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Abstract. This study acquires the exact and numerical approximations
of a reaction-convection-diffusion equation arising in mathematical bi-
ology namely; Murry equation through its analytical solutions obtained
by using a mathematical approach; the modified exp(—¥(n))-expansion
function method. We successfully obtained the kink-type and singular
soliton solutions with the hyperbolic function structure to this equa-
tion. We performed the numerical simulations (3D and 2D) of the
obtained analytical solutions under suitable values of parameters. We
obtained the approximate numerical and exact solutions to this equa-
tion by utilizing the finite forward difference scheme by taking one of
the obtained analytical solutions into consideration. We investigate
the stability of the finite forward difference method with the equation
through the Fourier-Von Neumann analysis. We present the L and Lo
error norms of the approximations. The numerical and exact approx-
imations are compared and the comparison is supported by a graphic
plot. All the computations and the graphics plots in this study are car-
ried out with help of the Matlab and Wolfram Mathematica softwares.
Finally, we submit a comprehensive conclusion to this study.

1 Introduction

Partial differential equations (PDEs) serve as the tremendous tools that bond the
realistic problems and mathematical theories. PDEs describe various complex real
life aspects arising in the various fields of science, such as; mathematical biology,
chemistry, mathematical physics and son. It is sometimes difficult to investigate the
solutions of these type of models, more especially in their nonlinear forms. Various
mathematical approaches have been developed and invested to solve such kind of
models [1-18].

The aim of this research is to acquire the exact and numerical approximations of a
nonlinear model that arises in mathematical biology through its analytical solutions
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obtained by using the modified exp (—€(n))-expansion function method (MEFM)
[19, 20]. The finite forward difference method [21] is going to be used for the exact
and numerical solutions approximation. Mathematical biology is one of the interesting
and most exciting modern application of mathematics.

This study considers a particular case of reaction-convection-diffusion equations
with a convection term given by [22]:

ur = (A(w)ue)z + Bu)ug + C(u), (1)
where A(u), B(u) and C(u) are arbitrary smooth functions.

Eq. (1) stands for the generalized form of various second order nonlinear evo-
lution equations that describe various nonlinear processes in biology [23, 24].

The governing equation: The Murry equation which is the particular case
of Eq. (1) and considered as a generalization of the Fisher and Burgers equations is
given by [22, 25]:

Up — Ugy — AUy — bu + cu? = 0, (2)

where a, b and ¢ are nonzero constants.

2 The Analysis of MEFM

In this section, we present the description of the MEFM . The MEFM is designed by
improving the popularly known exp (—W¥(n))-expansion function method. To explore
the search for the new solutions of any given nonlinear partial differential equation
(Eq. (3)), we follow the following steps:

P(uvumuxUZaua:xauxxtw-~)7 (3)

where u = u(x,t) is unknown function, P is a polynomial in u(z,t) and its derivatives
and the subscripts stand for the partial derivatives.

Step 1: Consider the wave transformation given as follows

u(z,t) =U(n), n=k(r—ct), (4)
using Eq. (4) on Eq. (3), gives the following nonlinear ordinary differential equation
(NODE):

DU, U U U",..), (5)

where D is a polynomial of U and its derivatives and the superscripts stand for the
ordinary derivatives of U with respect to n.

Step 2: Assuming that the wave solutions of Eq. (5) can be written in the
following form:

N _r i
> im0 Ai [e (n)] _ Ap+ Are Y + ...+ Aye VY
M B[e,w(n)]j "~ By+ Bie7Y + ...+ Bye MY’
J

(6)
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where A;,B;,(0 < i < N,0 < j < M) are constants to be found later, such that
AN # 0, By # 0, and ¥ = U(n) simplifies the following ODE:

/

U (n) =e Y0 4 pe¥ 4\ (7)
Eq.(7) has the following families of solutions [26-28]:

