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The purpose of this study is to present an approximate solution that depends on collocation points and Bernstein polynomials for
a class of Lane-Emden type equations with mixed conditions. The method is given with some priori error estimate. Even the exact
solution is unknown, an upper bound based on the regularity of the exact solution will be obtained. By using the residual correction
procedure, the absolute error can be estimated. Also, one can specify the optimal truncation limit 𝑛 which gives a better result in
any norm. Finally, the effectiveness of the method is illustrated by some numerical experiments. Numerical results are consistent
with the theoretical results.

1. Introduction

Lane-Emden type equation that is presented in (1) models
many phenomena in mathematical physics and astrophysics
[1, 2]. Consider

𝑦
󸀠󸀠

(𝑥) +

2

𝑥

𝑦
󸀠

(𝑥) + 𝑓 (𝑦) = 0, 𝑥 > 0,

𝑦
󸀠

(0) = 0, 𝑦 (0) = 𝑎, 𝑎 is a constant.
(1)

It describes the equilibrium density distribution in self-
gravitating sphere of polytrophic isothermal gas [3]. On
the other hand [3], it plays an important role in various
fields such as stellar structure [2], radiative cooling, and
modeling of clusters of galaxies. It is a nonlinear ordinary
differential equation that has a singularity at the origin. In
the neighborhood of 𝑥 = 0, it has an analytic solution [1].
It is labeled by the names of the astrophysicists Lane [4] and
Robert Emden.

In this paper, a class of Lane-Emden equations [5] is
considered in the type of

𝑦
󸀠󸀠

(𝑥) +

𝛼

𝑥

𝑦
󸀠

(𝑥) + 𝑝 (𝑥) 𝑦 (𝑥) = 𝑔 (𝑥) ,

0 < 𝑥 ≤ 𝑅,

(2)

with the mixed conditions
1

∑

𝑘=0

𝑎
𝑖𝑘
𝑦
(𝑘)

(0) + 𝑏
𝑖𝑘
𝑦
(𝑘)

(𝑅) = 𝜆
𝑖
, 𝑖 = 0, 1, (3)

where 𝑝 and 𝑔 are functions defined on [0, 𝑅] and 𝛼, 𝑎
𝑖𝑘
,

𝑏
𝑖𝑘
, and 𝜆

𝑖
are real constants. We will find an approximate

solution, namely, Bernstein series solution, of (2) as

𝑝
𝑛
(𝑥) =

𝑛

∑

𝑖=0

𝑎
𝑖
𝐵
𝑖,𝑛
(𝑥) , (4)

such that 𝑝
𝑛
satisfies (2) on the collocation nodes 0 < 𝑥

0
<

𝑥
1
< ⋅ ⋅ ⋅ < 𝑥

𝑛
≤ 𝑅. Here, 𝐵

𝑘,𝑛
, 0 ≤ 𝑘 ≤ 𝑛, are Bernstein

polynomials.

1.1. Recent Works. Recently, a number of numerical methods
are used for handling the Lane-Emden type problems based
on perturbation techniques or series solutions. Adomian
decomposition method [6, 7] which provides a convergent
series solution has been used to solve (1) [8–10]. Wazwaz [8]
gave an algorithm to overcome the difficulty of the singular
point in using Adomian decomposition method [1].

The quasilinearization method [11–13] can be considered
as an example for iteration methods. Its fast convergence,
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monotonicity, and numerical stability were analyzed by
Krivec and Mandelzweig [12]. They verified this method on
scattering length calculations in the variable phase approach
to quantum mechanics. They also showed that the iterations
converge uniformly and quadratically to the exact solution.
The method gives accurate and stable answers for any cou-
pling strengths, including super singular potentials for which
each term of the perturbation theory diverges.

The Legendre wavelet method was given by Yousefi [14]
to solve Lane-Emden equation. This method was used to
convert Lane-Emden equations to integral equations and was
expanded the solution by Legendre wavelets with unknown
coefficients.

Ramos [15] applied a piecewise linearization method
to solve the Lane-Emden equation. This method provided
piecewise linear ordinary differential equations that can be
easily integrated. Furthermore, it has given accurate results
for hypersingular potentials, for which perturbationmethods
diverge. Homotopy analysis method (HAM) and modified
HAM have also been used [16, 17] to solve (1). Parand et
al. [18] proposed a collocation method based on a Hermite
function collocation (HFC) method for solving some classes
of Lane-Emden type equations which are nonlinear ordinary
differential equations on the semi-infinite domain. A matrix
method was given by Yuzbasi for solving nonlinear Lane-
Emden type equations. Moreover, Yuzbasi and Sezer [5]
applied a matrix method that depends on Bessel polynomials
to solve (2). They estimated the absolute errors by using the
residual correction procedure. In this study, a similar method
to [5] was constructed. In addition, error analysis of the
matrix method was developed.

