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Abstract In this paper, a collocation method based on Taylor polynomials is presented to
solve the functional delay integro-differential equations with variable bounds. Using this
method, we transform the functional equations to a system of linear algebraic equations.
Thus, the unknown coefficients of the approximate solution are determined by solving this
system. An error analysis technique based on residual function is developed to improve
the numerical solution. Some numerical examples are given to illustrate the accuracy and
applicability of the method. Finally, the data are examined according to the residual error
estimation. All numerical computations have been performed on the computer programs.
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1 Introduction

Functional differential equations and integro-differential equations play important role for
modeling problems in engineering, mechanics, physics, economics, and astronomy (lserles
and Liu 1994; Wu 2012; Kolmanovskii et al. 2013; Ali 2011; Brunner and Hu 2007). Since
solving these problems analytically can be difficult, some numerical methods have been
developed. Therefore, in recent years, there have been many studies on numerical meth-
ods of functional integro-differential equations (Brunner and van der Houwen 1986; Doha
et al. 2014; Wang and Wang 2013, 2014; Bhrawy et al. 2013). Sahu and Ray (2015) have
used Legendre spectral collocation method to solve Fredholm integro-differential-difference
equation, Borhanifar and Sadri (2015) have presented an operational method based on Jacobi
polynomials for numerical solution of generalized functional integro-differential equations,
Wang and Li (2009) have studied on one-leg methods for nonlinear neutral delay integro-
differential equations, Karakog et al. (2013) have applied homotopy perturbation method to
find approximate solution of Fredholm integro-differential-difference equations, and Rihan
etal. (2009) have solved the Volterra delay integro-differential equations using the technique
based on the mono-implicit Runge—Kutta method.

In addition to these methods, Volterra-type functional integral equations, pantograph-
type integro-differential equations, and delay integro-differential difference equations have
been solved using the Taylor collocation method (Gokmen et al. 2017), the Chelyshkov
collocation method (Oguz and Sezer 2015), Dickson collocation method (Kiirkgii et al. 2016),
and Laguerre polynomial approach (Grbiz et al. 2014) by Sezer and his colleagues.

In this article, we consider the functional integro-differential equations (FIDES) with
variable bounds and mixed delays represented by:

mp  my

D0 PG ) y®(engx + Bi)

k=0 =0
m3 my vrs(X)
=)+ Z Z Ars / Krs(X, 1) y(r)(ﬂrst +ps)dt, mp>mg,
r=0s=0 Urs(X) (1)

under the mixed conditions:
mp—1
> lay®@ +biy®©)] =ni, i=0,1,...,m -1, 2)
k=0
where the known functions Pyj(x), Krs(X,t), f(X), urs(x), vrs(x) are continuous on the
interval [a,b], a < Urs(X) < vrs(X) < band ayj, Bkj, Ars, rs, Vs are real constants.
The aim of this study is to obtain an approximate solution of problems (1) and (2) using
in the truncated Taylor series form:

N (n)
~ y™(0)
YOO ZYNG) =Dy X", yn ===, 3)
n=0
where y,, n =0, 1, ..., N are the unknown coefficients and are determined and N is chosen

any positive integers.

To explain our method, we have organized this paper as follows: Taylor matrix forms of
each term of problems (1) and (2) have been given in Sect. 2. In Sect. 3, the Taylor collocation
method has been described using these matrix forms based on the collocation points. In
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Sect. 4, the error analysis technique based on the residual function has been developed for
the present method. In Sect. 5, the numerical examples have been given to show the efficiency
and applicability of the mentioned method. Finally, in Sect. 6, results have been obtained and
the paper has been summarized.

