19 Reliability of the Countries by Using 
Non‑Homogeneous Poisson Process Models

Nevin Guler Dincer1 · Serdar Demir1 · Muhammet Oğuzhan Yalçin1

Received: 3 January 2022 / Accepted: 9 June 2022 
© Ohmsha, Ltd. and Springer Japan KK, part of Springer Nature 2022

Abstract
Reliability is the probability that a system or a product fulfills its intended function 
without failure over a period of time and it is generally used to determine the reli-
ability, release and testing stop time of the system. The primary objective of this 
study is to predict and forecast COVID19 reliabilities of the countries by utiliz-
ing this definition of the reliability. To our knowledge, this study is the first car-
ried out in the direction of this objective. The major contribution of this study is 
to model the COVID19 data by considering the intensity functions with different 
types of functional shapes, including geometric, exponential, Weibull, gamma and 
identifying best fit (BF) model for each country, separately. To achieve the objec-
tive determined, cumulative number of confirmed cases are modelled by eight Non-
Homogenous Poisson Process (NHPP) models. BF models are selected based on 
three comparison criteria, including Root Mean Square Error (RMSE), Normalized 
Root Mean Square Error (NRMSE), and Theil Statistics (TS). The results can be 
summarized as follows: S-shaped models provide better fit for 56 of 70 countries. 
Current outbreak may continue in 43 countries and a new outbreak may occur in 27 
countries. 50 countries have the reliability smaller than 75%, 9 countries between 
75% and 90%, and 11 countries a 90% or higher on 11 August 2021.

Keywords  COVID19 · Reliability · Counting process · Non-homogenous Poisson 
process · Forecasting

1 � Introductıon

Predicting future behavior of COVID19 is extremely important in terms of its early 
negative effects that may occur on the economy and health sector. So far, many sta-
tistical and machine learning modeling techniques have been used to forecast dif-
ferent kinds of behaviors of COVID19 such as number of confirmed, deaths and 
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recovered cases [1–11]. NHPP models such as Gompertz (G) and Logistic Growth 
(LG) are also among modeling techniques widely utilized to analyze the dynamics 
of COVID19 since they can easily deal with the nonlinear structure of the COVID19 
and have the ability of forecasting the new outbreaks and the end of the outbreak.

Conde-Gutierrez et al. [12] presented a comparative study between the G model 
and Artificial Neural Networks (ANN) for predicting the cumulative number of 
deaths in Mexico. They concluded that these modeling techniques provide the good 
fit. In [13], daily mortality data collected for three European countries, consisting of 
Greece, France and Italy have also been assessed by G function methods. Diaz Perez 
et al. [14] have used the G model to forecast the number of infections and mortality 
for three countries, Austria, Switzerland and Israel. They compared the performance 
of the G model and ARIMA model. As a result of the comparisons, they found that 
the G model is more successful in modeling the mortality, while ARIMA model is 
good at modeling the number of infections. Berihuete et al. [15] developed a model 
based on G curve and Bayesian inference to investigate the behavior of COVID19 
at the three different stages of the pandemic in the province of Cádiz, located at 
the South of Spain. First, they evaluated the impact of the first lockdown on the 
COVID19. The second stage that they considered is the lockdown period and lastly, 
they tried to detect the beginning of the new wave, which would occur after lock-
down period. In [16], G function has been used for analyzing the number of infected 
cases in the 11 countries (Japan, USA, Russia, Brazil, China, Italy, Indonesia, Spain, 
South Korea, UK and Sweden). Valle [17] has applied the modeling technique based 
on G function to the data sets, consisting of the total number of infected and deaths 
by COVID19 in Brazil and two Brazilian states. In [18], Verhulst and G models 
have been utilized for predicting the effects of COVID19 in Spain. In the result of 
the study, they concluded that Verhulst and G model have similar prediction perfor-
mance, but Verhulst model will be more appropriate in modeling the dynamics of 
COVID19 since its parameters easily tune.

Some studies have used the LG model to predict and forecast the COVID19 data. 
Kartono et  al. [19] have used the LG model to model the cumulative number of 
confirmed cases in the five countries, including China, Singapore, Saudi Arabia, the 
Philippines, and Indonesia. In addition, the peak time and turning points of the epi-
demic are predicted in this study. Simbawa and Aboushoushah [20] have applied LG 
and its three modified versions to predict the cumulative number of infected cases 
in Saudi Arabia. They concluded that LG and its modifications provide similar and 
considerably good predictions results. Mangla et al. [21] have used four modeling 
techniques, including exponential, G, LG and ARIMA models to predict the cumu-
lative number of confirmed and deaths cases in India and its some states. They found 
that the ARIMA model provides a better fit for the behavior of COVID19 in India. 
Liu [22] has aimed to model the cumulative number of confirmed cases in China, 
involving the time period between 13/02/2020 and 23/03/2020. For this objective, 
five growth models consisting of LG, G, Mitcherlich, Monomolecular, Negative 
Exponential have been used. According to five-fold cross validation, they found that 
LG gives the best predictions. Zhou et  al. [23] have also used the LG model for 
examining the dynamics of COVID19 such as its timing, rate and peak in China and 
its 20 provinces before and after the suppression.
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Al-Dousari et al. [24]. have also used two NHPP models, i.e., Power Law Process 
and Linear Intensity Functions to predict the number of COVID19 behavior such as 
the number of new, death and recovered cases for Kuwait considering the COVID19 
data collected from the 24th of February 2020 to the 25th of August 2020. Wang 
[25] and Gholami and Elahian [26] used the piece-wise version of Crow-AMSAA 
model that is one of the NHPP models to model the spread of COVID19.

