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1. Introduction

Integral equations play very significant role linear and nonlinear functional analysis and their applications [1]. They
are mostly in connection with functional equations. Functional equations occur with difference, differential and integral
forms [2]. (FDE) have been studied in several papers [2-12]. Functional integral equations (FDEs) and their systems have
a major importance in modeling many phenomena such as biology, ecology, physics and engineering so they have been
studied in several papers [ 13-18]. An integro functional equation is illustrated by

F{X7(p(x)a(p[f(x)]’/ I<T (X7 t7(p(t)7¢)[f(t)])dt} =0

FDEs are usually difficult to solve analytically; so there are particular methods that have solved them numerically. Up
to now to obtain numerical solutions of the first and second kind of functional integral and integro-differential equations
have been used an expansion method based on Chebyshev interpolation [7,8], Lagrange collocation method [ 16], Chebyshev
collocation method [9,10], variational iteration method (VIM) [6] and Legendre collocation method [11].

In this article we want to find truncated Taylor series solution of integro functional equation with variable bounds
represented by

vr (X)

mq m)

S P9y ek + ) = F(0) + Zxrf K% 0y (et + ) de (1)
k=0 r=0 ur(x)

where P (x), f(x), K;(x, t), u-(x), v;(x) are continuous functions on the interval [a, b], a < u,(x) < v,(x) < b and

ok, Bk, Mks Lk, Yk aT€ appropriate constants.
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The main purpose of this study is to solve (1) using the Taylor matrix method. Since the beginning of 1994, Taylor,
Chebyshev, Legendre, Laguerre, Hermite and Bessel collocation and matrix methods have been used by Sezer et al. [ 19-28]
to solve differential, difference, integral, integro-differential, delay differential equations and their systems. In this article,
by modifying and developing matrix and collocation methods studied in [19,24,25], we will find the approximate solutions
of the system (1) in the truncated Taylor series form

N (m)
~ y"(0)
YO Zyw® =Y ynX's v = )
prd n!
wherey,, (n =0, 1, ..., N) are unknown coefficients to be determined.
2. Fundamental relations
To find the approximate solution of (1) in the form of (2) first we convert the solution defined by (2)forn =0, 1,2, ..., N
to the following matrix form:
yx) = X(x) Y (3)
where
Xw=[1 x ¥ -+ ., Y=[w »i v - w].

By putting x — ax + By in the relation (3) we obtain the matrix form
y(oux + Bi) = yn (X + Bi) = X(ouwx + Br)Y

where
X(oux+ o) = [(@x + B)°  (ux+ o' (@x+ B0 - @x+ B, ey -
From the binomial expansion of the (cxx + B¢)N, we can write the relation between the matrices X(oyx + B¢) and X(x) is
X(akx + Br) = X(x) B(ak, Br) (4)
where
~(0 1 2 N -
(0)otst (g)ater (5)otst - (§)atar
1 2 N _
0 (1)“;,31? (])O‘I}:BI: <1)O‘11 A
Bew. ) =| o 0 (3) 2B ... (I;J ) o2
N
|0 0 0 <N>a,’jﬂ,?_
(N+1)x(N+1)
By substituting the relation (4) into the relation (3), we reach the matrix relation
y(oux + Bi) = yn(owx + Bi) = X(x)B(a, B)Y. (5)
Similarly, it is clear that the matrix form of y(u,t + y;) is
y(urt + yr) E YNt + yr) = XOB(g, v)Y. (6)

Now, we convert the kernel functions K; (x, t) to the matrix forms, by means of the following procedure.
The function K, (x, t) can be expressed by the truncated Taylor series as

N N
K £) =Y > K 20t (7)

p=0 g=0
where
1 9PTIK, (0,0
kK = —#, p,q=0,1,...,N, r=0,1,...,m.
b3 plg! 9xPotd
The expressions (7) can be written in the matrix forms
K (x t) =XKX' (), K =[k,] pg=01..Nr=01,..m (8)

where K, = [k;,q] ,0,9=0,1,...,N,are the Taylor coefficients matrices of functions K (x, t) at the point (0, 0).
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3. Fundamental matrix equation of Eq. (1)
We now ready to construct the fundamental matrix equation for integro functional equation with variable bounds. For
this purpose, substituting the matrix relations (5), (6), (8) into Eq. (1) and simplifying, we obtain the matrix equation

m vr (x)
/ XK X (D)X (t)B(1ar, yr) Ydt

r=0 r(X)

> POXOB(ok, BIY =F () + D Ar
k=0

or
vr (X)

{Zpk(mxoc)a(ak, B = 3 aXCoK, [
k=0 r=0 ur (x)

Following the given way for integral part, we have the matrix relation

X' (OX(0)dt B(u, Vr)} Y=fX.