2 Fundamental matrix relations
Inthis section, our aim is to convert Eq. (1) to a matrix equation. For this purpose, we construct
the matrix forms of each term of Eq. (1). We first consider the approximate solution y(x)

and its derivative y®(x) defined by the truncated Taylor series (3). Then, we write (3) and
its derivatives in the matrix form:

y(x) = X(X) Y, @)
y®x) = XV (x)Y, ®)

where
Xx)=[1xx2...xN], Y=[vown YZ---VN]T

The relation between the matrices X(x) and X% (x) is acquired as:

X®(x) = X(x)BX, (6)
where
f0100... 0]
0020...0
0003...0
B=1|.... .
0000...N
10000... 0 |

By substituting the relation (6) in the relation (5), we get
y9) = X B Y. W
In addition, by putting X — akjX + Bxj into the matrix relation (7), we obtain
(k) X + ) X (k) X+ ) =X X+ . BkY 8
Y (oK X + Byj) = YN (orkj X + Bj) (orkj X + Bj) . (8)

From the binomial expansion of (okjx + ﬂk,-)N, we can write the relation between the
matrices X(akj X + Bkj) and X(x):

X(akjX + Bj) = X(xX) Bakj, Bkj) )
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where
(0 1 2 N 7
(9)et (2) e (3 - (3)t
1 2 N N_1
0 (1)“!11/331 <1>a&1'3l%j ~--(1>°‘§Jf’kj
By 2 N N—2
N
0 0 0 . ( ) aN BY
L N Kk = (N+1)x(N+1)
By substituting the relation (9) into the relation (8), we reach the matrix relation:
~ K
y® (o x + Big) 2= Y8 o X + i) = X(X)B(auj . i )BXY. (10)
Similarly, it is clear that the matrix form of y() (i st + y15) is:
YO(urst + yrs) = Y (urst + 1s) = X(OB(urs, 1s)B'Y. (11)

Now, we find matrix form of the Kernel function K;s(x, t) by means of the following
procedure.
The function K;s(x, t) can be expressed by the truncated Taylor series as:

N N
Krs(, 1) = ) )  kig x™t", (12)

r=0s=0
where
1 9™NK,¢(0, 0)
min!  9xMatn

Thus, the expression (12) can be written in the matrix form:

rs _
I(mn =

, mn=0,1,...,N, r=0,1,...,m3—1.

Krs(x, 1) = X()KrsXT (1), (13)

where K;s = [ki5,], m,n=0,1,..., N, are the Taylor coefficients matrices of functions
Krs(x,t) atthe point (0,0).

Now, we construct the fundamental matrix equation corresponding to Eq. (1). For this
purpose, we first substitute (10), (11), and (13) into (1). After the required arrangements have
been made, we obtain the matrix equation:

m m
D03 PG ()X00B(ej . B )BXY
k=0 =0
mg ma urs(X)
=100+ 3 hes [ XOOKeaXTOX(OB(urs, 1) B Yok,
r=0s=0 Urs(X)
or
m m ms ma urs(X)
30 PG OX0B(ag - Ai)BK = Y D ArsX(X)Kss / XT(O)X(t)dt B(urs. 1s)B" t Y = f(x).
k=0 j=0 r=0 s=0

Urs(X)
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Following the given way for integral part, we have the matrix relation:

mp my m3 my

Z Z P ()X (X)B(okj » Bij )Bk - Z Z ArsX(X)KrsQrs(X)B(irs, 11s)B" ¢ Y = f(X),

k=0 j=0 r=0 s=0

(14)
where
vrs(X)
Qrs(X) = [afS,(x)] = /'xWoxmdn r=0,1,...mg,s=r=0,1,...ma,
Urs(X)

(Urs(x))m+n+l - (Urs(X)O)m+n+l
m+n+1

[Armn(¥)] = ., mn=0,1,...,N.