These studies generally focused on modeling the number of confirmed or death 
cases for the specific regions and generally involved the early stage of the pandemic. 
In addition to this, limited number of NHPP models have been used in the studies 
cited above. The major contributions of this study can be summarized as follows:

•	 In this study, eight NHPP models, each of which has the different properties such 
as functional shape of intensity function or graphical view, are used for modeling 
COVID19 spread of 70 countries. Thus, the BF model is selected for each coun-
try according to the last period of the COVID19 and three comparison criteria.

•	 The probabilities of lack of occurrences of COVID 19 cases in selected countries 
and in different time periods are predicted and forecasted by utilizing Poisson 
distribution. This approach is called as COVID19 reliability.

•	 Based on the reliability forecasts, it is tried to determine in which countries a 
new pandemic could be seen, in which countries the current pandemic would 
continue, and in which countries the pandemic would end.

The organization of this study is as follows. Section 2 gives brief information on 
NHPP models, parameter estimation method used and reliability forecasting. Sec-
tion 3 presents the experimental results. Section 4 concludes the study and presents 
the future works.

2 � Materials and Methods

2.1 � Some Definitions of NHPP Models

Definition 1  (Counting Process): A counting process is a stochastic pro-
cess ( M(t), t ≥ 0 ) that is non-negative, integer-valued, and non-decreas-
ing for all t ≥ 0 . M(t) is the total number of events that occur by time t, and 
M(t, t + h) = M(t + h) −M(t) denotes the number of events occurred in the time 
interval (t, t + h] , h > 0 . Besides, a counting process, in which the number of events 
occurring in non-overlapping time intervals are independent has independent incre-
ments. A counting process has the stationary increments if distribution of M(t, t + h) 
only depends on the length of time interval [27].

Definition 2  (Poisson Random Variable): If M(t) denotes the number of events that 
occur in the specified time interval, it is called as Poisson random variable. Poisson 
random variable has the following probability mass function:
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where �t is the parameter of Poisson distribution and denotes the average number of 
events in the specified time interval. Expected value and variance of M(t) are equal 
to �t.

Definition 3  (Poisson Process): M(t) with intensity function �t is the Poisson pro-
cess if it has the following properties:

•	 M(0) = 0

•	 M(t) is the counting process;
•	 M(t)has the independent increments;
•	  M(t, t + h) = M(t + h) −M(t) is a Poisson random variable with mean 

� = ∫ t+h

t
�(z)dz [28].

Definition 4  (Homogeneous Poisson Process): If the Poisson process M(t) has con-
stant intensity function ( �t = � for all time intervals), it is called as Homogeneous 
Poisson Process.

Definition 5  (Non-Homogeneous Poisson Process): If the Poisson process M(t) has 
the intensity function varying over time, it is Non-Homogeneous Poisson Process. 
The probability mass function of NHPP is defined as follows:

Definition 6  (Mean Value Function): A function �(t) defined as below is called as 
the mean-value function [28]:

Definition 7  (Reliability) Reliability is the probability that an event that can be 
called as a failure will not occur in a specified period of time. If T  is assumed to 
denote the time to failure, the probability that a failure occurs in the time interval, 
[0, t]:

(1)P(M(t) = k) =
e−�t�t

k

k!

(2)
P(M(t, t + h) = k) =

(

t+h∫
t

�(z)dz

)k

k!
e
−

t+h∫
t

�(z)dz

(3)E(M(t)) = �(t) =

t

∫
0

�(z)dz

(4)F(t) = P(0 ≤ T ≤ t) =

t

�
0

f (y)dy
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where f (y) denotes the failure density function. In this case, reliability is defined as 
follows:

3 � Non‑Homogenous Poisson Process Models

In this study, the use of well-known NHPP models is proposed to forecast the reli-
ability of the selected countries in terms of COVID19 pandemic since following 
properties of COVID19 are coherent to NHPP models:

•	 The total number of cases ( M(t) ) is non-negative, integer-valued, and non-
decreasing for all t > 0. In other words, it is a counting process.

•	 The total number of cases is equal to zero ( M(0) = 0 ) at the beginning of the 
pandemic in the all countries.

•	 The total number of cases has the independent increments.
•	 The intensity function (average number of cases) depends on time since it inher-

ently increases or decreases over time. So, the total number of cases has an unsta-
ble increment.

Under the assumption that M(t, t + h) is a Poisson random variable with time 
dependent parameter �(t) , NHPP models can be used to model COVID19 behavior 
of the countries and then to predict and forecast the COVID19 reliability. NHPP 
models are based on estimating the parameters of mean value function, that denotes 
the total number of events by time t. In the literature, there are many NHPP models 
that have different properties and mean value functions. These models have been 
classified in [29, 30] according to their properties as follows:

•	 Total number of faults observed at infinite time: finite or infinite.
•	 The functional shape of fault intensity expressed according to time: Exponential, 

Gamma or Weibull.
•	 The functional shape of fault intensity expressed according to the expected value 

of observed fault: geometric or power.
•	 The graphical view of the mean-value function: S-shaped or concave.