{Zpk(mxu)swk, B — Y MXOKQ ()B(ir, yr)} Y=f(x 9)
k=0 r=0
where
vr (X)
Q) = [d®)] = / XX d
b @)™ — (u, (x)p)m T B
[0 ®)] = p—— . mn=0,1,...,N.

4. Matrix representations based on collocation points

To obtain an approximate solution in the form (2) of the problem (1) we use a matrix method based on the collocation
points defined by
(10)

a,
i, i=0,1,...,N.

Xi=a+
Now, let us substitute the collocation points (10) into Eq. (1) and thus, we obtain the system

{Z Pe(x)X(x)Blek, B) — Y A XK Q- (x)B(itr, r) } Y=f(): i=0,1....N

k=0 r=0

or the matrix equation

my 3
{Z PXB(c, fi) — Y XK Q B(iur, %)} Y=F
k=0 r=0

where
Py (to) 0 . 0 X(%o) 1oxo - X
0 Put) -~ 0 X(x1) 1o N
P, = . . . . s X= . =1 : . : ’
0 0 o Pt (s X(xn) 1 xy -+ Xy (N+1)x (N+1)
X)) O -~ 0 K. 0 .- 0
] 0 Xx) .. 0 i 0 K --- 0
X — _ ) . ) , K. = . . .
0 0 e X (g 0 0 Kelpinzein
Q O 0 B(ur, vr)
= S : ’ s Vo) =1 By, 1) '

0 0 e QI‘ (N+1)2><(N+])2 B(//Lr» Vr) (N+1)2><(N+1)
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f(to)
f(t,)
F= X

£(tw) d g1y
Consequently, the fundamental matrix equation of Eq. (11) can be written in the following compact form
WY = F (12)
where
mp my o
W = [wpe] = > PXB(a, Bi) — ) M XKQ, B(ur, ¥2).
k=0 r=0
Thus, the fundamental matrix equation (12) corresponds to a system of (N + 1) algebraic equations with the unknown
coefficients. If rank W = rank [W; F] = N + 1, then we can write
Y=WF

Hence, the matrix Y (and also the coefficients yq, y1, . . . , yn) is uniquely determined.
As a result, by substituting the determined coefficients into Eq. (2), we get the Taylor polynomial solution

N
INE) = yax". (13)
n=0

5. Checking of the solution

Accuracy of the approximate solutions is checked by substituting the solutions into Eq. (1)
my 1) vr (%)

Ex) = | > P yn (x + ) = FX) = Y Ar / K (%, 0y (rX + 1) dt | (14)
k=0 r= u

0 r(X)

We expect that Ey(x) = 0 on the collocation points. The closer y(x) = yy(x) the closer Ey(x) = 0. Accuracy of the
approximate solutions may not give any information about the absolute errors. To remove this limitation, we can apply the
residual correction procedure [29-32] to estimate the absolute errors.

6. Residual correction and error estimation

In this section, we will give an error estimation based on the residual function for Taylor collocation method. Using this
procedure it can be estimated the optimal n giving minimal absolute error. For modifying the procedure to Eq. (1), first we
get the residual function for Taylor polynomial solution (13) as

Rv() =) Py (cix + Bi) — (f(x) +) A /
r=0 u

k=0

vr (%)

Ki (%, ) yn (rX + 1) dt) (15)
(%)

where yy (x) denotes the approximate solution (13). By adding (15) into both sides of Eq. (1), we have
my 1m) vr (%)
> P en cux-+ ) = Y e [ Kl ten Guox-t ) de = Ry (16)
k=0 r=0 ur (x)

where ey () = y(x) — yn ().
Let ey be the Taylor series solution of (16). If

||eN — equ\/lH <é&

are sufficiently small, then the absolute error can be estimated by ey 5. Hence the optimal M for the absolute errors can be
obtained measuring the error functions ey y for different M values in any norm.