3 Matrix representations based on collocation points

To get an approximate solution in the form (3) of Eqg. (1), we can use a matrix method based
on the collocation points defined by

a
X =a+ i, i=0,1...N. (15)

Now, let us substitute the collocation points (15) into Eg. (14), and thus, we obtain the
system of matrix equations as:

mpy my mz My

Z Z Pij (X )X (Xi )B(okj , Bii )Bk - Z Z ArsX (X )KrsQrs(Xi)B(urs. yrs)B" ¢ Y
k=0 j=0 r=0s=0

=f(x); 1=0,1,...,N,

or the fundamental matrix equation as:

mp  my m3 mg
- = = —r
Z Z ij X B(Olkj , ,Bkj ) Bk - Z Z ArsXKrsQrs B(urs, ys)B ¢ Y =F, (16)
k=0 j=0 r=0s=0
where
Pcj(t) O --- 0 X(Xo) 1x ... x)
0 Py)--- O X(x1) X ..o x
Pyj = A . X = . =
0 0 Pii(tn) Jnanyxensn) X(xn) 1xy ... Xy (N+1)x (N+1)
XX) 0 ... 0 Kis 0 ... O
_ 0 X(x1)... O _ 0 Kig... O
X = . . . , Kis= . - . ,
0 0 ...X(xn) 0 0 ...Kg

(N+1)x (N+1)2 (N+1)2x (N+1)2
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Qs 0 ... 0
_ 0 Qs... 0

rs = . . . . s

0 0 ...Qs (N+1)2 x (N+1)2
B(urs, vrs) 0

_ 0 B(urs, prs) -+ 0
B(Mrs, Vrs) = : . . . s
0 0 ... B(urs, wrs) ) )
(N+1)4x(N+1)2 |
Br
ro B
B
(N+1)2x(N+1)
f(to)

f(t1)

f(tn) (N+1)x1

The main matrix Eq. (16) corresponds to a system of N + 1 algebraic equations for the

N + 1 unknown Taylor coefficients yo, v1, ..., yn. We can write it briefly in the following
form:
WY =F or[W; F], 17
where
my mp mz3 my
S A S =T
W= [wpq] = Z Z ijx B(U‘kj ) ,Bkj)Bk - Z Z)»rsXKrsQrs B(urs, »rs)B .
k=0 j=0 r=0s=0

On the other hand, we get the matrix form of the mixed conditions (2) by means of the
relation (7) as:

UY=n=[Uin] i=01..m-1 (18)
where
mp—1
Ui = ) [akX(@) +biX(b)] B =[uio ti1 ... uin].
k=0

To find the Taylor polynomial solution of Eq. (1) under the mixed conditions (2), we
replace row matrix (18) by any m; rows of (17) and we get the augmented matrix as:
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[ woo wor ... won ; T(Xo)
w10 w1t ... win ;o ()
[W: F] = | WN-m.0 WN-—mp.1 - WN—m N 7 F(XN=m,)
' Ugo Uy ... UoNn no
uip un;g ... UN ; n
L Un;—-1,0 Ump—11 ... Um—-1,N 5 "mp-1 |

If rank W = rank [V~V; ﬁ] = N + 1, then we can write Y = W-LFE. Hence, the matrix
Y and also the Taylor coefficients y,, n =0, 1, ..., N are uniquely determined. Therefore,
we get the demanded Taylor polynomial solution:

YN(X) = X(X)Y. (19)

If rank W = rank [W; F] < N + 1, we find infinite solution depending on the parameter.
Otherwise, if rank W # rank [W; F], then there is not a solution.
4 Residual correction and error estimation

In this section, accuracy of the approximate solutions is checked by substituting the solutions
into Eq. (1):

En(x)
mp mp mz mg vrs(X)

=13 R0 YR (g x + i) — F00 = D> s / Krs(x. ) Y (trsX + prs)elt |
k=0 j=0 r=0r=0

Urs(x)

We expect that En(x) = 0 on the collocation points. The closer y(x) = yn(X) the closer
En(Xx) = 0. Accuracy of the approximate solutions may not give any information about the
absolute errors. To remove this limitation, we can apply the residual correction procedure to
estimate the absolute errors (Oliveira 1980; Celik 2005; Shahmorad 2005).