NHPP models used in this study and their mean value functions are given in 
Table 1.

As can be seen in Table 1, while some of NHPP models have a shape of concave, 
some are S-shaped. Concave models provide a better fit for the data sets in which 
the number of new confirmed cases decreases over time and become constant after 
a while. S-Shaped models are more appropriate in modeling data sets in which, the 

(5)R(t) = P(T > t) = 1 − F(t) =

∞

∫
t

f (y)dy
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number of new confirmed cases increases exponentially in the early pandemic and 
decreases over time in the later period.

4 � Parameter Estimation

In order to estimate the parameter of the mean value functions of NHPP models, 
three estimation methods are generally used: Maximum Likelihood Estimation 
(MLE), Least Squares (LS) Method, and Nonlinear Least Squares (NLS) Method. 
The NLS method is preferred in this study, because it provides a solution for all 
models used here.

In the NLS method, the general form of the regression models which is adapted 
for the total number of COVID19 cases is as follows:

where � is the residual vector whose elements correspond to differences between 
actual values ( M(t) ) and predictions ( �(t) ). In the NLS method, it is tried to estimate 
the parameters which minimizes the sum of squares of residuals as similar to the LS 
method. In this case, the objective function to be minimized can be written as below:

 where � = [ �1, �2 … , �p ] is the parameter vector to be estimated. To estimate these 
parameter vectors, one of the ways used is that the objective function is differenti-
ated with respect to each�i(i = 1, 2,… ., p ) separately and the partial derivatives are 
set to zero. In this way, p equations are obtained. But, they do not solve directly and 
require the use of numerical optimization methods for the solution because these 
equations are not closed form. Most popular methods used for this objective are 
Gauss–Newton (GN), Gradient Descent (GD), and Levenberg–Marquardt (LM). The 
common property of these algorithms is that they are based on finding the estimate 

(6)M(t) = �(t) + �

(7)C(M,�) =

n
∑

i=1

�2 =

n
∑

i=1

(M
(

ti
)

− �(ti))
2

Table 1   The NHPP models used in this study

Model Mean value function Properties

Musa logarithmic (ML) model [32] �(t) = �1ln
(

1 + �2t
)

Concave, infinite, geometric
Goel-Okumuto (GO) [33] �(t) = �1

(

1 − e−�2 t
)

Concave, finite, exponential
Generalized Goel-Okumoto (GGO) [34] �(t) = �1

(

1 − e−�2 t
�3
) Concave, finite, Weibull

Inflection S-shaped (ISS) [35] �(t) = �1

(

1−e−�2 t

1+�3e
−�2 t

)

S-shaped, finite

Delayed S-shaped (DSS) [36] �(t) = �1(1 − (1 + �2t)e
−�2 ) S-shaped, finite, gamma

Yamada exponential (YE) [37] �(t) = �1(1 − e−�3(1−e
−�2 t )) Concave

Gompertz (G) [38] �(t) = �1(�2)
(�3)

t S-shaped, Gompertz

Logistic growth (LG) [34, 36] �(t) =
�1

1+�3e
−�2 t

S-shaped, infinite
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of parameters which minimize the objective function given in Eq.  (7), iteratively. 
These algorithms consist of three main steps: (i) selecting the initial values of the 
parameter vector, (ii) updating of the parameter vector in each iteration, (iii) check-
ing the convergence criteria. LM method which is a linear combination of GN and 
GD is used in this study. In LM, the updating of the parameters is performed as 
below [39]:

In the Eq. (8), g and ∇C are as follows:

where J is a gradient vector of � with respect to � , � is LM parameter and I is iden-
tity matrix.

In the light of these information, the working principle of LM method can be sum-
marized as Table 2.

5 � Reliability Forecasting

COVID19 reliability can be defined as the probability of not encountering COVID19 
case at a certain time period. Reliability at the time interval [t, t + h] is predicted in 
NHPP models by following equations:

(8)�k+1 = �k − g−1∇C

(9)g = JTJ + �I

(10)∇C = JT�

(11)R(h|t ) = P(M(t, t + h) = 0) =
(∫ t+h

t
�(z)dz)

0

0!
e−∫ t+h

t
�(z)dz

(12)R(h|t ) = e−∫ t+h

t
�(z)dz = e−(∫ t+h

0
�(z)dz−∫ t

0
�(z)dz)

Table 2   LM Algorithm

Step 1: Determining initial values of the parameters ( � ), LM parameters ( �, �up, �down ), J and �.
Step 2: Calculating vector J by taking partial derivative � with respect to each �
Step 3: The value of g is calculated by using Eq. (9)
Step 4:∇C is calculated using Eq. (10)
Step 5: The new values of the parameters are calculated according to Eq. (8)
Step 6: If Cnew is small than the old value of C, the new values of � and � are set as:
� = �

k+1

� = �∕�down
 Otherwise,
� = �

k

� = � ∗ �up
Step 7: If the convergence occurs, the algorithm is terminated. Otherwise, go to Step2
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From Eq. (3), the formula of the reliability can be rewritten as below:

�(t + h) corresponds to the predicted value of the mean value function at the 
time t + h.

