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ABSTRACT
 In this paper, the proposed estimator for the unknown nonparametric regres-
sion function is a Nadarya-Watson (Nadarya, 1964; Watson, 1964) type kernel estima-
tor. In this estimation procedure, the censored observations are replaced by synthetic 
data points based on Kaplan-Meier estimator. As known performance of the kernel 
estimator depends on the selection of a bandwidth parameter. To get an optimum 
parameter we have considered six selection methods such as the improved version of 
Akaike information criterion (AICc), Bayesian information criterion (BIC), generalized 
cross validation (GCV), risk estimation with classical pilots (RECP), Mallow’s Cp cri-
terion and restricted empirical likelihood (REML), respectively. In addition, we discuss 
the behavior of the estimators obtained by these selection methods under different 
confi gurations of the cens oring level and sample sizes. Simulation and real lifetime 
data results are presented to evaluate and compare the performance of the selection 
methods. Thus, a optimum criterion is provided for smoothing parameter selection.
 Key-Words: Kernel Smoothing, Kaplan-Meier Estimator, Nonparametric Re-
gression, Censored data

1.INTRODUCTION

 Censored data arises in a number of applied fi elds, such as medical, 
sociology, biology, risk theory, demography, and other appropriate areas. 
Observations in these fi elds are usually incomplete, especially in medical 
studies. For example, some patients may still be alive, disease-free or die at the 
termination of a medical study. Hence, rather than an observation of a patient’s 
lifetime we observe only the minimum of the lifetime and a censoring time.
There are mainly two conventional statistical methods used in analysis of the 
functional relationship between covariates and censored response, known as 
lifetime or failure time. One of these methods is parametric, if the distribution 
of lifetime is known. The second is nonparametric, if distribution of lifetime 
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is unknown. Although the parametric methods can be simple and effi cient 
if the model is correctly specifi ed, they are not widely used in general, 
since their restrictions and assumptions on the model. Instead, we focus on 
the nonparametric methods do not require the knowledge of the underlying 
distribution of the lifetime.
 Let’s consider the nonparametric regression model given by
 ( )i i iY g X    (1)
 where iY ’s are response values and iX ’s are the values of the 
explanatory variable and i ’s are independent and identically distributed 
random errors with zero mean and constant variance 2  and  g  is an unknown 
function. 
 In our study, we are interested in estimating the unknown function 

(.)g  when Y  is observed incompletely and right censored by a random 
variable C, but iT ’s are observed completely. Therefore, instead of observing 
( , )i iY X  we observe   , , , 1i i iX T i n    with

   1
min , with ( )


  n

i i i i i iiT Y C I Y C  (2)
 where iT ’s are the observations of the updated response variable with 
unknown distribution K and I(.)i   is the sign function that indicates the 
existence of the censorship. If there is a censorship on response variable then  
and otherwise . In order to provide the consistency and accuracy of the model 
(1), we need some assumptions for distribution of (X, Y, δ) such that
 i. Y and C are independent and unknown distributed as F and G, 
respectively. Also, F and G have no jumps in common 
 ii. )Y|CY(P)X,Y|CY(P 
 The fi rst assumption is the common censorship assumption when 
we estimate the right censored data. The jump assumption does not exclude 
discontinuities of F and G at distinct points. The second assumption means 
that given response variable, we cannot obtain any more information from the 
covariate whether there is a censorship or not. See Stute (1993) for additional 
details on the second assumption.
 In this paper we propose a Nadarya-Watson kernel type smoothing to 
fi t model (1) when response variable T  is at risk of being censored. Effi cient 
implementation of this smoothing method requires a proper smoothing 
parameter. The mentioned parameter is determined by the selection methods, 
such as AICc, BIC, GCV, Cp, RECP, and REML, respectively. In this context, 
this paper basically presents and compares these estimates of the lifetime T
given the covariate X under censorship.
 Many authors have dealt with the estimation problem of the 
nonparametric regression model based on kernel smoothing. Examples of 
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this work include Watson (1964), Wong (1983), Vieu (1991), Terrel and Scott 
(1992), Hardle (1990), Stute (1993), and Hardle et. al., (1997). Also, a number 
of authors consider the kernel smoothing for estimating the nonparametric 
function based on censored data. For example, Kaplan and Meier’s (1958) 
product limit method is the most commonly used technique for estimating the 
survival function. Koul et. al. (1981) proposed the synthetic data generation for 
estimation of right-censored data. Leurgans (1987) studied random censoring 
and synthetic data for linear models. Zheng (1984) made a dissertation about 
regression with censored data. Recently, empirical likelihood semi-parametric 
random censorship models are discussed by Wang and Li (2002). 
 According to organization of this paper, fundamental ideas are 
examined in section 2. In Section 3, the kernel type estimators in nonparametric 
models are discussed. Estimating risk and effi ciency are examined in Section 
4. Section 5 reviews six different bandwidth selection methods. Section 
6 compares these methods via simulated data sets. In Section 7, a real data 
example is given. Finally, the concluding remarks are presented in section 8. 
Proofs and supplemental technical materials are relegated to the Appendix.