Now, we give an error estimation based on the residual function for Taylor collocation
method. Using this procedure, it can be estimated the optimal M giving minimal absolute
error. For modifying the procedure to Eq. (1), first, we get the residual function for Taylor
polynomial solution (19) as:

mp my

Ru(¥) =YY P () Y& (g x + Big)

k=0 j=0

ms ms urs(X)

- f(x)+ZZ)‘I’S / Krs(xvt)yg)(ﬂrsx"'yrs)dt ;

r=0 s=0 (20)

Urs(X)
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where yn(x) denotes the approximate solution (19). By adding (20) into the both side of
Eg. (1), we have

m m ms mg urs(X)

Z Z Pyj (%) eﬁ)(aij + Bij) — Z Z)‘rs / Krs(X, t) ef\rj)(lirsx +yrs)dt = —Ry,

k=0 j=0 r=0 s=0 Urs(X)
(1)
where en(x) = y(x) — yn(X).
Let en,m(X) be the Taylor series solution of (21). If
len(x) — en,m(X)| < e,

are sufficiently small, then the absolute error can be estimated by en, m (X). Hence, the optimal
M for the absolute errors can be obtained measuring the error functions ey, m (x) for different
M values in any norm.

5 Numerical experiments

Inthis section, some examples are given to explain the procedure with details and demonstrate
the effectiveness of the method. All computations and graphs are performed by codes written
in Maple and Matlab.

Example 1 Let us first consider the first order pantograph-type Volterra integro-differential
equation:

X+2 X

xy(x) + 2y(2x + 1) + y'(x — 1) — xy'(x) — x2y"(x) + / xty(t)dt + / (x+t)y/(t + L)dt

2x—1
79 8
+ / (x —t)y/(t)dt = 2x* + 7x3 + Ix2 t3 (22)
0
with initial conditions
y(0) = 1and y'(0) = 0, (23)

where Poo(x) = X, Po1(X) = 2, Ppa(x) = 1, Pi3(x) = —X, Paa(x) = —x?, Koo(x, t) = xt,
Ki1(x, t) = x+t, K1o(x, t) = x—tand f (x)= 2x*+7x3+2x%+5. We seek the approximate
solution of the problem using the truncated Taylor series (3) for N =2:

2
YOO = y2() = Yy x™. (24)
n=0

Now, we determine the collocation points (15) for N =2 in [0,1]. Then,
1
Xo=0, X1==, Xo=1.
0 1=5 %

The main matrix equation of Eq. (1) is written using (16) as:
PooX + Po1X B(ao1, for) + P12X B(az, B12)B + P13X B + P24 X B? + 100 XKoo Qo V_F
+211XK11Qqq B(ra1, 711)B + 112XK12Qq, B ’
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whereapr =2, 01 =1, 012 =1, 812 = -1, Ago = A11 = A2 =1, and u11 = y11 = 1. In
addition, we can write it briefly,

25/2 2/3 ;8/3
[W; F] = | 4 725,96 557/48 ; 749/48
7 409/24 461/12 ; 545/12

The matrix forms of initial conditions are calculated as:
Uo=[100] andU1=[010].

Then, the new augmented matrix can be found by adding the augmented matrix form of
the initial conditions into the last rows of the augmented matrix [W; F], above and from (23):

o 25/22/3;8/3
[W;Fl=(1 0 0 ;1
01 0;0

By solving the system of corresponding augmented matrix [W; F], the Taylor coefficients
are uniquely determined as:

Yo=1 y1=0, y=1

Finally, the determined coefficients are substituted into Eq. (24) and the approximate
solution is obtained as y»(x) = x2 + 1 which is the exact solution of (22) and (23).

Example 2 Now, we consider Volterra delay integro-differential equation, Celik (2006):
X
v =yix -1+ [ yout (25)
x—1

with the initial condition
y(0) =1, (26)

and the exact solution is y(x) = €*. Let us first write (25) in the form:

Table 1 Comparison of the exact

solution and Taylor polynomial Exact Taylor polynomial solutions

solutions for different N values in solution

Example 2 N =4 N =6 N =9
0.0 1.000000 1.000000 1.000000 1.000000
0.1 1.105171 1.104943 1.105166 1.105171
0.2 1.221403 1.220837 1.221400 1.221403
0.3 1.349859 1.348912 1.349864 1.349860
0.4 1.491825 1.490522 1.491841 1.491825
0.5 1.648721 1.647139 1.648749 1.648722
0.6 1.822119 1.820355 1.822156 1.822119
0.7 2.013753 2.011883 2.013798 2.013753
0.8 2.225541 2.223556 2.225593 2.225542
0.9 2.459603 2.457327 2.459659 2.459604
1.0 2.718282 2.715270 2.718338 2.718283
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5618 E. Gokmen et al.