6 � Comparison Criteria

To detect the NHPP model that provides the best fitting, three comparison criteria 
are used as Root Mean Square Error (RMSE), Normalized Root Mean Square 
Error (NRMSE), and Theil Statistics (TS). These criteria are calculated as below:

As seen from Eqs. (14)–(16), all criteria are based on the difference between 
actual and predicted values. As values of the criteria get smaller, forecasting per-
formance of the models increases.

7 � Results and Discussion

In this study, it is aimed that the reliabilities of the countries in terms of COVID19 
are forecasted. To achieve this aim, the total number of COVID19 cases of 70 
countries are modelled by eight NHPP models given in Table 1. All data sets are 
downloaded from the website of https://​www.​kaggle.​com/​sudal​airaj​kumar/​novel-​
corona-​virus-​2019-​datas​et and the time period under consideration is between 
22/01/2020 and 10/08/ 2021. Firstly, all datasets are divided into two disjoint sub-
groups, 80% of which are training (22/01/2020–20/04/2021) and 20% are test sets 
(21/04/2021–10/08/2021). Training sets are used to estimate the parameters of 
mean value functions and test sets are used to select the best fit models according 
to the three comparison criteria defined in Sect. 2.5.

(13)R(h|t ) = e−(�(t+h)−�(t))

(14)RMSE =

�

∑n

i=1
(M

�

ti
�

− �(ti))
2

n

(15)NRMSE =
RMSE

max(M(t)) − min(M(t))

(16)TS =

�

�

�

�

�

∑n

i=1
(M

�

ti
�

− �(ti))
2

∑n

i=1
M
�

ti
�2

https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
https://www.kaggle.com/sudalairajkumar/novel-corona-virus-2019-dataset
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8 � Comparison of NHPP Models

This section includes the results related to performance comparison of NHPP mod-
els. Figures 1 and 2 show the values of comparison criteria for all countries.

According to Figs. 1 and 2, the results can be summarized as follows:

8.1 � For the Training Sets

GO, ML and YE models have similar prediction performance and they generally 
provide the worst fit. The common property of these models is that they have the 
shape of concave. Although the ISS model gives the best prediction results for most 
of the countries, the bad predictions are also obtained from the ISS model for the 
countries including Armenia, Germany, Greece, Ireland, Kyrgyzstan, Norway, Saudi 
Arabia, and Turkey. LG and G model also give the good prediction results. Both LG, 
ISS, and G are S-shaped models. From these results, it can be said that in most of 
the countries, the number of new cases has increased dramatically at the beginning 
of the pandemic and then they have declined.

8.2 � For the Test Sets

S-shaped models exhibit better fits in most countries. This means that the num-
ber of new cases continues to increase at the beginning of the test period 
(20/04/2021–10/08/2021). Concave models (ML, GO, YE) give the best forecasting 
results for the countries of Iceland, New Zealand, Nigeria, and Saudi Arabia. This 
result show that the number of new cases has begun to decrease before the date of 
20/04/2021 in these countries.

Figure 2 and Table 3 show the box-plots and descriptive statistics of the compari-
son criteria, respectively.

In Fig. 3, the line in the middle of the boxes indicates the median of the compari-
son criteria and the size of the boxes indicates the variation. According to Fig. 3 and 
Table 3,

•	 For training sets, the smallest mean value is obtained from G model, while the 
smallest median value is obtained from the ISS model. LG model is also success-
ful in modeling of the behavior of COVID19 at the beginning of pandemic since 
the mean and median values of them are also small. The models which have the 
highest mean and median values are GGO, ML and YE. ISS is the model with 
the most performance changes according to data set modelled since it has the 
highest variation coefficient when compared to the G, ML, and LG having the 
least changes.

•	 For test sets, the DSS model provides best forecasts. Bad forecasting results are 
obtained from the GGO model when looking at the mean values. Bad forecasting 
results are obtained from LG, G and GO models.
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Fig. 1   The values of comparison criteria for the training sets



New Generation Computing	

123

Fig. 2   The values of comparison criteria for the test sets
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9 � Best Fit Model Selection

Best fit models to be used in forecasting of reliabilities are selected according to 
test sets. Table 4 shows the models of the best forecasting results for the countries 
separately and the values of their comparison criteria.

When looking at the Table 4, it can be seen that

Table 3   Descriptive statistics of the comparison criteria

NHPP model Training Test

RMSE NRMSE TS RMSE NRMSE TS

ML Mean 204,936.48 0.16 36.85 688,317.75 1.85 34.23
Median 66,790.47 0.17 39.22 184,484.82 1.14 34.28
Standard deviation 351,508.95 0.04 12.00 1,936,488.52 1.87 15.57
Variation coefficient 171.52 23.98 32.57 281.34 101.32 45.48

GO Mean 204,586.70 0.16 37.34 686,501.00 1.92 35.00
Median 66,763.05 0.17 39.02 185,560.33 1.16 34.57
Standard deviation 351,009.44 0.04 11.47 1,935,760.45 1.90 15.06
Variation coefficient 171.57 24.47 30.71 281.97 98.55 43.02

GGO Mean 330,364.77 0.14 31.76 1,083,422.40 1.45 29.30
Median 51,373.13 0.12 29.17 105,458.64 0.82 24.23
Standard deviation 970,491.21 0.07 17.53 3,731,021.50 1.51 22.33
Variation coefficient 293.76 53.20 55.20 344.37 104.14 76.21

