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Abstract
We study the formation and characteristics of ‘spin droplets’, i.e. compact spin-polarized
configurations in the highest occupied Landau level, in an etched quantum Hall device at
filling factors 2 ≤ ν ≤ 3. The confining potential for electrons is obtained with self-consistent
electrostatic calculations on a GaAs/AlGaAs heterostructure with experimental system
parameters. Real-space spin-density-functional calculations for electrons confined in the
obtained potential show the appearance of stable spin droplets at ν ∼ 5/2. The qualitative
features of the spin droplet are similar to those in idealized (parabolic) quantum-dot systems.
The universal stability of the state against geometric deformations underlines the applicability
of spin droplets in, for example, spin-transport through quantum point contacts.

(Some figures may appear in colour only in the online journal)

1. Introduction

Recent research into semiconductor quantum dots (QDs)
has strongly focused on spin effects due to experimental
breakthroughs in the initialization, control, and readout of spin
states that have decoherence times of up to milliseconds [1].
Consequently, QDs are among the leading candidates for
solid-state qubit design. On the other hand, studies on
few-electron QDs in strong magnetic fields have shown
interesting similarities to partially or fully spin-polarized
quantum Hall (qH) states in the two-dimensional (2D)
electron gas [2] (2DEG). For example, the filling factor
ν = 1 in the 2DEG corresponds to a ‘maximum-density
droplet’ [3] in a few-electron QD. As another example, the
Laughlin wavefunction [4]—describing the filling factor ν =
1/3 state in the 2DEG—was found to have 98% overlap
with the corresponding few-electron QD (three vortices per
electron) [5].

The analogy between the 2DEG and QDs applies further
to the ν = 5/2 state, although a direct comparison is more
complex. Harju et al [6] showed that half-integer filling-factor
states in QDs correspond to a situation where the highest
occupied Landau level (LL) is fully spin polarized, whereas

the lower LLs are spin-compensated. Later on, the spin
polarization of the highest LL was shown in three independent
spin-blockade experiments [7, 8]. Interestingly, these ‘spin
droplets’ were found to form only when the number of
confined electrons exceeded ∼30 [7]. In this respect, spin
droplets are collective states induced by a high density of
states close to the Fermi level that might lead to collective spin
polarization. On the other hand, the correspondence between
the highest-LL spin droplets and the candidates of the ν = 5/2
state in the 2DEG, such as the Pfaffian wavefunction, was
found to be ambiguous [9].

Although numerical studies have also shown the
appearance of spin droplets in quantum rings [10], there
has been no systematic investigation on the stability of
those states. This issue is of fundamental importance when
the spin droplets are applied in more general qH devices
such as quantum point contacts [11, 12]. In this work
we will focus on this aspect of stability and perform a
thorough theoretical investigation of the formation of spin
droplets in a realistic qH device starting from actual device
geometry and parameters. Our calculations show that the
spin-droplet formation in a realistic device is very similar to
that in ‘idealized’, i.e. parabolically (harmonically) confined
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QDs. Thus, our finding confirms the high stability of spin
droplets against geometric deformations. This might have
significant consequences for the applicability of those states
in, e.g. spintronics. We point out that in few-electron QDs, the
general spin stability has been studied in several works both
experimentally [13] and theoretically [14].

The paper is organized as follows. In section 2 we first
perform self-consistent electrostatic calculations to extract
the confining potential for electrons in a realistic qH
device. Then we present the many-electron Hamiltonian and
our spin-density-functional-theory [15] (SDFT) approach to
calculations in the qH regime. Our results for total energies,
total and spin densities, and chemical potentials are presented
in section 3. The paper is summarized in section 4.

