
   446          TEM Journal – Volume 5 / Number 4 / 2016 

TEM Journal. Volume 5, Issue 4, Pages 446-450, ISSN 2217-8309, DOI: 10.18421/TEM54-06, November 2016. 

Right-Censored Nonparametric Regression: 

A Comparative Simulation Study  

Dursun Aydın 1, Ersin Yılmaz 1

1
Mugla Sitki Kocman University, Faculty of Science, Department of Statistics, Mugla, Turkey

Abstract – This paper introduces the operating of the 

selection criteria for right-censored nonparametric 

regression using smoothing spline. In order to 

transform the response variable into a variable that 

contains the right-censorship, we used the Kaplan-

Meier weights proposed by [1], and [2]. The major 

problem in smoothing spline method is to determine a 

smoothing parameter to obtain nonparametric 

estimates of the regression function.  In this study, the 

mentioned parameter is chosen based on censored data 

by means of the criteria such as improved Akaike 

information criterion (AICc), Bayesian (or Schwarz) 

information criterion (BIC) and generalized cross-

validation (GCV). For this purpose, a Monte-Carlo 

simulation study is carried out to illustrate which 

selection criterion gives the best estimation for 

censored data.  

Keywords – Nonparametric Regression, Spline 

Smoothing, Kaplan-Meier weights, Censored data. 

1. Introduction

       Consider the following nonparametric regression 

model  

( )Y f Z   (1) 

where Y  is a response variable, (.)f  is an unknown 

smooth function, Z  is a covariate, and   is a 

random error term with mean zero and constant 
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variance 2 . Suppose that  , , 1i iY Z i n   is a

random sample satisfying the model (1). The model

(1) was discussed by [3] based on the assumption of

the completely observed Y . In our study, we are

interested in estimating the unknown function (.)f

when Y  is observed incompletely and right censored 

by a random variable C , but Z  are observed 

completely. Therefore, instead of observing  ,i iY Z

we observe   , , , 1i i iZ T i n   with 

 min ,i i iT Y C and  I , 1i i iY C i n     (2) 

where iT and iC are referred to as the lifetimes, the

censoring time, respectively, for the ith subject. iY is 

the observed lifetimes, while the censoring indicator 

I(.)i   stores up the information whether an 

observation is censored or uncensored. Also, we 

assume that the iC ’s are independently distributed as 

some unknown censoring distribution G, and iY and 

iC are independent. 

The problem of censored regression is now to 

estimate the unknown regression function 

 ( )f Z E T Z z  from the data  , ,Z T  . In this

case, the relationship between the updated response 

variable T  and Z  are projected by 

( )i i iT f Z   (3) 

where 'i s are the random error terms independent 

of Z , and iT ’s are defined as in (2). Then, the 

smoothing spline estimates of the function (.)f  are 

obtained by minimizing the weighted penalized 

residuals’ sum of squares 

    
2

2

( ) ( )

1

( ) ( )

bn

i i i

i a

PRSS w t f z f z dz


       (4) 

where [ , ]f a b  is an unknown smooth function with 

continuous first and second derivatives, ( )it ’s are the 

ordered values of T , ( )iz ’s are the ordered values of 

Z , which is the concomitant associated with T , the 
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  is a positive smoothing parameter, 2( )f z dz  is 

penalty term for smoothing spline based on 0  , 

and iw ’s are the Kaplan-Meier (K-M) weights 

connected to ( )it , and they are also the ith diagonal 

element of  the matrix W  with entries  

 

 
 1

11 1

ji
i

i

j

n j
w

n i n j

 



 
  

    
   (5) 

 

( ) 'i s  are the corresponding censoring indicators 

associated with ( )it . Specifically, trace of the 

diagonal matrix W  is equal to one.  

 Many authors have dealt with the estimation 

problem of the nonparametric regression model. 

Examples of this work include [4], [5], [6], [7], and 

[8]. For example [9] focuses on the spline estimates 

of a partially linear model. Some authors consider the 

estimation of the residual variance in nonparametric 

regression ([10]). Classical Akaike information 

criterion for the smoothing parameter selection in 

nonparametric regression is improved by [11]. Linear 

smoother and additive models are discussed by [12]. 

A nonparametric estimator of a regression function 

based on censored data is studied by [1]. Empirical 

likelihood semi parametric random censorship 

models are considered by [13]. Also, the other key 

references for regression with censored data are [14], 

and [2].  
 