2. THE FUNDAMENTAL IDEAS

 Let 1,..., nT T and 1,..., n   be nonnegative independent and identically 
distributed random variables. In the model (2), iT ’s are the observed lifetimes, 
while i ’s store up the information whether an observation is censored or 
uncensored. Moreover, we denote the unknown probability distribution 
functions of the lifetimes, the censoring times, and the observed lifetimes as 

( ) ( ),F z P Y z   ( ) ( )G z P C z  , and ( ) ( ), ( )K z P T z z R   , respectively. 
Also, for these probabilities it can be defi ned as three supremum points 

 

sup{ : ( ) 0},
sup{ : ( ) 0},

F

G

z R F z
z R G z




  
  

 and
 sup{ : ( ) 0}K z R K z    .
 Because of the independence of Y and C, the unknown distribution 
function of observed lifetimes can be written as
 ( ) ( ). ( ) ( )K z F z G z P T z  
 In order to ensure that model is identifi able, we assume that
 sup{ : ( ) 0} min{ , }K F Gz R K z     
 One of the main goals in this paper is also to estimate the unknown 
distribution functions  F and G. If we use uncensored data, the nonparametric 
estimate of function F can be obtained by
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 1

1

1ˆ ˆ( ) ( ,{ ,..., }) I
i

n

n n Y z
i

F z F z Y Y
n 



    (3)

 where I
iY z  is an indicator function for the values of lifetime. It is 

well known that the Glivenko-Cantelli theorem extends the law of large 
numbers and gives the uniform convergence. This theorem implies that 
ˆ ( )nF z  is a strongly uniform consistent estimate F(z). In other words, uniform 

convergence is given by (see Van der Vaart, 1998¸ Stute and Wang 1993)
 ˆ ˆsup ( ) ( ) 0n n

t R
F F F z F z

 
     (4)

 Because of the censorship, ˆ ( )nF z  cannot be directly calculated by 
equation (3). The most important reason for this case, the number of lifetime 
greater than z are not exactly known for all  0, Fz . In this case, it is needed 
to fi ned a nonparametric estimate of F. It is emphasized that the unknown 
estimate of F can be provided by Kaplan-Meier estimator (Kaplan and Meier, 
1958).

 

( )

( )

1

ˆ ( )
1

i

i z

n

n
t
T

n iF z
n i







     
 ( ), 1,...,z R i n   (5)

 The estimates for distribution G are similar to those for F in (5), given 
by 

 

( )

( )

1

1

ˆ ( )
1

i

i z

n

n
t
T

n iG z
n i









     
 ( ), 1,...,z R i n   (6)

 Where (1) ( )...  nT T   are the ordered values of  observed lifetimes 
and (1) ( )... n    are the corresponding censoring indicators connected with 
observed lifetimes iT . It is also note that ties among lifetimes and censoring 
times are defi ned by 
 If ( ) ( ) ( ) ( ), 1     i j i jT T i j       (7)
 As in explained above, in this ordering censored lifetime data points 
( ( ) i 0) take place before uncensored data points ( ( ) i 1). Moreover, we 
have (1) ( )0 ...    n KT T where, ( )nT  is the largest value of the ordered 
sequence. In this case, as n , ( ) n KT  (see Peterson, 1977).

3. ESTIMATION METHOD 

 Let ( , )X Y  be random variables vector taking values in dR R . 
In nonparametric regression model (1) we want to fi nd an estimation of the 
function  ( ) , ( )dg X E Y X X X R    from the data
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    1 1, ,..., ,n nX Y X Y

 Suppose that we are interesting a class of estimators for g , 
 B( ) :hg h   , with   denoting any index (known as bandwidth or 

smoothing parameter) set. The mention index parameter h  may be any scalar 
or vector. Also, let ( )hg X  be a function based on bandwidth h . The 2L  loss in 
estimating g  is defi ned by  

 
   21

2
1

( )
n

i hi
i

L h n g g X



   (8)

 where hig  is  i.th entries of the n -vector hg . Note that this squared 
Euclidean distance (8) between g  and hg  measures the closeness of hg  to g. 
The expected value of the 2L  loss is so-called 2R  risk, given by 

 
   21

2
1

( )
n

i hi
i

R h E n g g X



   
 

  (9)