Corollary. If yy(x) is the Taylor series solution of (1), the yn v = Y~ + en u is also approximate solution for (1) and it is defined
as corrected Taylor polynomial solution. Error function for this corrected solution is Ey y = ey — en -
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7. Numerical experiments

In this section some examples will be given to explain the procedure with details and to demonstrate the effectiveness
of the method. In the examples yy (x) denotes approximate solution of (1) and yy y (x) denotes corrected Taylor polynomial
solution. Also, actual absolute error is shown by ey(x) = |y(x) — yn(X)|, estimated absolute error is demonstrated by
enm = ]yN x) — yNYM(x)| and corrected absolute error is defined by Ey y(x) = !eN x) — eNqM(x)|. All the computations
and graphs are performed by a code written in Maple 15.

Example 1. As the first example we consider the following integro functional equation with variable bounds
yx)—y (% — 1) =f(x)+ fxx_l xy(t)dt, 0 < x,t < 1where f(x) = —x*> + 2x + 1. By applying the suggested method for

N =2wherem; =1, my =0, Po(x) =P1(x) =1, ag =1, fp = 0,1 = %, Br=—-1Lu®XX)=x—1, A =1, v(x) =
X, Ko(x,t) =X, o =1, yp = 0the matrix relation form is written as

{POX(X) + P1X(x)B (%, —1) — X(x)KpQp(x) } Y = f(x),

where
1 -1 1
1 0 O 1 0 1 1
Pp=P=|0 1 0, Xw=[1 x ¥, B(E,—1>: 5 T
0 1
0 O —
4
0 0 O
Ke=|1 0 0
0 0 O
) X -1 ¥ (x-13
2 2 3 3
¥ x-1% X -1 x* x-1*
Q&) = X X« >y ox )
2 2 3 3 4 4
X x-1 X x-1D* ¥ (x-1y
3 3 4 4 5 5

By substituting the collocation points in the matrix relation we achieve the augmented matrix as follows

0 1 -1 : 1
[W:F]=|-05 125 -—0.3541666667 : 1.75].
-1 1 0.4166666667  : 2

If we solve this system the Taylor coefficient matrix is obtained as
Y=[-1 1 0].

Thus we have the approximate solution for N = 2 y(x) = x — 1, which is the exact solution of the problem.

Example 2 ([9]). Now we consider the following Fredholm functional integral equation of the second kind

1
y(x) + e *y(0.8x) + / ey (tdt = f(t)
-1

which has the exact solution y(x) = e*. We apply the presented method to find the approximate solutions by the truncated
Taylor series for N = 5, 8, 10, 14. For N = 5 y5(x) obtained as

ys5(x) = 0.9999840757381849127 + 0.99993948821779852x + 0.4988127325595940402x°
+0.1660996405275260147x> + 0.04611117051955744947x* 4 0.0099937988170189x".

In Table 1 the numerical results of approximate and corrected approximate solutions for (N, M) = (8, 10), (14, 16)
are presented. As it is seen from Table 1 when the values of N, M increase the Taylor polynomial solution yy(x) and the
corrected Taylor polynomial solutions yy y(x) approach the exact solution y(x). The actual absolute errors are compared
with the estimated and corrected absolute errors in Table 2. In addition, in Fig. 1 corrected absolute errors are compared with
different values of N, M. When Fig. 1 is analyzed it is seen that how much N, M increase the absolute errors get decreased.
Finally, in Table 3 the absolute errors obtained from the presented method are compared with the results obtained by the
Chebyshev collocation method [9] for different values of N. From these data we can say that the presented method provides
a better approximation when compared to Chebyshev collocation method [9].
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Numerical results of the exact solution and the approximate solutions of Example 2 for (N, M) = (8, 10), (10, 12).
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Xi Exact Approximate Corrected approximate Approximate solution for Corrected approximate
solution solution for N = 8 solution for N =10 solution for
y(x;) = e Ys(xi) ¥s,10(X:) Yo (i) Y10.12(X:)
Numerical solutions
—1.0 0.367879441171 0.3678760382 0.367879441285 0.367879404465 0.367879441171
—0.6 0.548811636094 0.5488116259 0.548811636108 0.548811636168 0.548811636094
—0.2 0.818730753077 0.8187307911 0.818730753090 0.818730753505 0.8187307530780
0 1 1.0000000522 1.000000000016 1.000000000600 1.0000000000000
0.2 1.221402758160 1.2214028287 1.221402758182 1.221402758988 1.22140275816023
0.6 1.822118800390 1.8221189639 1.822118800427 1.822118802058 1.8221188003906
1.0 2.718281828459 2.7182878673 2.718281828526 2.718281883986 2.7182818284592
Table 2