 

2. Weighted smoothing spline 
 

        Smoothing spline performs a regularized 

regression over the natural spline basis, placing knots 

at all points  , 1,2,...,iz i n . This method uses the 

input points as knots and thus it overcomes the knot 

selection problem and simultaneously, smoothing 

spline avoids the overfitting by shrinking the 

coefficients of the estimated function.  

The smoothing spline fits for the model (2) is 

obtained by solving the minimization problem, given 

in matrix and vector form 

2

2
Y N K  f f f    (6) 

where N  is a n q  incidence matrix, with elements 

 I , 1 , 1i j i jN z s i n j q       

which consist of the js  values, distinct and ordered 

values of the knot points iz , and K  is a penalty 

matrix, given by 
1K Q R Q=  (see [7] for more 

details). 

  The solution to minimization problem (6) is a 

natural cubic spline with knots js  (see [7]). There is 

a matrix K  only depending on the knots js , such 

that the minimized value of 2( )f z dz in (4) equals 

to Kf f  in (6). That is, 2( )K f z dz  f f , where the 

K  is also a symmetric n n  positive definite penalty 

matrix with solution 1 - IK


 S .  In this case, 

within optimal f  minimizing the equation (6), 

smoothing spline curve is calculated as 

 

 
1ˆ I K Y Y 


 f = S    (7) 

 

where   is the smoothing parameter which adjusts 

the penalty term, as said before, and  
1

I K 


 S , is 

a well-known positive-definite spline smoother 

matrix which depends on  . 

   In this work we propose a smoothing spline 

method to fit model (1) when the dependent variable 

Y  is at risk of being censored. For this reason, the 

smoothing spline method for estimating (.)f  can not 

be applied directly here. To overcome this problem 

we used the weighted smoothing spline method that 

is discussed by [15].  

    As we have mentioned above, because of the 

censoring, instead of observing  ,i iY Z  we observe 

 , ,i i iZ T   . Thus, the response observations are 

updated as iT  via the equation (2). Then, the spline 

that fits for the model (3) is carried out by solving the 

minimization problem (4).  

   We can represent the equation (4) in matrix and 

vector form  

   PRSS T W T K    f f f f   (8) 

where W  is a diagonal matrix formed with K-M 

weights 
iw  in (5). In its simplest form (8) could be 

seen as a weighted version of the equation (6). In a 

similar manner to (7) the weighted smoothing spline 

fits for the model (3) are obtained by  

 
1ˆ W K W T 


f =     (9) 

As  expressed before, the most important issue in 

this method is to select the smoothing parameter   

For this purpose, it is considered the most widely 

used three criteria, given in the next section. 
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3. Selection criteria 

 

     The positive value   that minimizes any 

smoothing parameter selection methods is selected as 

an appropriate smoothing parameter. 

Akaike information criterion (AICc): An improved 

version based on the classical Akaike criterion is 

developed by [11]: 

  
    

2

1 log I

2 1 2

cAIC T n

tr n tr



 

  

     

H

H H

       (10) 

where  
1

W K W 


 H  is a hat matrix that plays 

a similar role to spline smoother matrix  in (7).  

Bayesian information criterion (BIC): [16]  

improved by using Bayes estimators. The generic 

form of the BIC criterion  is 

   
21 log( )

BIC λ λ

n
I - T tr

n n
 H H       (11) 

 Genralized Cross-Validation (GCV) criterion: The 

criterion function is defined by [4], and described as 

   
221 1GCV λn I - T n tr I 

    H H    (12) 

As in other criteria, to use GCV for parameter 

selection, we simply choose the parameter   giving 

smallest GCV over the set of parameters considered. 
 

 

4. Estimating the variance 
 

      The main goal is to select an appropriate 

estimator of f  from among the elements

ˆ : 0f R    
 

. In order to find an optimum 

estimator there are some performance measures 

which are widely used and accepted. The mean 

square error (MSE) of prediction, one of these 

measures can be obtained by average value of 

residuals sum of squares  1n RSS 
. The mentioned 

residual sum of squares (RSS) is defined as 

   
2

1

ˆ( )
n

i i

i

RSS f T





    (13)  

 In matrix form, equation (18) can be stated as  

     
 

2

ˆ ˆRSS
 






  

 

f T f T

T I H T

  (14) 

where  
1ˆ W K W T

 




  f H T  is defined as in 

(9). The expected value of squared residuals given in 

(13) or (14) is also known as MSE of prediction, 

which in this case is 

 

 

2

2

ˆMSE E

E





  



T f

I - H T

    (15) 

It follows directly from (15) that  MSE   can be 

described as 

   

   

2

2 2

MSE

n

  

  





 

   
  

f I H f

H H H
    (16) 

Hence,  follows the equation (16) that  1n RSS 
 is 

a biased estimator of MSE (see [8]).  