In 2012, Pandey and coworkers [19–22] studied five
methods. First, Pandey et al. [19] gave a numerical method
for solving linear and nonlinear Lane-Emden type equations
using Legendre operational matrix of differentiation. Second,
Pandey et al. [20] studied a numerical method to solve linear
and nonlinear Lane-Emden type equations using Chebyshev
wavelet operational matrix. Third, Kumar et al. [21] pre-
sented a method for linear and nonlinear Lane-Emden type
equations using the Bernstein polynomial operational matrix
of integration. Fourth, Pandey and Kumar [22] proposed
a numerical method for solving Lane-Emden type equa-
tions arising in astrophysics using Bernstein polynomials.
This method is similar to the method used in the present
study. And finally, a shifted Jacobi-Gauss collocation spectral
method was proposed by Bhrawy and Alofi [23] for solving
the nonlinear Lane-Emden type equation.

This paper is organized as follows. In Section 2, some
definitions and theorems are given. The method is presented
in Section 3. First, a matrix form for each term in (2) is
found. Substituting these matrix forms into (2) gives a matrix
equation, fundamentalmatrix equation.Then, a linear system
by using collocation points is obtained. For the error analysis,
in Section 4, some theorems that give some upper bounds for
the absolute errors are presented. One of them guarantees
the convergence if the solution is polynomial. The second
one gives an upper bound in the case of the exact solution
being unknown under the regularity condition. The residual
correction procedure to estimate the absolute errors is also

given so that the optimal truncation limit 𝑛 can be specified.
On the other hand, this procedure gives a new approximate
solution. Some numerical examples are given to illustrate the
method.

2. Preliminaries

Bernstein polynomials of 𝑛th-degree are defined by

𝐵
𝑘,𝑛
(𝑥) = (

𝑛

𝑘
)

𝑥
𝑘
(𝑅 − 𝑥)

𝑛−𝑘

𝑅
𝑛

, 𝑘 = 0, 1, . . . , 𝑛, (5)

where 𝑅 is the maximum range of the interval [0, 𝑅] over
which the polynomials are defined to form a complete basis
[24].

We substitute the relation

(𝑅 − 𝑥)
𝑛−𝑘
=

𝑛−𝑘

∑

𝑖=0

(

𝑛 − 𝑘

𝑖
) (−1)

𝑖
𝑅
𝑛−𝑘−𝑖
𝑥
𝑖 (6)

into (5) and obtain the relation

𝐵
𝑘,𝑛
(𝑥) =

𝑛−𝑘

∑

𝑖=0

(

𝑛

𝑘
)(

𝑛 − 𝑘

𝑖
)

(−1)
𝑖

𝑅
𝑘−𝑖
𝑥
𝑘+𝑖
. (7)

Let us consider 𝑛 + 1 pairs (𝑥
𝑖
, 𝑦
𝑖
). The problem is to find

a polynomial 𝑝
𝑚
, called interpolating polynomial, such that

𝑝
𝑚
(𝑥
𝑖
) = 𝑐
0
+ 𝑐
1
𝑥
𝑖
+ ⋅ ⋅ ⋅ + 𝑐

𝑚
𝑥
𝑚

𝑖
= 𝑦
𝑖
, 𝑖 = 0, 1, . . . , 𝑛. (8)

The points 𝑥
𝑖
are called interpolation nodes. If 𝑛 ̸=𝑚, the

problem is over- or underdetermined.

Theorem 1 (see [25]). Given 𝑛+1 distinct nodes 𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛

and 𝑛 + 1 corresponding values 𝑦
0
, 𝑦
1
, . . . , 𝑦

𝑛
, then there exists

a unique polynomial 𝑝
𝑛
∈ 𝑃
𝑛
such that 𝑝

𝑛
(𝑥
𝑖
) = 𝑦

𝑖
for 𝑖 =

0, 1, . . . , 𝑛.

Theorem 2 (see [25]). Let 𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
be 𝑛 + 1 distinct

nodes, and let 𝑥 be a point belonging to the domain of a given
function 𝑓. Assume that 𝑓 ∈ 𝐶𝑛+1(𝐼

𝑥
), where 𝐼

𝑥
is the smallest

interval containing the nodes 𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
and 𝑥. Then, the

interpolation error at the point 𝑥 is given by

𝑓 (𝑥) − 𝑝
𝑛
(𝑥) =

𝑓
(𝑛+1)
(𝜉)

(𝑛 + 1)!