Comparison of the absolute errors (actual, estimated, corrected) of Example 2 for (N, M) = (10, 12), (14, 16).

Xi

Actual absolute errors

Estimated absolute errors

Corrected absolute errors

forN = 10 forN =10and M = 12 forN =10and M = 12
e1o(X:) e10,12(Xi) E10.12 (%)
-1.0 0.364e—007 0.367e—007 0.147e—012
—-0.6 0.542e—009 0.741e—010 0.436e—014
—-0.2 0.818e—009 0.427e—009 0.325e—013
0 0.1e—008 0.600e—009 0.476e—013
0.2 0.137e—008 0.828e—009 0.671e—013
0.6 0.247e—008 0.166e—009 0.135e—013
1.0 0.563e—007 0.555e—007 0.227e—012
Xi Actual absolute errors Estimated absolute errors Corrected absolute errors
forN = 14 forN =14and M = 16 forN =14and M = 16
e14(X:) e14,16(Xi) E14,16(%:)
-1.0 0.10e—009 0.13e—011 0.46e—018
—-0.6 0.15e—010 0.57e—014 0.35e—019
—0.2 0.22e—010 0.13e—013 0.64e—019
0 0.75e—010 0.19e—013 0.91e—019
0.2 0.16e—009 0.26e—013 0.12e—018
0.6 0.40e—009 0.49e—013 0.21e—018
1.0 0.49e—009 0.16e—011 0.44e—018
Table 3

The comparison of the absolute errors obtained by the Chebyshev collocation method [9] and
the presented method in Example 2.

N Presented method Method [9]
5 1.2e—006 2.23e—005
8 3.1e—010 8.27e—009

10 8.7e—013 3.25e—011

14 3.1e—018 1.06e—015

Example 3 ([6,10]). In this example, we solve the following Volterra integral equation of the second kind

o+ (1) o

0

/X flydt =f(x), 0<x<1.1

where f(x) = (x + 1)e* + xe~2%. It can be easily obtained that the exact solution of this equation is y(x) = e*. Using
the procedure in Section 4 the approximate solution yy (x) and corrected approximate solutions yy j (x) are calculated for
(N,M) = (3,5), (4,6), (5,7) and the findings are presented in Table 4. The numerical values of absolute error functions
(actual, estimated and corrected) are compared for different values of N, M in Table 5. From these data, it is noticed that the
corrected absolute errors are closer to zero than actual absolute errors. Therefore, the corrected approximate solutions are
quite close to exact solutions. Also, in Table 6 the comparison of the absolute errors are obtained by the variational iteration
method (VIM) [6], the Chebyshev polynomial method [10] and our method have been presented. As a result, we can say
that our method gives better approximation than the others. In Fig. 2, the orders of the corrected absolute errors with the

increase of N, M values have been examined.
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N=5, M=7

N=8, M=10

1e-06

1e-07

1e-08

1e-09

1e-10=

1e-10 I

-1.0

\ |
J_"n, [ |
"'.I [ |
!
1
]( Te-11% |
-5 0. 5

N=10, M=12

1e-12
-1.0

{ 7e-16 |

4e-16 1

2e-16

4L
=}

-1.0

-5 0. 5

Fig. 1. Corrected absolute errors for Example 2.

Numerical results of the exact solution and the approximate solutions of Example 3 for (N, M) = (4, 6), (5, 7).