In practice, the equation (16) cannot be computed 

directly because it depends on unknown residual 

variance 
2


 . As in linear regression, we may 

develop an estimator of 
2


  from the residual sum of 

squares (14).  

As a result, an estimate for 
2


 , as 

   

 

 2

2
ˆ

RES

RSS RSS RSS

n p DFtr




  
   

 I H
    (17)

 
where  RSS   is defined as in (19) , and 

 
 

   

2

2

RES
DF tr

n tr tr



  

 

  

I H

H H H
    (18) 

called the residual degrees of freedom (
RES

DF ) for 

pre- chosen   with any selection criteria. 

         As in parametric regression, 
RES

DF  can be used 

in estimation of 
2


 . Since MSE also has a negligible 

bias term, the equation (18) is an unbiased estimate 

of 
2


 . 

 

 

5. Simulation study 
 

       In this section, we performed a simulation study 

to assess the operating of the selection criteria 

introduced in Section 3. To see the performance of 

the small, medium and large samples of each criteria, 

we consider three censoring levels (CLs), 15%, 30%,  

and 45%  and three samples sizes with n = 50, 100, 

and 200. The number of replication was 1000 for 

each of the samples. Our data is generated by 

censored nonparametric model in generic form  

   ( ) 1.2 sini i i i iT f Z z z    ,    ~ 0, 1i N    

where  15 0.5 , 1,2,...,iz i n i n      .  

  Furthermore, we used the values of mean square 

error (MSE) to evaluate the quality of any curve 

estimate ˆ( )f :  
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 
n 2

i i

i=1

1 ˆ( ) ( )MSE f z f z
n

  , ˆ ˆ( ) ( )i if z  f    (17) 

Monte Carlo simulation results are illustrated in the 

following Figures and Tables. 

 

 
Figure 1: Real data and the true function together with its 

smooth curves based on AICc, BIC and GCV criteria for 

n=50, and CL=30%. 

 

   As can be seen from Figures 1-3, the estimated 

functions become closer to the real function when 

sample size increases, regardless of the levels of 

censoring. However, the estimated curve with BIC 

criterion does not work as favorably for small sized 

data sets. 

Generally, the effect of the censoring tends to 

increase the variance of the estimators. The precision 

is declined as the censoring level increases. In 

addition, the precision is also improved as the sample 

size increases. To explain this issue, the MSE values 

in (13) are computed from the spline fits for each 

criterion, sample, and censoring levels. The findings 

are shown in Table 1.  

 

 
Figure 2: Similar to Figure 1, but for n=100, and 

CL=45% 

 
Figure 3: Similar to Figure 1, but for n=200, and 

CL=45%. 

 
Table 1: MSE values for nonparametric models 

n CLs (%) AICc BIC GCV 

50 

15 0.1603 0.1630 0.1625 

30 0.3572 0.3652 0.3625 

45 0.5944 0.6441 0.6228 

100 

15 0.1154 0.1131 0.1152 

30 0.1814 0.1827 0.1832 

45 0.2811 0.2888 0.2864 

200 

15 0.1074 0.1073 0.1074 

30 0.1501 0.1501 0.1502 

45 0.1977 0.1979 0.1979 

 

As can be seen from Table 1., the criteria giving 

smallest MSE are indicated by bold color. As 

expected, the MSE values are improved as the 

sample sizes increases. From this, it is easily 

understood that AICc provides a good parameter   

in general.  

    Boxplots for MSE values based on each 

criterion are illustrated in Figure 4. In this Figure, 

A1, A2 and A3 denote the MSE values based on 

AICc for sample sizes n=50,100 and 200, 

respectively. In a similar fashion, B1, B2 and B3 

show the MSE values for BIC.  Finally, G1, G2 and 

G3 indicate the MSE values for GCV. Also, the 

upper panel of Figure 4. has CL=15%, medium panel 

CL=30%, and bottom panel CL= 45%.    
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Figure 4: Boxplots of the MSE values for estimated 

nonparametric models 

 

 

6. Concluding remarks 

 

       We have shown some useful results for selecting 

the smoothing parameter in the censored 

nonparametric regression models. The outcomes 

suggest that when we choose the parameter   giving 

smallest AICc,  the obtained spline estimators 

outperform  the others in terms of MSE values for 

sample sizes with n=50 and 100. On the other hand, 

AICc criterion also produces good estimates for the 

right censored nonparametric models under different 

censoring levels.  