2. Methods

2.1. Quantum-dot structure and the confining potential

We consider a two-layer δ-Si doped GaAs/AlGaAs het-
erostructure provided by Goldman [16] and visualized in
figure 1. Here the crystal is grown on a GaAs substrate and
the 2DEG is formed at the interface of the GaAs/AlGaAs
heterostructure located 284 nm below the surface. The donor
layers located 122 nm and 248 nm above the 2DEG have
surface densities 2.5 × 1015 m−2 and 1.7 × 1016 m−2,
respectively. The geometry of the QD is shown on top of the
GaAs/AlGaAs heterostructure in figure 1. The actual sample
is obtained by etching 80 nm from the surface (in the z
direction). The two dimensions on the xy plane are Lx = Ly =

2550 nm.
The QD sample is mapped on a matrix with 128× 128×

32 mesh points. The confinement profile for the electrons
trapped in the 2DEG, i.e. for our QD, is calculated by
solving the Poisson equation in 3D self-consistently within the
Thomas–Fermi approximation [17, 18]. The calculation of the
confinement potential is essentially semi-classical, since we
only deal with an electrostatic problem that mainly depends
on the given boundary conditions, where the potential varies
smoothly (see figure 1). In our approach, the wavefunctions
of the surface and gate charges can be well replaced by
delta-Dirac functions, while the electrostatic potential can be
assumed to be a constant locally on the scale of quantum
mechanical length scales, hence the energy eigenvalues are
only shifted by the local potential. On the other hand,
in the presence of electrons in the QD with an external
magnetic field, the full quantum mechanical counterpart of
the electrostatic problem is solved within the SDFT. In the
numerical calculation considering the confinement potential,
we apply a fourth-order nearest neighbor approximation
and a 3D Fourier transformation. Here we apply open
boundary conditions, since the heterostructure is embedded in
a dielectric surrounding with a very small dielectric constant
compared to the heterostructure.

The obtained confining potential is shown in figure 2. It is
noteworthy that the potential is not rotationally symmetric in
contrast with the commonly used parabolic approximation for
both lateral and vertical semiconductor QDs [14]. Moreover,

Figure 1. The structure of the qH device applied in the calculation
of the confinement potential. The material parameters are from
Goldman [16].

Figure 2. Confining potential for electrons in the QD obtained with
electrostatic calculations for the GaAs/AlGaAs heterostructure
shown in figure 1.

the shallow etching leads to a relatively smooth potential,
although the slope of the confinement is still considerably
steeper than in a parabolic QD.

In the following we may consider the obtained confining
potential in figure 2 as a trap for transported electrons forming
a QD inside the device. Alternatively, we can think that, by
adjusting the gate and bias voltages, the 2DEG inside the
QD is emptied of conduction-band electrons one-by-one. It is
important to note that in the following calculations we focus
on such a QD-like system with a few dozen electrons instead
of the bulk 2DEG in the qH regime. Our particular task is
to investigate the effect of a relatively sharp and rotationally
non-symmetric potential on the formation of spin droplets in
QDs at ν ∼ 5/2.
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2.2. Hamiltonian and many-electron calculations

Electrons in the QD are described by the Hamiltonian

H =
N∑

i=1

[
(pi+eA)2

2m∗
+ Vc(ri)+ g∗µBSz,i

]
+

e2

4πε

∑
i<j

1
rij
,

(1)

where N is the number of electrons, Vc is the confining
potential obtained in the previous section (figure 2), and A
is the vector potential of the homogeneous magnetic field
oriented perpendicular to the QD plane. We consider the
conventional effective-mass approximation [14] with GaAs
material parameters m∗ = 0.067me, ε = 12.7ε0, and g∗ =
−0.44 for the gyromagnetic ratio.

As we consider N ≈ 48 confined electrons, the many-
electron Hamiltonian is not exactly solvable numerically. The
non-circular geometry sets additional limitations. Hence, we
use SDFT [15] which has been shown to produce reliable
results when compared with quantum Monte Carlo (QMC)
calculations [7, 9, 19]. An explicit comparison between SDFT
and QMC results for spin-state energies can be found in
figure 8 of [9]. For the exchange and correlation, we use
the 2D local-spin-density approximation (LSDA) with the
parametrization of Attaccalite et al [20] for the correlation.
In view of the previous works [7–9], we rely on the
computationally efficient LSDA despite recent progress in
the development of alternative and more accurate density
functionals for 2D systems [21–23]. We point out that by total
spin S we refer below to the total z-component of the spin in
accordance with the notation in previous works on the topic.

Our real-space SDFT approach with the octopus
code [24] allows the use of the confining potential in figure 2
as a direct input. We calculate the total energies and spin
densities for different spin configurations, respectively, and
determine the ground state as the solution with the lowest
energy. It should be noted that because of the lack of rotational
symmetry the angular momentum is not a good quantum
number. However, the (approximate) angular momenta of
the effective single-electron (Kohn–Sham) states enable us to
determine the occupations of different LLs (see below).