 In here, the key idea is to fi nd a regression function g  with ( )hg X  
close to ( )g X . Such a regression function minimizes the 2R  risk over all 
measurable functions : dg R R .
 Another measure that is connected to (16) is the 2P  risk, sometimes 
called as mean square error (MSE) of prediction. The 2P  risk is 
     2

2 2P h R h   (10)
 where 2  is a variance of random error terms (see Eubank, 1988). 
 Since the estimators in B(H) are obtained by elements in index set H, 
an optimum estimator can be described with an index value h  minimizes the 

2R  or 2P risk. But these risk measures cannot be computed directly because 
of they depend on unknown true regression function g  and a smoothing 
parameter h . 
 Let’s consider the equation (2). In the regression analysis, one wants 
to estimate T  from the data

     1 1 1 1 1 1, , ,..., , , X T X T
 The conditional expected value of the regression function at a point 
X  can be obtained by averaging those iT ’s where iX is close to X . Such 

an estimate can be obtained by kernel smoothing. Because of the censoring 
mechanism, for estimating (.)g  ordinary kernel smoothing method can not 
be applied directly here. To overcome this problem we considered the new 
response observations in (2). Also, we transformed the right-censored variable 
“T” into synthetic variable ““ ” (see Koul et. al.,1981). In practice, because 
of the values T are censored observations, the censoring distribution G is 
usually unknown. In this case, Koul et al. (1981) proposed to replace G by its 
Kaplan-Meier estimator in (6). 
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 Using the equation (6) the synthetic response variable can be obtained as

 
   ˆ

ˆ1 ( ) , 1,2,...,i i iiG
T T G T i n     (11)

 From this synthetic data, the model (1) can be rewritten as 

      ˆ 1 ...T g = nG
g X g X      (12)

 where ˆ T g
G

   . Conceptually, as n ,   0   . This 
information will help us to defi ne estimates for the function in (12). Then, 
kernel smoothing can be used as a nonparametric approcah to get a proper 
estimate of the (.)g  in (2). 
 The kernel smoothing is one of the most widely used methods, which 
considers a weighted average of the data. Let ˆîG

T  be a kernel smoother estimate 
of the i.th response observation. Then, a kernel smoother is defi ned as follows
    ˆ

1

ˆ



n

ij jiGh
j

T w t   (13)

 where jt ’s are elements of the synthetic response variable ˆîG
T  and 

ijw ’s are known as kernel weights given by Nadaraya-Watson (1964). The 
specifi c weights for the kernel smoothing is expressed as 

 1

( )
( )

j

ij n
j

j

x X
K

h K uW
x X K u

K
h

 
 
  

 
 
 


 (14)

 where h  is called bandwidth, and 1ijw  . The function ( )K u  
determines the shape of the regression curves, while the parameter h  
determines their width and also governs the amount of averaging.
 It comes out that the kernel estimator expressed in (13) is a weighted 
average of the response with right censored data. This approach is a called 
kernel smoothing because of a kernel function, K, to determine the weights. 
These kernel functions have the following properties:
 •   0K u  for all u , 
 •    K u K u  =  K u and 
 •   1K u du  . 

 For example, Gaussian kernel function,

 
21 1( ) exp( ), [ , ]

22GK u u u


    

 and other alternative kernel functions provide the properties of the 
kernel weight function,  K u . Also, in order to ensure that kernel estimator 
is consistent, we assume that 
 If u  , and  2E T    then ( ) ,K u du    ( ) 0u K u   
and suppose that 0,h   nh   then it can be seen that
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 1

1 ˆ( ) ( )
n

P
ij ij i i

i
W t g X g X

n 

     (15)

 where P  denotes “convergence in probability” according to 
Slutsky’s theorem (1925).
 The kernel smoother (13) also can be rewritten as in matrix form
  ˆ ˆ

ˆ ˆ T W T gh hGh G   (16)

 where h ijw  W =  is a kernel smoother matrix based on the parameter h . 

4. ESTIMATING THE RISK AND EFFICIENCY

 In previous section the 2L  loss, 2R  and 2P  risks are considered as 
a measure of performance of an estimator of g . Here we will focus on the 
estimating of these risks measures for kernel estimator using right censored 
data. According to  B( ) :hg h   , it can be said that for each h  there is 
an n n  smoother matrix Wh  in (16). Accordingly, the equation (13) can be 
rewritten as 

 
  ˆ1ˆ ˆ ˆ( ),..., ( )g W Th h h n h G
g X g X    (17)

 Also, it is assumed that Wh  is a positive semi-defi nite and symmetrical 
matrix. 
 The main goal is to select an appropriate estimator of g  from among 
the elements  ˆ :hg h . In order to fi nd an optimum estimator there are some 
performance measures which are widely used and accepted. The 2P  risk in 
(10), one of these measures can be obtained by average value of residuals 
sum of squares  1n RSS h . The mentioned residual sum of squares (RSS) is 
defi ned as
    2