ISS Mean 131,071.19 0.08 16.87 684,543.97 1.09 26.83
Median 19,343.86 0.04 9.22 95,069.07 0.71 19.10
Standard deviation 524,772.12 0.09 20.97 2,530,497.68 1.09 23.20
Variation coefficient 400.37 126.25 124.31 369.66 100.77 86.49

DSS Mean 135,327.74 0.10 22.60 218,931.30 1.23 20.75
Median 47,292.87 0.10 22.10 85,887.50 0.62 14.10
Standard deviation 438,205.88 0.06 9.51 358,707.75 1.76 18.22
Variation coefficient 323.81 54.12 42.09 163.84 143.40 87.79

YE Mean 215,427.07 0.16 37.62 725,488.38 1.88 35.23
Median 66,765.05 0.17 40.16 184,634.90 1.16 34.51
Standard deviation 379,860.54 0.05 13.15 1,978,200.59 1.87 16.65
Variation coefficient 176.33 28.05 34.96 272.67 99.61 47.27

G Mean 58,640.77 0.07 15.54 530,015.02 2.87 36.94
Median 27,858.92 0.06 14.25 172,031.99 1.40 31.47
Standard deviation 85,905.45 0.04 7.07 1,817,691.21 3.84 23.65
Variation coefficient 146.49 55.80 45.46 342.95 133.66 64.02

LG Mean 81,009.33 0.07 15.21 612,979.40 2.99 37.25
Median 28,420.56 0.06 15.13 198,305.49 1.00 30.59
Standard deviation 170,918.01 0.03 4.16 1,574,655.71 5.09 28.19
Variation coefficient 210.99 37.36 27.38 256.89 169.85 75.72
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•	 The ISS model outperforms for 20 countries, the DSS model for 16 countries, 
the G model for 13 countries, the GGO model for 10 countries, and the LG 
model for 7 countries.

•	 The YE model only becomes successful in forecasting for the countries of Ice-
land and Saudi Arabia.

•	 The GO model only outperforms for Nigeria and ML model for New Zealand.
•	 S-Shaped models are more successful in forecasting the total number of 

COVID19 cases for 66 of 70 countries. Accordingly, the number of new cases 
continues to increase in many countries.

10 � Reliability Forecasting Results

To forecast the COVID19 reliabilities of the countries, forecast values ( �(t) ) nor-
malized as below are used in Eq. (13):

Fig. 3   Box-plots of the comparison criteria according to NHPP models
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Table 4   Best fit models and 
values of the comparison 
criteria

Country Best fit model RMSE NRMSE TS

Armenia GGO 28,363.58 1.23 12.69
Austria GGO 68,774.28 1.03 10.68
Azerbaijan GGO 40,789.12 0.8 12.23
Bahamas LG 1001.02 0.16 8.06
Belgium GGO 104,437.1 0.56 9.78
Brazil DSS 432,354.2 0.07 2.47
Bulgaria ISS 50,082.5 1.29 11.99
Canada ISS 96,779.42 0.32 7.03
Colombia G 358,718 0.17 9.22
Croatia DSS 33,920.72 0.62 9.59
Cyprus G 7389.03 0.15 9.28
Czechia ISS 47,902.03 0.69 2.89
Denmark DSS 18,687.06 0.23 6.51
Egypt GGO 25,419.54 0.38 9.57
Ethiopia LG 17,540.3 0.44 6.46
Finland DSS 9898.58 0.34 10.37
France ISS 478,574 0.51 8.35
Georgia DSS 18,974.67 0.12 5.25
Germany DSS 406,159.1 0.67 11.09
Ghana LG 2870.75 0.17 2.98
Greece G 62,624.4 0.31 14.97
Honduras DSS 16,815.1 0.16 6.62
Hungary ISS 73,669.13 1.33 9.2
Iceland YE 508.11 0.19 7.41
India DSS 2,358,272 0.14 8.43
Indonesia G 367,735 0.17 15.81
Iran G 345,887.6 0.18 10.96
Iraq G 36,651.28 0.05 2.78
Ireland DSS 28,860.33 0.41 10.65
Israel GGO 61,065.2 0.83 7.2
Italy ISS 265,767.9 0.52 6.3
Jamaica ISS 5230.68 0.47 10.6
Japan LG 108,409.1 0.21 13.96
Jordan ISS 78,867.83 0.91 10.63
Kazakhstan G 41,997.18 0.11 8.55
Kenya LG 7563.04 0.12 4.21
Korea, South ISS 8571.88 0.09 5.46
Kuwait DSS 7415.84 0.05 2.2
Kyrgyzstan GGO 15,642.02 0.2 12.63
Lebanon ISS 40,636.12 0.67 7.48
Luxembourg GGO 4835.18 0.53 6.85
Malaysia LG 68,247.89 0.07 9.14
Mexico GGO 160,152.9 0.23 6.34
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The reason for this kind of normalization is to prevent the population sizes of 
countries from affecting the reliability estimates negatively. Besides, the reliabil-
ity forecasts are valid for the total number of COVID19 cases per 10,000 persons.