Family 1: When p # 0, A2 —4u > 0,

U(n) = ln<_v);/;4“tanh()\22_4ﬂ(n+E)) - 22) ®)
Family 2: When p # 0, A2 — 44 < 0,
U(n) = ln( Y );MJF 4'utan( : 7)\; Jr4”(?7 + E)) - 21) (9)
Family 3: When p =0, A # 0 and A% — 4y > 0,
U(n) = ln(M). (10)

Family 4: When p # 0, A # 0 and \? — 4y =0,

2A(n+ E) +4
v =1 - 11
() n< o) ) ()
Family 5: When =0, A =0 and A2 — 4 =0,
¥(n) = In(n + E), (12)

where A;,B;,(0 < i < N,0 < j < M), E,\ u are coefficients to be found later,
and M, N are positive integers that can be obtained by using the balancing technique.

Step 3: Putting Eq. (6) and its derivatives along with the Eq. (7) into Eq.
(5) and solving, we find an equation involving polynomial of e=¥(".  We extract
system of equations from that polynomial of e~ by summing all the terms of the
same power and equating each summation to zero. To find the new solutions of (3),
we simplify the system of equations with aid of the Wolfram Mathematica 11 to find
the values of the various coefficients A;, B;,(0 <i < N,0<j < M), E, \, . Putting
the obtained values of the coefficients along with one of Egs. (8-12) into Eq. (6),
yields new solution to (3).

3 The Analysis of FDM

Presenting the finite forward difference method needs definitions of some notations
given as

1. Ax stands for the spatial step

2. At stands for the time step
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3. x; =a+ilAx,i=0,1,2,..., N are coordinates points of the mesh and N = b&—;,

tj=jAz, j=0,1,2,..,M and M = L.

4. The functions u (x,t) represents the values of the solutions at the grid points
which are u (x;,t;) =~ u; ;. the u; ; and v; ; stands for the numerical solutions
of the exact values of u (x,t) at the point (z;,%;)

We therefore present the difference operators as follows:

Hyuij = u;j+1 — i, (13)
Houg 5 = uipr1,5 — Ui g, (14)
Hmui,j = Uj41,5 — 2ui,j + Ui—1,5- (15)
Hence, the partial derivatives can be approximated through the finite difference op-
erators as: 5 o
U tUi,j
—| = O((At)), 16
5|, = ar o) (16)
ou H$ui j
—| =—=40(A 17
31'1-]- Ax +0((Az), (17)
0%u Hepui g
ou _ xx Wi, O((A 2 , 18
5, = g olas? (18)
Eq. (2) is given in operators form as:
Hyuij  Hyguij Hyu, 2
At (AP At j— = = bu; j + cu; ; = 0. (19)

The following indexed form is produced by inserting Eq. (13-15) into Eq. (19)

1
YL T AD (M),
HAD (AT + (A(AD)*2; — (Ab)ug i + (A i),
(20)

(2(At)ui,j — (At)ui_m - (Ax)Qui,j + 2\/5(A2€)(A£)2uw

4 Von-Neumann Stability Analysis

In this section, we examine the stability of the numerical scheme with the use the
Eq. (2) by using the Von-Neumann stability analysis. We consider 1™ to be the
amplication factor, and the growth factor of a typical Fourier mode to be

im®
Uy, = 1", (21)
where ¢ = /—1.

To investigate the stability of the numerical scheme with Eq. (2), we linearize
the nonlinear terms uu,, u? by making the quantity @ = u a local constant. Thus,
the nonlinear terms in the equation becomes %u, and %2 respectively. In this case
Eq. (2) becomes

Up — Ugy — aUUy — bu + cG = 0. (22)
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Inserting Eq. (16), (17), (18) and the Fourier mode (21) into the recurrence relation
(22), yields

n=p+igq, (23)
where
= m (2(a) + ai(An)(A) + (Ax)(ca(A1)
_b(Af) —1) — (At)(aﬂ(Am))cos(@)) (24)
and
= m (1~ ai(an)) (At)sin(®). (25)

The numerical scheme is said to be unconditionally stable as |n| <1 [29].