ˆ
1

ˆ( )
n

h i iG
i

RSS h g T


   (18) 

 In matrix form, equation (18) can be stated as 

 
     

 
ˆ ˆ

2

ˆ ˆ

ˆ ˆh hG G

hG G

RSS h   

 

g T g T

T I W T
  (19)

 where ˆˆ h h G
g W T  is defi ned as in (17). The expected value of squared 

residuals given in (18) or (19) is also known as MSE of prediction, which in 
this case is
    2 2

ˆ ˆˆ h hG G
MSE h E E  T g I - W T  (20)

 It follows directly from (20) that  MSE h  can be described as
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   

   
2

2 2

h h h

h h h

MSE h

n

 

     

g I W g

W W W  (21)

 Hence, it follows the equation (21) that  1n RSS h  is a biased 
estimator of the 2P  risk.
 Details on the derivation of the Equation (21) can be found in the 
Appendix A
 In practice, the equation (21) cannot be computed directly because of 
it depends on unknown residual variance 2

 . As in linear regression, we may 
develop an estimator of 2

  from the residual sum of squares (18). 
 As a result, an estimate for 2

 , as

 

   
 

 2
2ˆ

RESh

RSS h RSS h RSS h
n p DFtr   
 I W

    (22)

 where  RSS h  is defi ned as in (19) , and
 
  

 

   
2

2

RES h

h h h

DF tr

n tr tr

 

  

I W

W W W
    (23)

 called the residual degrees of freedom ( RESDF ) for pre- chosen h  with 
any selection criteria.
 As in parametric regression, RESDF  can be used in estimation of 2


. Since MSE also has a negligible bias term, the equation (22) is an unbiased 
estimate of 2

  (see Ruppert et al., 2003).
 As stated previously, the expected loss of a vector ˆ hg  estimator can 
be measured by estimation of so-called 2R  risk.  Our application of the results 
of the simulation experiments is to approximate the risk in the nonparametric 
regression models. Such approximates have the advantage of being simpler to 
optimize the practical selection of bandwidth parameters. For convenience, 
we will work with the scalar valued mean dispersion error.
 Defi nition 4.1: The 2R  risk is closely related to the matrix valued 
mean dispersion error (MDE) of an estimator ˆ hg  of g  (see (17)). The scalar 
valued version of the MDE matrix is specifi ed as 

 

     
  

ˆ ˆ ˆSMDE

ˆMDE ,
h h h

h

E

tr

  



g ,g g g g g

g g
 (24)

 Lemma 4.1: Consider different estimators ˆ hg . The mean dispersion 
error (MDE) of these estimators is the sum of the covariance matrix and the 
squared bias: 
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   

   

2

1

2

2 2

ˆ ˆSMDE ( ) ( )

ˆ

n

h i hi
i

h

h h h

E g X g X

E

tr



 

 

  

g

g g

I W g W W
 (25)

 Proof: See Appendix B.
 As shown in the lemma 4.1 the SMDE matrix decomposes into a sum 
of the squared bias and variance of the estimator. Hence, we can compare the 
quality of two estimators by looking at the ratio of their SMDE in (25). This ratio 
gives the following defi nition concerning the superiority of any two estimators.
 Defi nition 4.2: The relative effi ciency of an estimator  1ˆ E hg  
compared to another estimator  2ˆ E hg  is defi ned by the ratio, 

 

  
  

  
  

1 1

2 2

ˆ ˆ, SMDE
ˆ ˆ, SMDE

E E

E E

R h h
RE

R h h
 

g g g

g g g
  (26)

  where  .R  denotes the scalar risk that is equivalent to the equation 
(24).  2ˆ E hg  is said to be more effi cient than  1ˆ E hg  if 1RE  .

5. BANDWIDTH SELECTION CRITERIA

 This section provides an overview of several criteria which have 
been used for smoothing parameter (or bandwidth) selection. The key idea 
is to select an appropriate value for the parameter h , bandwidth. As stated in 
previous section, the optimum h  is defi ned as the smoothing parameter which 
minimizes the average of the mean square errors (AMSE), given by

    
22 2

ˆAMSE 1
h hG

tr
n n

h    I - W T W  
 
 where hW  is given in equation (16). The estimator of the error 
variance 2

  is defi ned in the equation (22).
 The selection criteria are summarized as 
 GCV Criterion: The criterion function is defi ned by Craven and 
Wahba (1979), and described as  

 

 
 

2
ˆ

21

1GCV( ) h G

h

-
h

n n tr


  