Xi Exact Approximate solution Corrected approximate Approximate solution Corrected approximate
solution forN =4 solution for forN =5 solution for
y(x;) = e Ya(xi) Va6 (Xi) V5 (X:) Vs.7(xi)
Numerical solutions
0 1 1.0 1.0 1.0 1.0
0.2 1.221402758160 1.221418929924 1.221402817013 1.221399868181 1.2214027553169
0.4 1491824697641 1.491807170607 1491824677707 1491821490146 1.4918246985692
0.6 1.822118800390 1.822377594578 1.822118822512 1.822181860977 1.8221187995560
0.8 2.225540928492 2.226490526881 2.225540912177 2.225974355345 2.2255409268373
1.0 2.718281828459 2.719653745069 2.718282077119 2.720777845559 2.7182818216242
1.1 3.004166023946 3.005062585901 3.004166083759 3.009290624488 3.0041659631211
Table 5

Comparison of the absolute errors (actual, estimated, corrected) of Example 2 for (N, M) = (4, 6), (5, 7).

Xi Actual absolute errors Estimated absolute errors Corrected absolute errors
forN =4 forN =4andM =6 forN =4and M =6
eq(xi) €4,6(X;) Es6(x:)

0 0 0 0

0.2 0.16171764508e—004 0.16112911526e—004 0.5885298e—007

0.4 0.17527034040e—004 0.17507100761e—004 0.1993327e—007

0.6 0.25879418837e—003 0.25877206664e—003 0.2212172e—007

0.8 0.94959838946e—003 0.94961470399e—003 0.1631452e—007

1.0 0.13716679500e—002 0.13716679500e —002 0.2486605e—006

1.1 0.89650214214e—003 0.89650214214e—003 0.5981316e—007

Xi Actual absolute errors Estimated absolute errors Corrected absolute errors
forN =5 forN =5and M =7 forN =5and M =7
es(x;) es7(Xi) Es 7(x;)

0 0 0 0

0.2 0.288997874775e—005 0.288713549287e—005 0.28432548e—008

0.4 0.320749515719e—005 0.320842315210e—005 0.92799490e—009

0.6 0.630605870487e—004 0.630614215242e—004 0.83447548e—009

0.8 0.433426852597e—003 0.433428507701e—003 0.16551041e—008

1.0 0.249601710031e—002 0.249602393508e—002 0.68347654e—008

0.512460054254e—002

0.512466136787e—002

0.60825329e—007
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N=3, M=5 N=4, M=6 N=5, M=7
1e-3
/ /
/ 1e-07§ | _,\\ / },
R 1e-08
1605 /f W\ (\ n \ P,
' 4
x 1e-08 \ II(\' Xf
09! ! \
16-06 \ ~ / 1609 VAW
Vo / 1e-09 / \/
\f\/ \
|
1e-07 1e-10
' | 1e-10
1e-08 1e-11 1e-11
— X b 1X —t————+—+
2 4 6 810 2 4 6 810 2 4 6 810
Fig. 2. Corrected absolute errors for Example 3.
Table 6

The comparison of the absolute errors obtained by the variational iteration method [6],

Chebyshev collocation method [10] and the presented method in Example 3.

N Presented method Method [6] Method [10]
3 1.0e—004 4.6e—004 2.2e—004
4 3.0e—007 7.3e—007 9.2e—006
5 5.8e—008 1.1e—007 4.1e—007

Numerical results of the exact solution and the approximate solutions of Example 4 for (N, M) = (8, 10), (9, 11).

Xi Exact Approximate solution Corrected approximate Approximate solution Corrected approximate
solution forN =8 solution for forN =9 solution for
y(xi) = Sin(x) Vs (xi) ¥s.10(Xi) Yo (xi) Yo.11(x:)

Numerical solutions

0 0 0.166857e—004 0.173027e—008 0.2525237e—005 0.4359096e—010

0.2 0.1986693308 0.1986686537 0.1986693289 0.19867333711 0.19866933074

0.4 0.3894183423 0.3893930368 0.3894183398 0.38942267382 0.38941834224

0.6 0.5646424734 0.5646220969 0.5646424701 0.56464885284 0.56464247330

0.8 0.7173560909 0.7173209250 0.7173560861 0.71736503043 0.71735609076

1.0 0.8414709848 0.8414152532 0.8414709771 0.84148541445 0.84147098459

Example 4 ([11,16-18]). Our last example is the following Volterra-Fredholm integral equation

2x 1
Xy(x) + €'y (2x) — / ety (t)de + / e y20)dt = f(x)
0 0

where f(x) = —% — %e"‘z €os2 + ze* cos2x — ;e 2sin2 — %e3" sin 2x + x? sinx + e* sin 2x.