For example, the population size of Turkey is 82 million. If the difference 
between successive forecast values ( �(t + h) − �(t) ) is equal to or less than 820, 
in other words, the number of daily new cases is equal to 820 or less, the reliabil-
ity of Turkey will be forecasted as 0.90 or more. To achieve reliability of 0.999 
or more, the number of daily new cases must be equal to 8 or less. These results 
are only valid for Turkey since the calculations are based on the population size. 
To achieve these reliability forecasts, the number of daily new cases should be 
smaller in countries with a small population size and larger in countries with a 

(17)
⌣
𝜇(t) =

𝜇(t)

population size
∗ 10000

Table 4   (continued) Country Best fit model RMSE NRMSE TS

Nepal G 83,595.53 0.19 14.52
Netherlands DSS 114,544.6 0.24 6.82
New Zealand ML 64.31 0.21 2.36
Nigeria GO 19,378.97 1.32 11.53
North Macedonia ISS 11,821.28 1.11 7.63
Norway DSS 15,861.03 0.47 12.47
Oman G 10,030.47 0.09 4.07
Pakistan G 57,793.21 0.19 6.16
Poland DSS 367,604.3 2.04 12.86
Portugal ISS 46,022.62 0.29 5.21
Qatar GGO 6597.38 0.22 3.02
Romania ISS 93,358.72 1.82 8.69
Russia ISS 338,643.8 0.19 6.31
Saudi Arabia YE 18,720.32 0.15 3.97
Senegal DSS 6614.28 0.23 14.14
Serbia ISS 62,932.21 1.06 8.86
Singapore ISS 4103.41 0.83 6.56
Slovakia ISS 2757.49 0.17 0.71
Slovenia DSS 27,693.5 1.01 10.94
South Africa LG 226,951.7 0.23 11.71
Spain ISS 231,026.8 0.19 5.98
Sweden ISS 75,585.32 0.4 7.12
Switzerland ISS 97,688.35 1.09 14.07
Thailand G 34,957.22 0.05 10.74
Turkey G 387,311 0.24 7.29
United Kingdom DSS 456,888.9 0.26 9.33
Venezuela G 13,591.91 0.11 5.32



	 New Generation Computing

123

large population size. Figure 4 shows the reliability values forecasted for twelve 
different time points.

As can be seen Fig. 4,

•	 The top 5 countries with the highest reliability are Singapore, New Zealand, 
Switzerland, Nigeria and Ghana by the date of August 11, 2021.

•	 The five countries having the least reliability are Cyprus, Slovenia, Georgia, 
Malaysia and Netherlands on the date of August 11, 2021.

•	 The countries, which have the reliability of 90% and more by the date of August 
11, 2021 are Egypt, Ethiopia, Ghana, Kenya, New Zealand, Nigeria, Portugal, 
Romania, Singapore, Slovakia, and Switzerland.

•	 The countries whose reliabilities decrease over time are Brazil, Croatia, Cyprus, 
Denmark, Finland, Georgia, Germany, Greece, Honduras, India, Ireland, Kuwait, 
Luxembourg, Netherlands, Norway, Oman, Poland, Slovenia, Thailand, United 
Kingdom and Venezuela. This result can be interpreted that new outbreak can 
occur in these countries.

•	 In Bahamas, Bulgaria, Canada, Czechia, Egypt, Ethiopia, France, Ghana, Hun-
gary, Italy, Jamaica, Jordan, Kenya, Lebanon, New Zealand, Nigeria, North Mac-
edonia, Portugal, Romania, Russia, Serbia, Singapore, Slovakia, South Korea, 
Spain, Sweden and Switzerland, the current outbreak can end until the end of 
2021 because their reliabilities are higher than 90% in this date.

•	 Azerbaijan, Belgium, Colombia, Iceland, Indonesia, Iran, Israel, Japan, Kyr-
gyzstan, Mexico, Qatar, South Africa, Turkey and Saudi Arabia are also among 
the countries where the current outbreak will continue.

•	 The reliability of Colombia, Iran, Indonesia and Turkey will increase signifi-
cantly until the end of 2023. It is forecasted that the reliabilities of Columbia, 
Iran, Indonesia, and Turkey will be 0.78, 0.79, 0.94 and 0.98, respectively at the 
end of 2023.

Fig. 4   Reliability forecasts
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Figures 5, 6, and Table 5 show the dates which the reliabilities reach to above 
90% and 99.9%.

As can be seen from Figs. 5, 6, and Table 5,

•	 The reliabilities of 11 countries are equal or higher than 90% on the date of 11 
August, 2021. These countries are Egypt, Ethiopia, Ghana, Kenya, New Zealand, 
Nigeria, Portugal, Romania, Singapore, Slovakia, and Switzerland. The reliabil-
ity of Singapore is equal or higher than 99.9%.

•	 Countries whose reliabilities reach 90% until the end of 2021 are Bahamas, Bul-
garia, Canada, Czechia, France, Hungary, Italy, Jamaica, Jordan, Lebanon, North 
Macedonia, Russia, Serbia, South Korea, Spain, and Sweden.

Fig. 5   The dates that reliabilities reach to above 90%

Fig. 6   The dates that reliabilities reach to above 99.9%
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•	 Countries whose reliabilities reach 99.9% until the end of 2021 are Portugal 
and Switzerland.

•	 Countries whose reliabilities reach 90% until the end of 2022 are Japan, Saudi 
Arabia, and South Africa.