3. Results

3.1. Total energies

In the results presented below the magnetic-field range has
been selected such that the regime at filling factors 2 ≤ ν ≤ 3
is covered. The filling factor in a QD can be approximated
by ν ≈ 2N/N0LL, where N0LL is the number of electrons in
the lowest LL [7]. We point out that this approximation is
valid only at ν ≥ 2, whereas otherwise a good estimate is
given by ν = N/N80 , where N80 is the number of flux quanta
80 = e/h. Detailed comparison between different definitions
for the filling factor in confined systems is given in [10].

The total energy can be written as a sum Etot = Ekin +

Eext+EH+Exc, where Ekin is the (Kohn–Sham) kinetic energy,
Eext =

∫
dr ρ(r)Vc(r) is the external confinement energy,

Figure 3. Total energies of different spin states as a function of the
magnetic field in a 48-electron QD calculated with SDFT in the
spin-droplet regime (2 ≤ ν ≤ 3).

EH is the classical electrostatic (Hartree) interaction energy,
and Exc is the exchange–correlation energy accounting for
quantum mechanical interaction energy components beyond
EH. In figure 3 we show the total energies of different spin
states S as a function of the magnetic field for a 48-electron
QD. The points of ν ∼ 5/2 and ν ∼ 2 according to the above
definition are marked by dashed lines. At B ≤ 1.1 T the
states with different S are almost degenerate until a distinctive
energy gap opens up between the higher and lower S. The
maximum ground-state spin S = 4 is reached at B = 1.15 T.
At this point the energy difference to S = 3 is very small, but
the total gap to lower spin states (S = 0, 1) is significant. As B
is increased, the polarization of the QD gradually decreases;
at B ≥ 1.5 T the ground state has S = 1, and the unpolarized
S = 0 state is very close in energy.

Overall, the behavior of Etot in figure 3 is very similar
to that of parabolic QDs [7]. In the following we analyze the
corresponding spin densities and chemical potentials in detail
in order to characterize the expected spin-droplet formation.

3.2. Spin densities at ν ∼ 2 and ν ∼ 5/2

In figure 4 we show the total and spin densities in a 48-electron
QD at B = 1.492 T corresponding to ν ∼ 2. The ground-state
total spin is S = 1 as a slight deviation from an ideal ν = 2
state, which is fully spin-compensated (S = 0), i.e. the states
in the lowest LL are doubly filled with spin-up and spin-down
electrons [7], In our case, it seems clear in figure 4(b) that the
polarized electrons are located close to the core of the QD in
the second-lowest Landau level (1LL). Nevertheless, the total
density is relatively flat in accordance with the ν = 2 state
in a parabolic QD [7]. We note that the rotational symmetry
is broken due to the non-circular confining potential. The
cross sections in the lower panel of figure 4 are taken along
a vertical cut across the 2D densities in the upper panel.

Figure 5 shows the total and spin densities similarly to
the previous case but now at B = 1.15 T corresponding to
ν ∼ 5/2. The total spin is S = 4. It is interesting to note

3



J. Phys.: Condens. Matter 25 (2013) 155604 H Atci et al

Figure 4. Total and spin densities in a 48-electron QD at B = 1.492 T corresponding to ν ∼ 2. The cross sections in the lower panel are
taken along a vertical cut across the 2D densities in the upper panel. The total spin is S = 1: (a), (b) total density; (c), (d) spin-up density;
(e), (f) spin-down density.

Figure 5. Total and spin densities in a 48-electron QD at B = 1.15 T corresponding to ν ∼ 5/2. The cross sections in the lower panel are
taken along a vertical cut across the 2D densities in the upper panel. The total spin is S = 4: (a), (b) total density; (c), (d) spin-up density;
(e), (f) spin-down density.

that the spin polarization is strongly concentrated close to the
core of the QD. This is confirmed by sorting the Kohn–Sham
states according to their spin and angular momenta. Hence, it
is clear that the (eight) polarized electrons occupy the 1LL.
We may thus call this state a spin droplet. Its characteristics
are strikingly similar to those in a parabolic QD. Despite
the non-circular potential, the density of the spin droplet
in the core region (figures 5(c) and (d)) is very smooth.
Most likely, this is a consequence of the screening of the
irregularities in the potential by the 0LL electrons, so that the
1LL with the spin droplet has a smooth surrounding potential.
It might be expected that the spin droplet could survive

in even more irregular geometries, i.e. in the vicinity of a
quantum point contact. This aspect of universality deserves
more investigation.