I W T

I W
    

 where hW , as is defi ned in (16), is smoother matrix based on h
 As in other criteria, to use GCV for parameter selection, we simply 
choose the parameter h  giving smallest GCV over the set of parameter 
considered.
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 AICc Criterion: Hurvich et. al., (1998) suggested an improved version 
of AIC which is called AICC, which is defi ned by

 

 

 

2
ˆcAIC ( ) 1 log I

2 ( ) 1 ( ) 2

h G

h h

h n

tr n tr

     
      

W T

W W
    

 BIC Criterion: The BIC is also called as Schwarz Information 
Criterion (SIC). The criterion is expressed as

 

 
   

2
ˆBIC( ) 1

og( )
h G

h

h n -

l n n tr





I W T

W
     

 REML Criterion: The derivatives of both the REML and the GCV 
with respect to h  can be determined quite naturally in a common form (see 
Reis et al., 2009). The REML score can be specifi ed as

    2
ˆREML( ) I ë hG

h - n tr W T W

 CP Criterion: Mallows (1973) suggests the pC  criterion in the 
regression case. If 2  is recognized, an unbiased estimate of the residual sum 
of squares is provided by pC  criterion:

  2 2 2
ˆp

1( ) ( I) 2 ( )h hG
C h tr

n
    W T W

 Unless 2  is known, in practice an estimation for 2  can be given by (22).
 RECP Criterion: A direct computation leads to the bias-variance 
decomposition for ˆ( , ) hR g  g :

   

2

2 2

1ˆ ˆ( ) =  
n

1 ( )

h h

h h h

R E

tr
n

   

g, g g - g

W I g W W

 A clear–cut explanation shows that  ˆ( , )= C ( )h pR hg  g . Because 
the risk ˆ( , )hR g  g  is an unknown quantity, so-called risk is now estimated by 
computable quantity ˆ ˆ( , )

ph hR g  g . The obtained expression for ˆ ˆ( , )
ph hR g  g  is 

 
  

p p

p p

2

2
2

1ˆ ˆ ˆ ˆ( ) = 
n

1 ˆ ˆ ( )

h h h h

h h h h h

R E

tr
n

   

g , g g - g

W I g W W

 where 
p

2ˆh  and 
p

ˆ hg  are the appropriate pilot estimates for 2  and g
, respectively. The pilot ph  selected by classical methods. (see Lee, 2003-
2004)
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6 SIMULATION EXPERIMENT

 In this section we performed a Monte-Carlo simulation study to 
present and compare the kernel smoother estimators based on different 
bandwidth selection criteria given in section (4). To see the performance 
of the small, medium and large samples of each criterion we consider three 
censoring levels (CLs), 10%, 30%, and 50% and three samples sizes with n= 
50, 100, and 200. The number of replication was 1000 for each of the samples. 
All calculations are carried out in MATLAB software. The empirical data is 
generated as;

  ( ) sin( 4.8 )sin(1.4 )    i i iT g X X X  (27)

 where 
1

0.5



   
 

n

i
i

iX
n

 and  2~ 0, 1i N   .

 6.1 Empirical Evaluations 
 In our simulation study 54 different confi gurations are carried out. 
Furthermore, we used the MSE values to evaluate the quality of any curve 
estimate ( ˆˆ ( ) ( )h i h ig X  g ):

 
 

n
2

i i
i =1

1 ˆ( ) ( )hMSE g X g X
n

   (28)
 
 In the nonparametric regression setting, the outcomes from Monte 
Carlo simulation are illustrated in the following Tables and Figures.
 Table 1 compares the MSE values connected to the nonparametric 
regression models with right censored data under different censoring levels 
and sample sizes. The main idea is that a model with a better fi t denotes a 
minimum squared Euclidean distance between the data and fi tted values, and 
thus it has a minimum MSE value.
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MSE values from nonparametric regression models 
Table1