(𝑥 − 𝑥
0
) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑛
) , (9)

where 𝜉 ∈ 𝐼
𝑥
.

Let us denote the interpolation polynomial of 𝑓 by 𝑝
𝑛
𝑓.

Lagrange characteristic polynomials 𝑙
𝑖
∈ 𝑃
𝑛
are defined as

𝑙
𝑖
(𝑥) =

𝑛

∏

𝑗=0

𝑗 ̸= 𝑖

(𝑥 − 𝑥
𝑗
)

(𝑥
𝑖
− 𝑥
𝑗
)

. (10)

Thus, 𝑝
𝑛
𝑓 can be written the following form, Lagrange form:

𝑝
𝑛
𝑓 (𝑥) =

𝑛

∑

𝑖=0

𝑦
𝑖
𝑙
𝑖
(𝑥) . (11)
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Hermite interpolation polynomial 𝐻
𝑁−1
∈ 𝑃
𝑁−1

of 𝑓 on
[𝑎, 𝑏] is defined as follows [25]. Suppose that (𝑥

𝑖
, 𝑓
(𝑘)
(𝑥
𝑖
)) are

given data, with 𝑖 = 0, . . . , 𝑛, 𝑘 = 0, . . . , 𝑚
𝑖
, and 𝑚

𝑖
∈ N. If𝑁

is selected as 𝑁 = ∑𝑛
𝑖=0
(𝑚
𝑖
+ 1) and interpolation nodes are

distinct, there exist a unique polynomial 𝐻
𝑁−1
∈ 𝑃
𝑁−1

such
that

𝐻
(𝑘)

𝑁−1
(𝑥
𝑖
) = 𝑓
(𝑘)
(𝑥
𝑖
) , 𝑖 = 0, 1, . . . , 𝑛, 𝑘 = 0, . . . , 𝑚

𝑖
, (12)

of the form

𝐻
𝑁−1
(𝑥) =

𝑛

∑

𝑖=0

𝑚𝑖

∑

𝑘=0

𝑓
(𝑘)
(𝑥
𝑖
) 𝐿
𝑖𝑘
(𝑥) , (13)

where 𝐿
𝑖𝑘
∈ 𝑃
𝑁−1

are the Hermite characteristic polynomials
defined by

𝑑
𝑝

𝑑𝑥
𝑝
(𝐿
𝑖𝑘
) (𝑥
𝑗
) = {

1, if 𝑖 = 𝑗, 𝑘 = 𝑝,
0, otherwise.

(14)

Letting 𝐿
𝑖𝑚𝑖
(𝑥) = 𝑙

𝑖𝑚𝑖
(𝑥) for 𝑖 = 0, 1, . . . , 𝑛, they satisfied the

following recursive formula:

𝐿
𝑖𝑗
(𝑥) = 𝑙

𝑖𝑗
(𝑥)

−

𝑚𝑖

∑

𝑘=𝑗+1

𝑙
(𝑘)

𝑖𝑗
(𝑥
𝑖
) 𝐿
𝑖𝑘
(𝑥) , 𝑗 = 𝑚

𝑖
− 1,𝑚

𝑖
− 2, . . . , 0,

(15)

where

𝑙
𝑖𝑗
(𝑥) =

(𝑥 − 𝑥
𝑖
)
𝑗

𝑗!

𝑛

∏

𝑘=0

𝑘 ̸= 𝑖

(

𝑥 − 𝑥
𝑘

𝑥
𝑖
− 𝑥
𝑘

)

𝑚𝑘+1

,

𝑖 = 0, 1, . . . , 𝑛, 𝑗 = 0, 1, . . . , 𝑚
𝑖
.

(16)

If 𝑓 ∈ 𝐶𝑁[𝑎, 𝑏], the interpolation error is given as follows:

𝑓 (𝑥) − 𝐻
𝑁−1
(𝑥) =

𝑓
(𝑁)
(𝜉)

𝑁!