An important aspect in the formation of a spin droplet
is the sufficient N for the phenomenon to occur. In parabolic
QDs spin droplets at 2 ≤ ν ≤ 3 were found when the number
of electrons was N ≥ 30. According to our calculations there
is no considerable change in the critical N in a non-circular
geometry, so that the droplet emerges at N ≈ 30 as well. As
discussed in section 1 the spin polarization of the highest
occupied LL is a collective effect resulting from a high density
of states close to the Fermi energy. This is the case if (i) N

4



J. Phys.: Condens. Matter 25 (2013) 155604 H Atci et al

Figure 6. Chemical potential for a 48-electron QD as a function of
the external magnetic field. The spin-droplet regime is marked with
a dashed ellipse.

is sufficiently large and (ii) a proper fraction of the electrons
occupy the highest LL (for ν ∼ 5/2 the highest LL is the
second one). The effect resembles Hund’s rule: at the expense
of kinetic energy, spin polarization saves exchange energy
close to a point of degenerate states. Here, with dozens of
electrons involved in the process, the phenomenon is similar
to the Stoner effect [25], which predicts the emergence of
ferromagnetic alignment in a correlated electron system if the
degeneracy is high close to the Fermi level.

3.3. Chemical potentials in the spin-droplet regime

Finally we consider the chemical potentials to assess the sig-
nals that the formation of spin droplets leave in spin-blockade
oscillations. The chemical potential is defined as µ(N) =
Etot(N)− Etot(N − 1). Here we consider µ(48) by computing
the energies of different spin states for N = 47 and N = 48.
For both systems, respectively, the lowest energy state (ground
state) was chosen to calculate the chemical potential.

Figure 6 shows the chemical potential as a function
of the magnetic field in the vicinity of the spin-droplet
range. We find a clear ‘plateau’ region at 2 ≤ ν ≤ 5/2
superimposed by distinctive sawtooth-like oscillations. The
structure is similar to the Coulomb-blockade peak oscillations
measured in both lateral and vertical QDs [7–9]. Moreover,
the qualitative features are similar to the previous SDFT
calculations for parabolic QDs [7], although in this case
we find more irregularities. In fact, the irregularities in µ

resemble the experimental data; it might be expected that in
actual QDs the impurities etc induce similar effects found
here for a non-circular qH device. According to our data
of the LL occupations (core versus edge), we expect that
the Coulomb-blockade peak amplitudes also possess a stable
structure against deformations. The structure of the amplitude
peaks has been considered in detail in e.g. [7, 26].

4. Summary

In summary, we have studied the spin-droplet formation
in realistic quantum Hall devices in magnetic fields
corresponding to filling factors 2 ≤ ν ≤ 3. We carried out

self-consistent electrostatic calculations for a GaAs/AlGaAs
heterostructure with experimental parameters. In this way we
obtained a confining potential for electrons that can be trapped
inside the quantum dot. Our spin-density-functional-theory
studies for ∼48 interacting electrons in the determined
non-circular potential show that (i) spin polarization occurs
at ν ∼ 5/2, (ii) polarized electrons are located at the core of
the dot in the second Landau level, (iii) the spin droplet is very
smooth and thus similar to that in an ideal parabolic quantum
dot, (iv) the critical N for the formation of the spin droplet is
not affected by having a realistic (non-symmetric) potential,
and (v) the spin-droplet formation leaves a signal to the
chemical potential that resembles the available experimental
spin-blockade data.

We hope that the present work encourages further
experimental studies on the subject. In particular, it would be
important to detect the spin-droplet directly in an experiment
by appropriate spin-imaging methods. In addition, although
the present study confirms the stability of the spin droplet
in a non-circular geometry, the state is still to be found in a
large system with N ∼ 1000 confined electrons, where it can
be assumed to be extremely stable. The ongoing experiments
on quantum point contacts are likely to bring answers to these
assumptions in the near future, and they may open up the path
for further applications.
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