n = 50
 CL=10% CL=30% CL=50%

AIC 0.067 0.129 0.201
GCV 0.066 0.126 0.187
RECP 0.063 0.111 0.170
BIC 0.070 0.135 0.206

REML 0.067 0.131 0.204
Cp 0.057 0.103 0.165

n = 100
AIC 0.047 0.084 0.106
GCV 0.047 0.084 0.105
RECP 0.045 0.077 0.101
BIC 0.054 0.095 0.117

REML 0.047 0.085 0.107
Cp 0.037 0.065 0.090

n = 200
AIC 0.035 0.059 0.069
GCV 0.035 0.059 0.069
RECP 0.037 0.059 0.075
BIC 0.038 0.070 0.083

REML 0.036 0.059 0.069
Cp 0.027 0.045 0.061

 As expected, in Table 1, we obtained big MSE values for high censoring 
levels for all selection methods. Note also that although selection methods have 
good performances in general, BIC and REML methods gave bigger MSE values 
than AICc, GCV, RECP and Cp criteria. It means that their estimation performances 
are not good for bandwidth parameter under randomly right-censored data.
 The effect of the censoring, as expected, tends to increase the MSE values 
of the estimators, losing precision as the censoring level increases. In addition, and 
also as expected, the MSE values are improved as the sample size increases.
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Boxplots of the MSE values for estimated nonparametric models
Figure 1
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 Boxplots for MSE values based on each criterion are illustrated in 
Figure 1. In this Figure, A1, G1, B1, R1, RM1 and C1 denote the MSE values 
based on AICc, GCV, BIC, RECP, REML, and Cp selection criteria for sample 
sizes n=50, respectively. In a similar fashion, A2, G2, R2, B2, RM2 and C2 
show the MSE values depend on the same criteria but for n=100.  Finally, A3, 
G3, R3, B3, RM3 and C3 indicate the MSE values based on the mentioned 
criteria but for n=200. Also, the upper panel of Figure 1 has CL=10%, medium 
panel CL=30%, and bottom panel CL= 50%. 
 As can be seen in Figure 1, as the sample size n  gets large, the range 
of estimates are getting narrow. It can be said that the estimates from medium 
and large sized samples are more stable than those from small sized sample 
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Real observations and the true function together with its smooth curves 
estimated by the selection criteria under different censoring levels

Figure 2
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 As can be seen from Figures 2, the estimated functions move away 
from the real function when censoring levels increases, regardless of the 
sample sizes. Also, simulation experiment results show that the quality of 
estimated curves is reasonable for censoring levels, CL=10% and 30%, when 
compared to the CL=50%.

Real data points and the true function together with its smooth curves 
based on six selection criteria for n=50, and 10% and 50% censoring 

levels, respectively.
Figure 3
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 As for Figure 3, we illustrate the true function together with their 
curves estimated by the selection criteria for samples sizes n = 50. In this 
Figure, the bottom panel represents the censoring level of 10%, while upper 
panel shows the same curves but for censoring level of 50%. As expected, the 
estimated smooth curves are closer to the real function when censoring levels 
decreases (see upper panel of the Figure 3).
 The estimated smooth curves in the Figure 4 exhibit a similar 
behaviour to Figure 3. That is, the curves obtained from the data with low 
censoring levels denote a better fi t from data with high censorship. Also, the 
effect of censoring levels makes much more impact on the estimated curves 
than sample sizes. 

Similar to Figure 3, but for n=100 and 200.
Figure 4
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 6.2 Comparing the effi ciency 
 In this simulation study, to compare the effi ciency of the selection 
criteria based on different censoring levels and sample sizes we obtained 
the relative effi ciency matrix from the values of the SMDE ratios of the 
selection criteria. These values are computed using the equation (26) and they 
are given in Tables 2-3 for %10 and %50 censoring levels and all sample 
sizes. Outcomes correspond to %30 censoring levels are similar to the results 
displayed in Tables 2, they are not reported here. From Tables, we see that the 
relative effi ciency values of Cp method are smaller than 1 for all scenarios. 
Hence, it can be said that Cp is more effi cient than the other selection criteria 
for all sample sizes and censoring levels.
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Effi ciency values of selection criteria for 10% censoring level and all 
sample sizes 

Table 2
 AIC GCV RECP BIC REML Cp
 n = 50,  CL=10%
AIC 1.000 0.998 0.907 1.026 1.027 0.814
GCV 1.001 1.000 0.909 1.028 1.029 0.815
RECP 1.101 1.099 1.000 1.130 1.132 0.897
BIC 0.974 0.972 0.884 1.000 1.001 0.793
REML 0.973 0.971 0.883 0.998 1.000 0.792
Cp 1.227 1.222 1.114 1.260 1.262 1.000
 n=100, CL=10%
AIC 1.000 1.000 0.930 1.118 1.026 0.772
GCV 1.000 1.000 0.930 1.118 1.026 0.772
RECP 1.075 1.075 1.000 1.202 1.103 0.830
BIC 0.894 0.894 0.832 1.000 0.918 0.690
REML 0.974 0.974 0.906 1.089 1.000 0.752
Cp 1.295 1.295 1.204 1.447 1.329 1.000
 n=200, CL=10%
AIC 1.000 1.000 0.991 1.056 1.024 0.742
GCV 1.000 1.000 0.991 1.056 1.024 0.742
RECP 1.008 1.008 1.000 1.065 1.032 0.748
BIC 0.946 0.946 0.938 1.000 0.969 0.702
REML 0.976 0.976 0.968 1.031 1.000 0.724
Cp 1.347 1.347 1.336 1.423 1.380 1.000

 Findings of the simulation study may be summarized as follows:
 It is observed that the estimator using the Cp choice of bandwidth 

parameter h   dominates the other estimators for all scenarios.  
 Inspection of the relative effi ciency values also reveal that for %50 

censoring rate AIC criterion converges 1 highest at rates when 
sample size is large, n =200.