5 L, and L, Error Norms

For the test problem used in the present study, exact and numerical approximations of
Eq. (2) have been investigated. To see how the exact and numerical approximations
are close to each other we use Loy and L, error norms. The error Ly norms defined

as [? ]
N
L2 — Hueajact _ unumerchQ — h E |u§a;act _ u;zume'm,c ,
=0
and L, error norm defined as
o exact numeric _ Max)|, exact numeric
Lo = ||u —u oo = 75" Juf™*" — uj .

6 Implementation of MEFM

Consider the Murry equation given in Eq. (2).

With the following wave transformation; w(z,t) = U(n), n = = — kt, Eq. (2)
is transformed to the following NODE:

U' + kU +aUU +bU — U = 0. (26)
We obtain N = M + 2 as relation between M and N under the terms U~ and U2 by

balancing technique.

Choosing M = 1, gives N = 3. Using M =1
the following equation:

, N = 3 and Eq. (6), yields

U Ao + Are™ Y 4 Aye=2¥() 4 AgefS‘If(n)
(77) N By + Ble—\ll(n) '

We substitute Eq. (7), Eq. (27) with its first and second derivatives into Eq. (26)
and obtain an equation in e~¥(. We collect a set from algebraic equations from

(27)
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the obtained equation by setting each summation of the coefficients of =¥ with
the same power to zero. We simplify the set of equations with the aid of Wolfram
Mathematica package and obtained the values of the coefficients involved in the
equations in various cases. In order to obtain the wave solutions of Eq. (2), we insert
the values of the coefficients into Eq. (27) along with suitable condition from family

1-5.
Case-1:
Bo - 1 - 2B,
Ay = 7()\— VA —4u),A1 _ a(2Bo+ABl — BivA —4u),A2 == 4y =0,

b=—2/02 —dp k= /N2 —dp— %,

When 1 # 0, A2 —4pu > 0, we get:

1 4u
urg(z,t) = = —ay 2 -4 al A — , (28
(@) a? ( e ( ()\ + /A2 —4pu tanh[\Ill,l(x7t)]) >> (28)

where Wy 1 (z,t) = $1/A% — 4M<E+x + (% — /A% = 4,u>t>.

When =0, A # 0 and \? —4u > 0, we get:

walest) = 2<coth[;A(E bor (2o A)t)D. (29

Eq.(63) Eq (64)

Figure 1. The kink-type and singular soliton surfaces of Egs. (28) and (29) under the values
E=a=c=p=1x1=3, (15 <z <15 -2 <t<2for Eq. (28)), (—200 < z < 200,
—40 < t < 40 for Eq. (29)) and ¢ = 0.5 for the 2D graphics.

Case-2:

’ 2c
= 2 _ N . B . —
T ALM(BO( V= N) 4 2uB1) Ay = 0,45 = 0,0 = /X —du
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S R VA2 — — bEA’—dp
A1 o 2¢ca/A2—4p (B1< A 4M+ )\) + 2B0)7k - \/k2—4;,a’

When p # 0, A2 — 4u > 0, we get:

ug.1(x,t) = —(20\/)\2 — 4u( —2uBy + By (/\ + VA2 —4yp 1fcmh[\1'2,1(90,If)])))71
X (b((A( N2 4y — )\) + 4u)BO —ouB/N2 4u)) (tanh| Va1 (z,1)] — 1),

(30)

where Wy (2, 1) = %((E Fao)/AZ A — (b+ A2 — 4M)t).