(𝑥 − 𝑥
0
)
𝑚0+1

⋅ ⋅ ⋅ (𝑥 − 𝑥
𝑛
)
𝑚𝑛+1

,

(17)

where 𝜉 ∈ (𝑎, 𝑏).
The interpolation errormay be reduced by using the roots

of Chebyshev polynomials

𝑥
𝑖
= cos{[2 (𝑛 − 𝑖) + 1] 𝜋

2 (𝑛 + 1)

} , 𝑖 = 0, 1, . . . , 𝑛. (18)

3. Fundamental Relations

Let 𝑝
𝑛
be Bernstein series solution of (2). Let us find the

matrix forms of 𝑝
𝑛
and 𝑝(𝑘)

𝑛
. 𝑝
𝑛
can be written as

𝑝
𝑛
(𝑥) = B

𝑛
(𝑥)A, (19)

where

B
𝑛
(𝑥) = [𝐵

0,𝑛
(𝑥) 𝐵

1,𝑛
(𝑥) ⋅ ⋅ ⋅ 𝐵

𝑛,𝑛
(𝑥)] ,

A = [𝑎
0
𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑛
]

𝑇

.

(20)

Therefore, 𝑝(𝑘)
𝑛

can be written as

𝑝
(𝑘)

𝑛
(𝑥) = B(𝑘)

𝑛
(𝑥)A. (21)

On the other hand, B(𝑘)
𝑛
(𝑥) can be written as [26–28]

B(𝑘)
𝑛
(𝑥) = X(𝑘) (𝑥)D𝑇, (22)

where

D =
[

[

[

[

[

𝑑
00
𝑑
01
⋅ ⋅ ⋅ 𝑑
0𝑛

𝑑
10
𝑑
11
⋅ ⋅ ⋅ 𝑑
1𝑛

...
...

. . .
...

𝑑
𝑛0
𝑑
𝑛1
⋅ ⋅ ⋅ 𝑑
𝑛𝑛

]

]

]

]

]

,

X (𝑥) = [1 𝑥 ⋅ ⋅ ⋅ 𝑥𝑛] ,

𝑑
𝑖𝑗
=

{
{

{
{

{

(−1)
𝑗−𝑖

𝑅
𝑗
(

𝑛

𝑖

)(

𝑛 − 𝑖

𝑗 − 𝑖

) , 𝑖 ≤ 𝑗,

0, 𝑖 > 𝑗.

(23)

For X(𝑘)(𝑥), the relation

X(𝑘) = X (𝑥)B𝑘 (24)

is obtained where

B =

[

[

[

[

[

[

[

[

[

0 1 0 0 ⋅ ⋅ ⋅ 0

0 0 2 0 ⋅ ⋅ ⋅ 0

0 0 0 3 ⋅ ⋅ ⋅ 0

...
...

...
...

. . .
...

0 0 0 0 0 𝑛

0 0 0 0 0 0

]

]

]

]

]

]

]

]

]

. (25)

Substituting (24) into (22) yields

B(𝑘)
𝑛
(𝑥) = X (𝑥)B𝑘D𝑇. (26)

Putting (26) into (19) yields the matrix form for 𝑝(𝑘)
𝑛

as

𝑦
(𝑘)

(𝑥) = X (𝑥)B𝑘D𝑇A. (27)

By substituting (19) and (27) into (2), we obtain a matrix
equation as

X (𝑥)B2D𝑇A + 𝛼
𝑥

X (𝑥)BD𝑇A + 𝑝 (𝑥)X (𝑥)D𝑇A = 𝑔 (𝑥) .
(28)
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By using the collocation points 0 < 𝑥
0
< 𝑥
1
< . . . < 𝑥

𝑛
≤ 𝑅

in (28), one obtains the fundamental matrix equation

[XB2D𝑇 + P
0
XBD𝑇 + P

1
XD𝑇]A =WA = G,

P
0
=

[

[

[

[

[

[

[

[

[

[

𝛼

𝑥
0

0 ⋅ ⋅ ⋅ 0

0

𝛼

𝑥
1

⋅ ⋅ ⋅ 0

...
...

. . .
...

0 0 ⋅ ⋅ ⋅

𝛼

𝑥
𝑛

]

]

]

]

]

]

]

]

]

]

, G =
[

[

[

[

[

𝑔 (𝑥
0
)

𝑔 (𝑥
1
)

...
𝑔 (𝑥
𝑛
)

]

]

]

]

]

,

P
1
=

[

[

[

[

[

[

[

[

[

[

𝛼

𝑥
0

0 ⋅ ⋅ ⋅ 0

0

𝛼

𝑥
1

⋅ ⋅ ⋅ 0

...
...

. . .
...

0 0 ⋅ ⋅ ⋅

𝛼

𝑥
𝑛

]

]

]

]

]

]

]

]

]

]

, X =
[

[

[

[

[

X (𝑥
0
)

X (𝑥
1
)

...
X (𝑥
𝑛
)

]

]

]

]

]

.