Table 5   The Dates of Reliability ≥ 90% and ≥ 99.9%

Country  > 0.90  > 0.999 Country  > 0.90  > 0.999

Armenia 19-Apr-2027 07-Apr-2031 Kenya 11-Aug-2021 28-Oct-2022
Austria 13-Jun-2026 30-Nov-2028 Kuwait  > 29-Sep-2033  > 29-Sep-2033
Azerbaijan 14-May-2025 13-Apr-2029 Kyrgyzstan 22-Dec-2031  > 29-Sep-2033
Bahamas 24-Dec-2021 10-Apr-2023 Lebanon 19-Oct-2021 03-Jun-2022
Belgium 07-Feb-2025 21-Jan-2028 Luxembourg  > 29-Sep-2033  > 29-Sep-2033
Brazil  > 29-Sep-2033  > 29-Sep-2033 Malaysia 16-Jul-2027 24-Oct-2028
Bulgaria 23-Aug-2021 05-Apr-2022 Mexico 24-Nov-2023 26-Dec-2027
Canada 20-Nov-2021 26-Oct-2022 Nepal 14-Nov-2029  > 29-Sep-2033
Colombia 29-Aug-2024 15-Mar-2028 Netherlands  > 29-Sep-2033  > 29-Sep-2033
Croatia  > 29-Sep-2033  > 29-Sep-2033 New Zealand 11-Aug-2021 30-Jun-2027
Cyprus  > 29-Sep-2033  > 29-Sep-2033 Nigeria 11-Aug-2021  > 29-Sep-2033
Czechia 06-Oct-2021 03-May-2022 North Macedonia 25-Sep-2021 10-Jun-2022
Denmark  > 29-Sep-2033  > 29-Sep-2033 Norway  > 29-Sep-2033  > 29-Sep-2033
Egypt 11-Aug-2021 30-Aug-2031 Oman  > 29-Sep-2033  > 29-Sep-2033
Ethiopia 11-Aug-2021 22-Oct-2022 Pakistan 02-Dec-2025  > 29-Sep-2033
Finland  > 29-Sep-2033  > 29-Sep-2033 Poland  > 29-Sep-2033  > 29-Sep-2033
France 28-Oct-2021 29-Jul-2022 Portugal 11-Aug-2021 27-Dec-2021
Georgia  > 29-Sep-2033  > 29-Sep-2033 Qatar  > 29-Sep-2033  > 29-Sep-2033
Germany  > 29-Sep-2033  > 29-Sep-2033 Romania 11-Aug-2021 27-Jan-2022
Ghana 11-Aug-2021 17-Jul-2022 Russia 06-Oct-2021 11-Sep-2022
Greece  > 29-Sep-2033  > 29-Sep-2033 Saudi Arabia 26-Jun-2022 16-Mar-2031
Honduras  > 29-Sep-2033  > 29-Sep-2033 Senegal  > 29-Sep-2033  > 29-Sep-2033
Hungary 18-Dec-2021 11-Sep-2022 Serbia 21-Aug-2021 28-Feb-2022
Iceland 11-Jun-2026  > 29-Sep-2033 Singapore 11-Aug-2021 11-Aug-2021
India  > 29-Sep-2033  > 29-Sep-2033 Slovakia 11-Aug-2021 13-Jan-2022
Indonesia 05-Aug-2023 22-Mar-2027 Slovenia  > 29-Sep-2033  > 29-Sep-2033
Iran 13-Sep-2024 05-Sep-2028 South Africa 20-Jan-2022 06-May-2023
Iraq 10-Jun-2027 22-Jun-2033 South Korea 21-Aug-2021 23-Feb-2023
Ireland  > 29-Sep-2033  > 29-Sep-2033 Spain 23-Oct-2021 05-Aug-2022
Israel 26-Jul-2025 26-Feb-2029 Sweden 18-Nov-2021 07-Aug-2022
Italy 05-Sep-2021 25-Apr-2022 Switzerland 11-Aug-2021 30-Sep-2021
Jamaica 04-Nov-2021 25-Aug-2022 Thailand  > 29-Sep-2033  > 29-Sep-2033
Japan 17-Apr-2022 09-Aug-2023 Turkey 24-Feb-2023 20-Mar-2025
Jordan 24-Dec-2021 22-Sep-2022 United Kingdom  > 29-Sep-2033  > 29-Sep-2033
Kazakhstan 03-Sep-2031  > 29-Sep-2033 Venezuela 22-Jul-2031  > 29-Sep-2033
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•	 Countries whose reliabilities reach 99.9% until the end of 2022 are Bulgaria, 
Canada, Czechia, Ethiopia, France, Ghana, Hungary, Italy, Jamaica, Jordan, 
Kenya, Lebanon, North Macedonia, Romania, Russia, Serbia, Slovakia, Spain 
and Sweden.

•	 Indonesia, Mexico and Turkey will have the 90% or higher reliabilities and 
Japan, South Korea, Bahamas and South Africa will have the 99.9% or higher 
reliabilities until the end of 2023.

•	 Armenia, Austria, Azerbaijan, Belgium, Colombia, Iceland, Iran, Iraq, Israel, 
Kazakhstan, Kyrgyzstan, Malaysia, Nepal, Pakistan, Venezuela will reach a level 
of 90% reliability after the date of 2023.