  The simulation experiment results are 

satisfactory in general. Also, as sample sizes 

increase, for each selection criterion the right 

censored nonparametric model indicates a closer fit 

to real observations. As a result, it can be said that 

there is no notable difference between selection 

methods in selection smoothing parameter for large 

sized samples. More specifically, the estimators 

based on AICc, GCV, and BIC gave the same MSE 

values for n=200, and all censoring levels. However, 

BIC criterion produced poor performance in this 

setting.  

  Finally, by considering the simulation results, 

we can propose the following key ideas:  

 For especially small sized samples, AICc is   

recommended as being a good selection 

criterion. 

  For large samples, the implementation of AICc 

in addition to BIC and GCV criteria would be 

more beneficial.  

References 

[1]. Stute, W. (1993), Consistent Estimation Under 

Random Censorship When Covariables are Present, 

Journal of Multivariate Analysis, Vol. 45, 89-103. 

 [2]. Orbe, J., Ferreira, E., Nunez-Anton, V. (2003), 

Censored Partial Regression, Biostatistics, Vol.4, 

No.1, 109-121. 

[3]. Engle, R. F., Granger, C. W., Rice, J., Weiss, A. 

(1986), Semiparametric Estimates Of The Relation 

Between Weather and Electricity Sales, Journal Pf 

The American Statistical Association, 310-320. 

[4].  Craven, P., Wahba, G. (1979), Smoothing Noisy Data 

with Spline Functions, Numeriche Mathematik, Vol. 

31(4), 377-403. 

[5]. Silverman, B.W. (1984), Spline smoothing: The 

Equivalent Variable Kernel Method, The Annals of 

Statistics, Vol. 12, No.3, 898-916. 

[6]. Hardle, W. (1990), Applied Nonparametric 

Regression, Cambridge University Press. 
 

[7].  Green, P. J., Silverman, B. W. (1994), Nonparametric 

Regression and Generalized Linear Models, 

Chapman & Hall, London. 

[8]. Eubank, L. R., (2000), Spline Regression, Smoothing 

and Regression: The Annals of Statistics, Vol. 12, 

1215-1230. 

[9].  Heckman, N. E., (1986), Spline Smoothing in a Partly 

Linear Model, Journal of the Royal Statistical 

Society, Series B, Vol. 48(2), 244-248. 

[10]. Buckley, M. J., Eagleson, G. K., Silverman, B. W. 

(1988), Estimation of Residual Variance in 

Nonparametric Regression, Biometrika, Vol. 75, 183-

199. 

[11]. Hurvich, C. M., Simonoff, J. S., Tasi, C. L. (1988), 

Smoothing Parameter Selection in Nonparametric 

Regression Using An Improved Akaike Information 

Criterion, J. R. Statist. Soc. B., Vol. 60, 271-293. 

[12].Buja, A., Hastie, T. J., Tibshirani, R. J. (1989),   

Linear Smoother and Additive Models, The Annals 

of Statistics, Vol. 17, 81-89. 

[13]. Wang, Q.-H., Li, G. (2002), Empirical Likelihood 

Semiparametric Regression Analysis Under Random 

Censorship, Journal Of Multivariate Analysis, 

Vol.83(2), 469-486. 

[14]. Miller, R., Halpern, J. (1982), Regression With 

Censored Data, Biometrika, Vol. 69, 521-531. 

[15].Rodrigez, G., (2001), Smoothing and Non-Parametric 

Regression, Spring. 

[16]. Schwarz G., (1978), Estimation the dimension of a 

model, The Annals of Statistics, Vol. 6(2), 461-464. 
 

 

-0.2

0

0.2

0.4

A1 B1 G1 A2 B2 G2 A3 B3 G3
Criteria

M
S

E

0

0.5

1

A1 B1 G1 A2 B2 G2 A3 B3 G3
Criteria

M
S

E

0

1

2

A1 B1 G1 A2 B2 G2 A3 B3 G3
Criteria

M
S

E

Censoring Level 30%

Censoring Level 15%

Censoring Level 45%