(29)

We can obtain the corresponding matrix form for condi-
tions (3), by means of the relation (27), as follows:

1

∑

𝑘=0

[𝑎
𝑖𝑘
X (0) + 𝑏

𝑖𝑘
X (𝑅)]B𝑘D𝑇A = [𝜆

𝑖
] , 𝑖 = 0, 1. (30)

On the other hand, the matrix forms for the conditions
can be written as

U
𝑖
A = [𝜆

𝑖
] , 𝑖 = 0, 1, (31)

where

U
𝑖
=

1

∑

𝑘=0

[𝑎
𝑖𝑘
X (0) + 𝑏

𝑖𝑘
X (𝑅)]B𝑘D𝑇. (32)

Replacing the condition matrices (31) by any two rows of
[W,G], we get the augmented matrix as [̃W, ̃G]. Let the
collocation points be selected such that the rank of W̃ is 𝑛+1.
Therefore, the unknown matrix A is obtained as

A = ̃W−1̃G. (33)

4. Error Analysis and Estimation of the
Absolute Error

In this section, some upper bounds of the absolute error are
given by using Lagrange and Hermite interpolation poly-
nomials. Also, an estimation of the error based on residual
correction is given.

Theorem3 (see [29]). Let𝑃 be a nonsingularmatrix and 𝑏 ̸= 0
a vector. If 𝑥 and 𝑥̂ = 𝑥 + 𝛿𝑥 are, respectively, the solutions of
the systems 𝑃𝑥 = 𝑏 and 𝑃𝑥̂ = 𝑏 + 𝛿𝑏, one has

‖𝛿𝑥‖ ≤

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃
−1󵄩󵄩
󵄩
󵄩
󵄩
‖𝛿𝑏‖ . (34)

Let 𝑓 be the exact solution of (2) and 𝑝
𝑛
𝑓 the interpo-

lation polynomial of it on the nodes {𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
}. If 𝑓 ∈

𝐶
𝑛+1
[0, 𝑅], then we can write 𝑓 as 𝑓 = 𝑝

𝑛
𝑓 + 𝐾

𝑛
, where

𝐾
𝑛
(𝑥) =

1

(𝑛 + 1)!

𝑛

∏

𝑗=0

(𝑥 − 𝑥
𝑗
) 𝑓
(𝑛+1)

(𝜉) , 𝜉 ∈ (0, 𝑅) . (35)

If 𝑝
𝑛
is the Bernstein series solution of (2), then it satisfies (2)

on the nodes. So, 𝑝
𝑛
and 𝑝

𝑛
𝑓 are the solutions of ̃WA = ̃G

and W̃Â = G̃ + ΔG, respectively, where

[ΔG]
𝑖1
= [−𝐾

󸀠󸀠

𝑛
(𝑥
𝑖
) −

𝛼

𝑥
𝑖

𝐾
󸀠

𝑛
(𝑥
𝑖
) − 𝑝 (𝑥

𝑖
)𝐾
𝑛
(𝑥
𝑖
)]

𝑖1

. (36)

Theorem 4. Let 𝑝
𝑛
and 𝑓 be the Bernstein series solution and

the exact solution of (2), respectively, and𝑝
𝑛
𝑓 the interpolation

polynomial of 𝑓. Let𝐾
𝑛
(𝑥) be the function and ΔG the matrix

which are defined earlier. If 𝑓 ∈ 𝐶𝑛+1[0, 𝑅], then

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑝

𝑛
(𝑥)
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝐾
𝑛
(𝑥)
󵄨
󵄨
󵄨
󵄨
+ ‖ΔG‖

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

̃W−1
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
B
𝑛
(𝑥)
󵄩
󵄩
󵄩
󵄩
. (37)

Proof. Adding and subtracting 𝑝
𝑛
𝑓 gives thefollowing by

triangle inequality:
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑝

𝑛
(𝑥)
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑝

𝑛
𝑓 (𝑥)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑝
𝑛
(𝑥) − 𝑝

𝑛
𝑓 (𝑥)
󵄨
󵄨
󵄨
󵄨
.

(38)

Since 𝑓 ∈ 𝐶𝑛+1[0, 𝑅], the first term on the right hand side
is bounded by Theorem 2. For the second term, by using
Theorem 3 and properties of norm with (22), we get

󵄨
󵄨
󵄨
󵄨
𝑝
𝑛
(𝑥) − 𝑝

𝑛
𝑓 (𝑥)
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
B
𝑛
(𝑥) (A − Â)󵄨󵄨󵄨󵄨

󵄨

≤
󵄩
󵄩
󵄩
󵄩
B
𝑛
(𝑥)
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
(A − ̂A)󵄩󵄩󵄩󵄩

󵄩

≤
󵄩
󵄩
󵄩
󵄩
B
𝑛
(𝑥)
󵄩
󵄩
󵄩
󵄩
‖ΔG‖
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

̃W−1
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

.