11 � Conclusions and Future Works

11.1 � Conclusion

In this study, the COVID19 reliabilities of 70 countries are forecasted by using 
eight NHPP models which have different intensity functions and graphical views. 
To achieve this objective, a procedure, consisting of three main steps, is followed. 
The first step includes estimating the parameters of mean-value functions of NHPP 
models by using the LM algorithm. In this step, the parameters of 560 (70*8) 
NHPP models are estimated. In the second step, the BF model is selected according 
to the three comparison criteria and the test sets for each country. In the last step, 
COVID19 reliabilities are forecasted by using the NHPP model selected as BF. The 
results can be summarized as follows:

•	 S-shaped models provide the best fitting for 56 of 70 countries.
•	 On 11 August 2021,

o	 50 countries have the reliability smaller than 75%. These countries are Arme-
nia, Austria, Azerbaijan, Bahamas, Belgium, Brazil, Canada, Colombia, Croa-
tia, Cyprus, Czechia, Denmark, Finland, France, Georgia, Germany, Greece, 
Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, 
Jamaica, Japan, Jordan, Kazakhstan, Kuwait, Kyrgyzstan, Lebanon, Luxem-
bourg, Malaysia, Mexico, Nepal, Netherlands, Norway, Oman, Poland, Qatar, 
Slovenia, South Africa, Spain, Sweden, Thailand, Turkey, United Kingdom, 
and Venezuela.

p	 The reliabilities between 0.75 and 0.9 are obtained for 9 countries, including 
Bulgaria, Italy, North Macedonia, Pakistan, Russia, Saudi Arabia, Senegal, 
Serbia, and South Korea.

q	 Egypt, Ethiopia, Ghana, Kenya, New Zealand, Nigeria, Portugal, Romania, 
Singapore, Slovakia, and Switzerland have the reliabilities higher than 90%.

•	 Countries whose reliability is expected to exceed 0.90 by the end of 2022 are 
Bahamas, Canada, Czechia, France, Hungary, Italy, Jamaica, Japan, Jordan, 
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Lebanon, North Macedonia, Russia, Saudi Arabia, Serbia, South Africa, South 
Korea, Spain, and Sweden.

•	 Countries whose reliability is expected to exceed 0.90 by the end of 2023 are 
Indonesia, Mexico, and Turkey.

•	 At the end of 2024, Colombia and Iran are expected to have reliabilities with 
0.935 and 0.928, respectively.

•	 In 27 countries, new outbreaks can occur since their reliabilities decrease over 
time. These countries are Brazil, Croatia, Cyprus, Denmark, Finland, Georgia, 
Germany, Greece, Honduras, India, Iraq, Ireland, Kazakhstan, Kuwait, Luxem-
bourg, Malaysia, Nepal, Netherlands, Norway, Oman, Pakistan, Poland, Senegal, 
Slovenia, Thailand, United Kingdom and Venezuela. Countries whose reliabil-
ity is expected to increase in 2023 among these countries are Iraq, Kazakhstan, 
Nepal, Pakistan, and the United Kingdom.

•	 Current outbreak is expected to continue in 43 countries, including Armenia, 
Austria, Azerbaijan, Bahamas, Belgium, Bulgaria, Canada, Colombia, Czechia, 
Egypt, Ethiopia, France, Ghana, Hungary, Iceland, Indonesia, Iran, Israel, Italy, 
Jamaica, Japan, Jordan, Kenya, Kyrgyzstan, Lebanon, Mexico, New Zealand, 
Nigeria, North Macedonia, Portugal, Qatar, Romania, Russia, Saudi Arabia, Ser-
bia, Singapore, Slovakia, South Africa, South Korea, Spain, Sweden, Switzer-
land, and Turkey.

•	 Countries that are expected to have the mean reliability above 50% in 2022 
are Azerbaijan, Bahamas, Bulgaria, Canada, Czechia, Egypt, Ethiopia, France, 
Ghana, Hungary, Iceland, Indonesia, Italy, Jamaica, Japan, Jordan, Kenya, Kyr-
gyzstan, Lebanon, Mexico, New Zealand, Nigeria, North Macedonia, Pakistan, 
Portugal, Romania, Russia, Saudi Arabia, Senegal, Serbia, Singapore, Slovakia, 
South Africa, South Korea, Span, Switzerland, and Turkey.

•	 Countries where the reliability is expected to be low by 2033 are Brazil, Croatia, 
Cyprus, Denmark, Finland, Georgia, Germany, Greece, Honduras, India, Ireland, 
Kuwait, Luxembourg, Netherlands, Norway, Oman, Poland, Qatar, Senegal, Slo-
venia, Thailand, and the United Kingdom.

11.2 � Future Works

We can summarize our future works as follows:

•	 In this study, the reliabilities have been forecasted by considering the cumulative 
number of confirmed cases. We are planning to forecast the reliabilities by con-
sidering the cumulative number of deaths, recovered and confirmed cases simul-
taneously.

•	 NHPP models developed in the last years and popular machine learning mod-
eling techniques are planned to be used for forecasting the reliability. The prob-
ability distributions of the predicted values obtained from the machine learning 
modeling techniques will be used to find the reliability forecasts.

•	 We are planning to cluster countries according to the COVID19 reliabilities from 
period to period.
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•	 Fuzzy reliability models are planned to be developed.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
org/​10.​1007/​s00354-​022-​00183-1.
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