Table 2 Comparison of the

absolute errors of Example 2 X Absolute errors

En = Es En = Eg En = Eg
0.0 0.000000 0.000000 0.000000
0.1 0.227729E-3 0.483575E—5 0.264391E—7
0.2 0.566199E—3 0.251246E—5 0.109016E—6
0.3 0.946710E—3 0.520238E-5 0.223732E—6
0.4 0.130271E-2 0.159204E—4 0.347268E—6
0.5 0.158266E—2 0.272853E—4 0.461544E—6
0.6 0.176427E-2 0.375203E—4 0.556043E—6
0.7 0.187019E-2 0.457277E—-4 0.627980E—6
0.8 0.198540E—2 0.517840E—4 0.680899E—6
0.9 0.227639E—2 0.556557E—4 0.722424E—6
1.0 0.301238E-2 0.559455E—4 0.761573E—6

Fig. 1 Logarithmic plot for the comparison of the absolute errors for Example 2

x—1 X
Y(X) = y(x — 1) - / y(tydt + / ydt.
0 0

Similarly, we solve the problem using the same procedure in Example 1. Then, we have
the approximate solutions for different N values which can be seen in Table 1. We have
comparison of the absolute errors in Table 2 and Fig. 1. Moreover, we can see the comparison
of En, v for different N, M values in Table 3. It is clearly seen that we have the appropriate
solutions and smaller values when N and M values are increasing.
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Table 3 Comparison of the

EN,m residual error functions of NM=45 N=67 N=89

Example 2 0.0 0.000000 0.000000 0.000000
0.1 0.273242E—26 0.157863E—28 0.412545E—30
0.2 0.440304E—26 0.650871E—28 0.828376E—30
03 0.497880E—26 0.133911E—27 0.116943E—29
0.4 0.465618E—26 0.208281E—27 0.137195E—29
05 0.376296E—26 0.277078E—27 0.139704E—29
0.6 0.265702E—26 0.333808E—27 0.124120E—29
0.7 0.164521E—26 0.377016E—27 0.946937E—30
0.8 0.936380E—27 0.400212E—27 0.613290E—30
0.9 0.629600E—27 0.434281E—27 0.406395E—30
1.0 0.721235E—27 0.453476E—27 0.570047E—30

Example 3 We reach the approximate solution of the second-order pantograph VIDE of the

neutral type:

Y'(x) = (x+1)y'(x) — y(x) + / [xy(t) +y'(t) + ty”(©)]dt + g(x),
]

where g(x) = (x + 1))(sin(x) — sin(1)), Reutskiy (2016). Initial conditions are y(— 1)) =
cos(1)) and y'(— 1) = sin(1) and the exact solution is y(x) = cos(x) (Tables 4, 5; Fig. 2).

Table 4 Comparison of the

absolute errors of Example 3 X Absolute errors
En = E4 En = Eg En = Eg
0.0 3.62515E—3 6.21567E—4 3.90818E—5
0.1 3.97469E—3 6.93748E—4 4.33341E-5
0.2 4.32996E—3 7.68123E—4 4.76917E—-5
0.3 4.69820E—3 8.46325E—4 5.22495E-5
0.4 5.08831E—3 9.30535E—4 5.71343E-5
0.5 5.51328E—3 1.02372E—4 6.25188E—5
0.6 5.99365E—3 1.12998E—4 6.86417E—5
0.7 6.56179E—3 1.25507E—4 7.58365E—5
0.8 7.26717E—3 1.40706E—3 8.45759E—5
0.9 8.18240E-3 1.59733E-3 9.55370E-5
1.0 9.40910E—3 1.84175E-3 1.09610E—4
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Table 5 Comparison of the Emax maximum absolute errors for different methods and different N, M values
in Example 3