(39)

Corollary 5. If the exact solution of (2) is a polynomial, then
the method gives the exact solution for 𝑛 ≥ deg(𝑓).

Proof. Since the exact solution is polynomial, for 𝑛 ≥ deg(𝑓),
𝐾
𝑛
(𝑥) = 0; the right hand side of (37) is zero.

The following theorem can be used for the estimation
of the absolute error when the exact solution is unknown.
Hence, an upper bound depending on ‖𝑓(3𝑚)‖

∞
is obtained

under the condition𝑓 ∈ 𝐶(3𝑚)[0, 𝑅] for𝑚 = [|(𝑛+1)/3|]. It is
well-known that if𝑓 ∈ 𝐶(3𝑚)[0, 𝑅], then ‖𝑓(3𝑚)‖

∞
is bounded

on [0, 𝑅].

Theorem 6. Let 𝑝
𝑛
and 𝑓 be Bernstein series solution and the

exact solution of (2), respectively. Let the interpolation nodes
contain 0 and 𝑅. Let 𝑓 ∈ 𝐶(3𝑚)[0, 𝑅] and 𝐻

3𝑚−1
∈ 𝑃
3𝑚−1

be the Hermite interpolation polynomial of 𝑓 on the nodes
{𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑚
} ⊂ {𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛
}. Then, the error function

is bounded by
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑝

𝑛
(𝑥)
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝐾
𝐻
(𝑥)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑒
𝐻
(𝑥)
󵄨
󵄨
󵄨
󵄨
, (40)
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where 𝐾
𝐻
(𝑥) = (𝑓

(3𝑚)
(𝜉)/3𝑚!)(𝑥 − 𝑥

𝑖1
)
3
⋅ ⋅ ⋅ (𝑥 − 𝑥

𝑖𝑚
)
3 and

𝑒
𝐻
:= 𝐻
3𝑚−1
− 𝑝
𝑛
.

Proof. Adding and subtracting the polynomials 𝐻
3𝑚−1

with
triangle inequality yields
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝑝

𝑛
(𝑥)
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑥) − 𝐻

3𝑚−1
(𝑥)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝐻
3𝑚−1
(𝑥) − 𝑝

𝑛
(𝑥)
󵄨
󵄨
󵄨
󵄨
.

(41)

The first term on the right hand side can be bounded by (17)
since𝑓 ∈ 𝐶(3𝑚)[0, 𝑅].

If the exact solution is unknown, the following steps can
be used to find an upper bund of the absolute error. First, we
construct the differential equation of 𝑒

𝐻
. If 𝐻

3𝑚−1
∈ 𝑃
3𝑚−1

is the Hermite interpolation polynomial of 𝑓 on the nodes
{𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑚−2
} ∪ {0, 𝑅} ⊂ {𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛
}, then 𝑒

𝐻
satisfies

the following differential equation:

𝑒
󸀠󸀠

𝐻
(𝑥) +

𝛼

𝑥

𝑒
󸀠

𝐻
(𝑥) + 𝑝 (𝑥) 𝑒

𝐻
(𝑥)

= 𝑔 (𝑥) − 𝐾
󸀠󸀠

𝐻
(𝑥) −

𝛼

𝑥

𝐾
󸀠

𝐻
(𝑥) − 𝑝 (𝑥)𝐾

𝐻
(𝑥)

− 𝑝
󸀠󸀠

𝑛
(𝑥) −

𝛼

𝑥

𝑝
󸀠

𝑛
(𝑥) − 𝑝 (𝑥) 𝑝

𝑛
(𝑥) ,

(42)

with the conditions
1

∑

𝑘=0

𝑎
𝑖𝑘
𝑒
(𝑘)

(0) + 𝑏
𝑖𝑘
𝑒
(𝑘)

(𝑅) = 0, 𝑖 = 0, 1. (43)

Since 𝑒
𝐻
is a polynomial, the method gives the exact solution

by Corollary 5 under the condition deg(𝑒
𝐻
) ≤ 𝑛. Thus, 𝑒

𝐻
is

obtained by finding Bernstein series solution of (42) so that
an upper bound of the error is obtained depending on 𝑓(3𝑚).