The exact solution of this equation is y(x) = sin(x). The numerical results of this example are represented by Table 7. As
you can see in Table 8 the actual absolute errors, estimated absolute errors and corrected absolute errors are calculated for
(N,m) = (5,7), (8, 10), (9, 11) in Table 8. Additionally, Fig. 3 shows the corrected absolute errors for different values of
N, M. When the findings which are obtained by Legendre collocation method in [11], Lagrange collocation method in [16]
and Taylor collocation and matrix method in [17,18] are compared with the presented method, it is observed that the

absolute errors of the presented method converge to zero rapidly for same values of N. You can see that in Table 9.

8. Conclusion

In this study, to solve the Volterra type functional integral equations with variable bounds and mixed delay numerically,
we introduce a matrix method depending on Taylor polynomials and collocation points. Also the residual correction
procedure is given to estimate the absolute errors. The present method and the error analysis procedures are applied to
some examples which have been solved by other methods in the literature. The method has advantages such as;

e The present method is effective and by writing an algorithm in Maple 15, we can calculate the approximate solutions
and absolute errors in short times.
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N=5, M=7

1e-3

5e-05

2e-05

0.

2

4

Fig. 3. Corrected absolute errors for Example 4.

N=8, M=10
—
- 2e-10
/_/ /_4./’
i
;
!f 1e-09 /
1e-10
1e-11
1e-12
—+ X —t——— X
6 810 0. 2 4 6 810

1e-10

8e-11

6e-11

N=9, M=11

x

Comparison of the absolute errors (actual, estimated, corrected) of Example 4 for (N, M) = (8, 10), (9, 11).

Xi

Actual absolute errors
forN =8

Estimated absolute errors

forN =8and M = 10
es 10(Xi)

Corrected absolute errors
forN =8and M = 10

Eg 10(x:)

0.16685781624e—004
0.67702899078e—006
0.25305442864e—004
0.20376421549e—004
0.35165856326e—004
0.55731593897e—004

0.16684051351e—004
0.67514989359e—006
0.25302991432e—004
0.20373150372e—004
0.35161071778e—004
0.55723966844e—004

0.173027328082e—008
0.187909718729e—008
0.245143230119e—008
0.327117637004e—008
0.478454866545e—008
0.762705335039e—008

Actual absolute errors
forN=9

Estimated absolute errors

forN=9and M = 11
€9, 11(Xi)

Corrected absolute errors
forN=9and M = 11
Eg 11(Xi)

0.252523777245e—005
0.400632472238e—005
0.433152051181e—005
0.637944544234e—005
0.893953385037e—005
0.144296393900e—004

0.252528136341e—005
0.400637845105e—005
0.433158913852e—005
0.637953833336e—005
0.893966879653e—005
0.144298542965e—004

0.4359096268288e—010
0.5372867348369e—010
0.6862670713931e—010
0.9289102012698e—010
0.1349461641220e—009
0.2149064882124e—009

Table 9

The comparison of the absolute errors obtained by the Taylor collocation [17], the Taylor matrix [18] methods, Lagrange collocation method [16], the
Legendre collocation method [11] and the presented method in Example 4.

N Presented method Method [11] Method [16] Method [17] Method [ 18]
5 1.4e—004 2.93e—005 6.23e—005 6.23e—005 3.68e—004
8 7.4e—009 3.94e—008 1.77e—007 1.89e—008 1.24e—005
9 2.4e—010 2.29e—009 7.21e—006 2.35e—008 3.46e—007

e Asitis seen from the numerical examples, the method provides a better approximation than the all other methods such
as the Legendre collocation method, the Lagrange collocation method, the Chebyshev collocation method, VIM method
for different values of N.

e Even if the exact solution of the main problem is not known, the absolute errors are estimated with residual correction

procedure.

The method also can be developed and applied to differential functional integral equations with delay, nonlinear
functional integral equations and functional integral equation systems.
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