 Notice that for all samples sizes and CL=%10, the AIC and GCV 
produce the same relative effi ciency values, whereas RECP gives 
the similar values to these criteria. 

 Simulated relative effi ciencies of BIC REML are not good and 
decreases dramatically with sample sizes, especially for %10 
censoring levels.  
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Effi ciency values of selection methods for %50 censoring level and all 
sample sizes

Table 3

 AIC GCV RECP BIC REML Cp 
 n = 50,  CL=50% 

AIC 1.000 0.953 0.848 1.024 1.017 0.822 
GCV 1.048 1.000 0.889 1.074 1.066 0.862 
RECP 1.179 1.124 1.000 1.207 1.199 0.969 
BIC 0.976 0.931 0.828 1.000 0.993 0.803 
REML 0.983 0.937 0.833 1.006 1.000 0.808 
Cp 1.216 1.159 1.031 1.245 1.236 1.000 

n=100, CL=50% 
AIC 1.000 0.998 0.932 1.105 1.014 0.830 
GCV 1.001 1.000 0.934 1.107 1.016 0.832 
RECP 1.071 1.070 1.000 1.184 1.087 0.890 
BIC 0.905 0.903 0.844 1.000 0.918 0.751 
REML 0.985 0.983 0.919 1.089 1.000 0.818 
Cp 1.203 1.201 1.123 1.330 1.221 1.000 

n=200, CL=50% 
AIC 1.000 1.000 1.055 1.184 1.006 0.853 
GCV 0.999 1.000 1.055 1.184 1.006 0.853 
RECP 0.947 0.947 1.000 1.122 0.953 0.808 
BIC 0.844 0.844 0.890 1.000 0.849 0.720 
REML 0.993 0.993 1.048 1.177 1.000 0.848 
Cp 1.171 1.171 1.236 1.388 1.179 1.000 

 In the next section, we used a censored real data to see the process of 
the selection criteria. 

7. REAL DATA EXAMPLE

 To motivate the problem of the kernel type estimation procedure in 
nonparametric regression model with censored data, we used bowel cancer 
data obtained from cancer patients in Izmir city of Turkey. In here the logarithm 
of the survival times is considered as response (logT), while patient’s age is 
used as covariate (X). 
 As seen from inspection of Figure 5, there is no strong evidence of 
a linear relationship between survival times and age. To see the relationship 
between survival time and age, the residuals are plotted against age in Figure 6. 
The nonlinearity is now more evident, especially because a scatterplot smooth 
has been added. This suggests that a nonparametric regression approach will 
be benefi cial.
.
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Scatterplot of age and lifetime data
Figure 5
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 The mentioned nonparametric regression model can be expressed as 
follows:

  log ( ) , 1,..,218  i ii
survival times g age i

 where survival times  and age  are defi ned as above, response and 
covariate, respectively. 
 As previously mentioned, the key idea is to estimate the unknown 
function ( )g age . Various kernel estimates of these functions are obtained by 
using six selection criteria choice of bandwidth parameter, and showed in 
Figure 7.

Scatterplot residuals from regression of survival times on age
Figure 6
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 As shown in Figure 7, there are six smooth functions that show the 
general trend of the data. These regression functions or smooth curves are also 
the plot of 

  1 218ˆ ˆ ˆ( ),..., ( ) gh h hg age g age

 using (17), different nonparametric estimates of the effect of age  
variable on survival times . 
 It is displayed six different smoothed curves for the kernel type 
estimators using the AICc, GCV, RECP, BIC, REML and Cp choice of 
bandwidth parameter h , respectively. The MSE values obtained from these 
kernel smoothing fi ts are 2.223, 2.225, 2.219, 2.233, 2.225 and 2.217, 
respectively. Thus, kernel fi ts of the nonparametric model obtained by AICc, 
GCV, RECP, BIC, and REML give similar performance, while Cp denotes a 
good performance in the estimation procedure.