The following procedure, residual correction (e.g., see,
[30–32]), can be given for the estimation of the absolute error.
Moreover, one can estimate the optimal 𝑛 giving minimal
absolute error using this procedure. The procedure is basic.

First, adding and subtracting the term

𝐸 := 𝑝
󸀠󸀠

𝑛
(𝑥) +

𝛼

𝑥

𝑝
󸀠

𝑛
(𝑥) + 𝑝 (𝑥) 𝑝

𝑛
(𝑥) (44)

to (2) yields the following differential equation, which admits
𝑒
𝑛
:= 𝑓 − 𝑝

𝑛
as an exact solution:

𝑒
󸀠󸀠

(𝑥) +

𝛼

𝑥

𝑒
󸀠

(𝑥) + 𝑝 (𝑥) 𝑒 (𝑥) = 𝑔 (𝑥) = 𝐺 − 𝐸, (45)

with the conditions
1

∑

𝑘=0

𝑎
𝑖𝑘
𝑒
(𝑘)

(0) + 𝑏
𝑖𝑘
𝑒
(𝑘)

(𝑅) = 0, 𝑖 = 0, 1. (46)

Let 𝑒∗
𝑚
be Bernstein series solution to (45). If ‖𝑒

𝑛
− 𝑒
∗

𝑚
‖ ≤ 𝜀 is

sufficiently small, the absolute error can be estimated by 𝑒∗
𝑚
.

Hence, the optimal 𝑛 for the absolute error can be obtained
measuring the error functions 𝑒∗

𝑚
for different 𝑛 values in any

norm.

Corollary 7. If 𝑝
𝑛
is Bernstein series solution to (2), then 𝑝

𝑛
+

𝑒
∗

𝑚
is also an approximate solution for (2). Moreover, its error

function is 𝑒
𝑛
− 𝑒
∗

𝑚
.

Note that the approximate solution 𝑝
𝑛
+ 𝑒
∗

𝑚
is a better

approximation than 𝑝
𝑛
in the norm for ‖𝑒

𝑛
− 𝑒
∗

𝑚
‖ ≤ ‖𝑓 − 𝑝

𝑛
‖.

Let us call the approximate solution 𝑝
𝑛
+ 𝑒
∗

𝑚
as corrected

Bernstein series solution.

5. Numerical Examples

In this section, some numerical examples are given to
illustrate the method. Some examples are given with their
error estimation by using Theorem 4. Moreover, for these
examples, the∞-norms of the error function 𝑒

𝑛
, the estimate

error function 𝑒∗
𝑚
, and the absolute error of the corrected

Bernstein series solution 𝑝
𝑛
+ 𝑒
∗

𝑚
given in Corollary 7 are

calculated for some 𝑛 and𝑚.The optimal truncation limit 𝑛 is
specified for each example. All calculations are done inMaple
15. Since 𝑥 = 0 is a singular point, the equidistant nodes are
selected as {(𝑖 + 1)/(𝑛 + 1) : 𝑖 = 0 ⋅ ⋅ ⋅ 𝑛}.

Example 8. Consider the Lane-Emden equation

𝑦
󸀠󸀠

(𝑥) +

2

𝑥

𝑦
󸀠

(𝑥) + 𝑦 (𝑥)

= 6 + 12𝑥 + 𝑥
2
+ 𝑥
3
, 0 ≤ 𝑥 ≤ 1,

𝑦 (0) = 𝑦
󸀠

(0) = 0.

(47)

Applying the method for 𝑛 = 4 on the equidistant nodes,
Bernstein series solution is obtained as

𝑦 (𝑥) = 𝑥
2
+ 𝑥
3 (48)

which is the exact solution [14].

Example 9. Let us consider the equation

𝑦
󸀠󸀠

(𝑥) +

1

𝑥

𝑦
󸀠

(𝑥) = (

8

8 − 𝑥
2
) , 0 ≤ 𝑥 ≤ 1, (49)

with the boundary conditions 𝑦(1) = 0 and 𝑦󸀠(0) = 0. The
exact solution of (49) is [5]

𝑦 (𝑥) = 2 log 7

8 − 𝑥
2
. (50)

For different values 𝑛, the norms and the upper bounds of
the absolute errors are obtained on the equidistant nodes by
using Theorem 4. Also, estimations of the absolute errors for
𝑚 = 12 and the norms of the absolute errors for corrected
Bernstein series solutions, 𝑝

𝑛
+ 𝑒
∗

12
, are calculated on the

Chebyshev nodes. All results are given inTable 1.The absolute
error function for 𝑛 = 10 and the estimation of the error
function, 𝑒∗

12
, are plotted in Figure 1. As seen from Table 1,

the optimal truncation limit 𝑛 is specified as 𝑛 = 16, which
gives us the best approximation from the set {𝑝

3
, 𝑝
4
, . . . , 𝑝

18
}.