N, M Emax absolute errors
Taylor collocation The backward Legendre spectral
method substitution method (in collocation method (in
Reutskiy et al. 2016) Wei and Chen 2014)
2,3 2.1E-3 5.3E-2 74E-3
(4,5) 3.6E—4 7.0E-3 6.2E—5
6,7) 1.3E-5 1.3E-5 2.8E—7
(8,9 47E-7 1.3E-8 7.7E-10

Fig. 2 Comparison of the maximum absolute errors for N =2, 4, 6, 8 in Example 3

Example 4 We consider the Volterra delay integro-differential equation of partially variable
coefficients:
X

Y (X) + (6 +sin(x))y(x) — y (x _ %) — 5gtos() 4 / sin(t)y(t)dt, x > 0.

T
X=7

Initial condition is given as y(0) = eand the exact solution is y(x) = €°5*) (Rihan et al.
2009) (Tables 6, 7, 8; Fig. 3).
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sosolue s of Bxample 4 Absolue erors
En = E4 En = Eg En = E13

0.0 0.000000 0.000000 0.000000
0.1 0.63085E—3 0.12075E—-4 0.67916E—5
0.2 0.52753E—3 0.40761E—6 0.89207E-5
0.3 0.35634E—4 0.20123E—4 0.73098E—5
0.4 0.62596E—3 0.34247E-4 0.39875E—-5
0.5 0.83332E-3 0.37675E—4 0.84630E—6
0.6 0.49358E—3 0.31869E—4 0.10439E-5
0.7 0.69134E—4 0.21541E—4 0.15211E-5
0.8 0.19473E-3 0.11447E-4 0.10260E—5
0.9 0.32717E-2 0.45084E—5 0.18551E—6
1.0 0.12256E—1 0.11688E—5 0.50482E—6

;—r?c?lle;ofcgl(irtrllg]isjor N=49 " wall clock time (s)
N =4 N =9 N =13
54.24 60.30 67.8

Table 8 C_omparison of thg X N,M =45 N =9 10 N =13, 14

EN,m residual error functions of

Example 4 0.0 0.000000 0.000000 0.000000
0.1 0.13249E—-6 0.18564E—10 0.77883E—15
0.2 0.19423E—6 0.25852E—10 0.30750E—15
0.3 0.18064E—6 0.25877E—-10 0.19760E—14
0.4 0.11481E—6 0.32028E—-10 0.38264E—14
0.5 0.43419E—7 0.67494E—-10 0.73509E—14
0.6 0.32789E—7 0.16568E—9 0.16943E—13
0.7 0.16487E—6 0.37063E—9 0.40908E—13
0.8 0.53322E—6 0.73745E-9 0.92470E—13
0.9 0.12391E-5 0.13327E-8 0.19078E—12
1.0 0.23872E-5 0.22349E-8 0.36194E—12
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Fig. 3 Comparison of E13 14, E4 5, and Eg 19 residual error functions of Example 4

6 Conclusion

This paper has presented a numerical method to solve functional delay integro-differential
equations with variable bounds. The method is based on the truncated Taylor series expansion.
The approximate solutions can be found very close to the exact solutions when N is chosen
large enough. In addition, tables and figures have been shown that the error decreases when
N and M increase. In addition, the results have been compared with the data of any other
methods and validity of the method has been approved. Furthermore, CPU times have been
given to show the efficiency of the method.

Moreover, the residual error function has been presented which helps us for finding
satisfactory results. An important advantage of the method is that the Taylor polynomial
coefficients of the solution can be found very easily using the computer programs: Maple
and Matlab. These are significant advantages compared to the majority of the existing meth-
ods (Wei and Chen 2014; Maleknejad and Mahmoudi 2003).

As a result, the technique can be applied on particular type of mathematical models, but
some modifications are required.
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