Real observations and their smoothed curves obtained by six different 
kernel type estimators using six criteria choice of bandwidth parameter 

Figure 7
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8. CONCLUDING REMARKS

 In this paper, we discussed the estimating the nonparametric regression 
function using kernel smoothing when the responses are subject to randomly 
right censoring data. Most important problem connected with the use of a 
kernel estimator is the selection of a good value of bandwidth parameter. In 
order to select this parameter, it is considered most widely used six different 
bandwidth selection criteria. Note also that we have focused on estimating the 
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bandwidth that minimizes the 2P  risk or MSE. Thus we obtained six different 
kernel estimators by using bandwidth parameters that minimizes the selection 
criteria. 
 This study is mainly conducted to evaluate the performances of 
the selection methods mentioned above. For these purposes, we used both 
simulated and real survival data examples. 
 Consequently, as expected, we obtained big MSE values for high 
censoring levels for all selection methods. Also, as expected, the estimated 
smooth curves are closer to the real function when censoring levels decreases. 
As for selection criteria, it is observed that Cp has had the best empirical 
performance. However, BIC has produced the worst result.
 Finally, by considering the real data and simulation fi ndings given in 
the above, the following suggestions have to be taken into account:
 Cp criterion is recommended as being the best selection criteria for 

all sample sizes and all censoring levels.
 For especially small sample sizes, the use RECP and GCV would be 

more appropriate. 
 For large samples, we propose the implementation of Cp or AICc 

criteria.

Appendix A

 We begin by considering the general defi nition of quadratic form, 
Theorem 1 and Lemmas 1-2 for proof of the equations (21)
 Defi nition A1: Let h ijw  W =  be a positive semi-defi nite and 
symmetrical n n  matrix depend on the h  and  1,...,  

n    be 1n  a 
vector of random variables. Then 

 1 1
q

n n

ij i j h
i j

w  
 

  W    (A1)

 is a called a quadratic form in   and hW  is a called the matrix of a 
quadratic form. 
 Theorem A1: If      ijE Cov            , and   0E  , then 

 
   

1 1

n n

h ij ij h
i j

E w tr
 

  W W    

 where (.)tr  denotes trace of the matrix (.)
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 Proof

 

   

   

   

   

1 1

1 1

1 1

( (

( ) ( )

( ) ( )

,

h

n n

ij i j i j
i j

n n

ij i j i j
i j

n n

ij i j h
i j

E E E

E w E E

w E E E

w Cov tr

   

   

 

 

 

 

      
    
 

     

 







W

W

      



as claimed.

 Theorem A2: Let    be a 1n  random vector with   E     and 
   ijCov      . Let Wh  be a  n n  constant matrix. Then, the expected 

value of the equation (A1)

    h h hE tr  W W W          (A2)
 Proof
 It is well known that for i j , 

  ij i j i jE     
 and that for i j , 

  2 2 2
ij ii i i iE       

 According to (A1), the expected value of the quadratic form hW    in 
expanded form as 

    
1 1 1 1

E q
n n n n

ij i j ij i j
i j i j

E w E w   
   

 
  

 
 

 
 Since  ij i j i jE      , we obtain

  i j ij i jE      

 Substituting, 

 

     
1 1 1 1

1 1 1 1

E q

(A3)

n n n n

ij i j ij ij i j
i j i j

n n n n

ij ij ij i j
i j i j

w E w

w w

    

  

   

   

  

 

 

 
 Note also that the terms ij are the elements of the variance-covarinace 
matrix  . This matrix is a symmetric matrix whose ith element is the variance 
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of i  and whose (ij)th off-diagonal element is the covariance between i  and 
j . 

 It follows from (A1), and theorem 1 that the equation (A3) is equivalent 
to

    h h hE tr   W W W        
 This completes the proof of the theorem 2. 
 Again, let’s consider the equation (18)

 

     
 

ˆ ˆ

2

ˆ ˆ

ˆ ˆh hG G

hG G

RSS h   



g T g T

= T I W T

 Thus, from Theorems A1-A2 connected with quadratic form, the 
expected value of the  RSS h is stated as 
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  
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h h h h h h

RSS h MSE h E

E

E

tr

n

n



  



     

 

  

   

    

       

g T

I W T

T I W I W T

g I W g I W

g I W g W W W

g I W g W W W

 
 
 
 
 
 
 
as defi ned in the equation (21). 

Appendix B

 Proof of the Lemma 4.1

 ˆSMDE hE g g , where ˆˆ h h G
g W T

 
 Then the scalar valued version of the MDE matrix can be specifi ed as 
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    

   

   

 
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2

1

2

ˆ
1

2

ˆ ˆ
1

ˆ

2
ˆ

2
ˆ

ˆ ˆSMDE ( ) ( )

ˆ ( ) ( )

( )

n

h i hi
i

n

hi i h G i
i

n

h i hG Gi i
i

h G ii

h h G

h h hG

g X E g X

Cov g X g X E

Cov g X E

Cov

tr Cov

tr Cov
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



   

    

        
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