When =0, A # 0 and X2 — 4 > 0, we get:

—1
b(AB; — By) [ B A Ba— G2y
uQ_Q(x,t)m<;<1+e ( X )>+B1> . (31)

Eq.(65) Eq.(66)

Figure 2. The kink-type surfaces of Egs. (30) and (31) under the values By = By = E =
b=c=1,A=3,(-5<x<5 —-1<t<1forEq. (30), (-15 <z <15 —1 < t<1for Eq.
(31)) and ¢t = 0.5 for the 2D graphics.

7 Exact and Numerical Approximations

In this section, we utilize the numerical scheme in obtaining the exact and numerical
approximations to Eq. (2) by considering Eq. (28). Inserting E =By =a=c=pu=
1 and A = 3 into Eq. (28), yields the following special exact solution:

4
e (s e
at t =0, Eq. (32) becomes
4
wold) =3 Vo 3 ++/5tanh [%\/5(1 + x)} . (3)

7
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Inserting (Ax) = (At) = 0.0001 into Eq. (20), yields the following indexed form:

1.000 x 108
Uipry = ( — 0.0001u;_1; + 0.00019999u; ;

Ui, j
+1.0001 x 10~%u? ; — 0.00009999ui7j+1). (34)

Loy and L. errors norm table

Table 1.

(Az) (At) Numerical solution  Exact Solution Eror

0 0.01 -0.0686494 -0.0686681 1.86873x10—°
0.01 0.01 -0.0686343 -0.0686530 1.86833x10°
0.02 0.01 -0.0686192 -0.0686379 1.86792x10°
0.03 0.01 -0.0686041 -0.0686228 1.86752x10~°
0.04 0.01 -0.0685890 -0.0686077 1.86712x107°
0.05 0.01 -0.0685739 -0.0685926 1.86671x10~°
0.06 0.01 -0.0685588 -0.0685775 1.86631x10~°

Table 1: Numerical, exact approximations and absolute errors of Eq. (2) by considering Eq. (28),
under the value A(z) = 0.0001 and 0 <z < 1.

Table 2.
Az) = A(t) Lo Loo
0.1 1.0073x10~2  1.9158 x10~2
0.01 1.0167 x10~2  1.9158 x10~2
0.001 5.3000x1075  1.8690 x10—%
0.0001 8.8763x10~6  1.8687x10~°

Figure 3. Numerical and exact approximations of Eq. (2) by considering Eq. (28).
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Fig. 3 illustrates the physical properties of the exact and numerical approxima-
tions, and it shows that the exact values are almost close to the numerically calculated
values. We also observed that from Tab. 1 the truncation errors depend on the choice
of Az and At. As Ax and At approaching zero we can see that the truncation errors
are getting smaller. Also from Tab. 2 as Az and At approaching zero, we can see
that the Lo and L., errors norm is getting smaller which is also indicating how close
the exact and numerical approximations are. Fig. 4 illustrates the physical features
of the absolute errors.
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Figure 4. Absolute error graphic at A(x) = A(t) = 0.0001.
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8 Conclusions

In this paper, with help of the Matlab and Wolfram Mathematica softwares, we inves-
tigate the solutions of a reaction-convection-diffusion equation, namely; Murry equa-
tion by using the modified exp(—¥(n))-expansion function method. We successfully
obtained some kink-type and singular soliton solutions with the hyperbolic function
structure to this equation. We presented the interesting 2D and 3D graphics of all the
obtained analytical solutions in this paper. Furthermore, through the obtained ana-
lytical solutions, we utilized the finite forward difference scheme in obtaining the exact
and numerical approximations to this equation. We observed that the exact solutions
is almost close to the calculated numerical solutions and we supported this comparison
with a graphic plot (Fig. 3). We also observed that as Az and At approaching zero,
the truncation errors are getting smaller. The modified exp (—¥(n))-expansion func-
tion method is efficient and simple mathematical tool that can be used to search for
the analytical solutions of various nonlinear evolution equations. And, finite forward
difference scheme is a powerful numerical method that can be used to find the ap-
proximate solutions to various nonlinear evolution equations through their analytical
solutions.
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