Moreover, the expected upper bounds are consistent with the
absolute errors. Adding 𝑒∗

12
to 𝑝
𝑛
yields the better results in

∞-norm for 3 ≤ 𝑛 ≤ 12.
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Table 1: The∞-norms of the absolute errors, estimations of the absolute errors, the∞-norms of the corrected absolute errors, and upper
bounds of the absolute errors for Example 9.

𝑛 ‖𝑓 − 𝑝
𝑛
‖
∞

‖𝑒
∗

12
‖
∞

‖𝑓 − 𝑝
𝑛
− 𝑒
∗

12
‖
∞

Expected upper bound by usingTheorem 4
3 0.0035 0.0035 0.47𝐸 − 10 0.0771

4 0.00028 0.00028 0.47𝐸 − 10 0.0193

5 0.6543𝐸 − 4 0.6543𝐸 − 4 0.4710𝐸 − 10 0.0059

6 0.7244𝐸 − 5 0.7244𝐸 − 5 0.4710𝐸 − 10 0.0018

7 0.1422𝐸 − 5 0.1422𝐸 − 5 0.4710𝐸 − 10 6.0181𝐸 − 4

8 0.1808𝐸 − 6 0.1807𝐸 − 6 0.4710𝐸 − 10 2.3542𝐸 − 4

9 0.3298𝐸 − 7 0.3293𝐸 − 7 0.4710𝐸 − 10 9.5485𝐸 − 5

10 0.4496𝐸 − 8 0.4451𝐸 − 8 0.4710𝐸 − 10 4.0126𝐸 − 5

11 0.7905𝐸 − 9 0.7445𝐸 − 9 0.4710𝐸 − 10 1.6817𝐸 − 5

12 0.1119𝐸 − 9 0.6644𝐸 − 10 0.4710𝐸 − 10 0.8036𝐸 − 5

13 0.1930𝐸 − 10 0.1757𝐸 − 10 0.1745𝐸 − 11 0.3764𝐸 − 5

14 0.2796𝐸 − 11 0.2365𝐸 − 12 0.2772𝐸 − 11 0.1757𝐸 − 5

15 0.5043𝐸 − 12 0.4189𝐸 − 12 0.8734𝐸 − 13 0.8044𝐸 − 6

16 0.3273𝐸 − 13 0.5776𝐸 − 13 0.2526𝐸 − 13 0.4066𝐸 − 6

17 0.1046𝐸 − 11 0.7751𝐸 − 12 0.1712𝐸 − 11 0.2010𝐸 − 6

Table 2: The values of the absolute error at some points assuming
that the exact solution is unknown for Example 10 (𝑛 = 9).

𝑡 𝑛 = 9

0 𝐶
9
× 0.47𝐸 − 13

0.1 𝐶
9
× 0.72𝐸 − 12 + 0.58𝐸 − 6

0.26 𝐶
9
× 0.37𝐸 − 12 + 0.79𝐸 − 6

0.4 𝐶
9
× 0.38𝐸 − 12 + 0.89𝐸 − 6

0.55 𝐶
9
× 0.22𝐸 − 12 + 0.10𝐸 − 5

0.6 𝐶
9
× 0.13𝐸 − 11 + 0.12𝐸 − 5

0.7 𝐶
9
× 0.65𝐸 − 12 + 0.12𝐸 − 5

0.85 𝐶
9
× 0.26𝐸 − 11 + 0.19𝐸 − 5

1 𝐶
9
× 0.17𝐸 − 9 + 0.50𝐸 − 5

Table 3: The values of the absolute error at some points assuming
that the exact solution is unknown for Example 10 (𝑛 = 12).

𝑡 𝑛 = 12

0 𝐶
12
× 0.75𝐸 − 18

0.1 𝐶
12
× 0.18𝐸 − 17 + 0.29𝐸 − 8

0.26 𝐶
12
× 0.41𝐸 − 17 + 0.36𝐸 − 8

0.4 𝐶
12
× 0.14𝐸 − 16 + 0.41𝐸 − 8

0.55 𝐶
12
× 0.10𝐸 − 16 + 0.46𝐸 − 8

0.6 𝐶
12
× 0.28𝐸 − 17 + 0.50𝐸 − 8

0.7 𝐶
12
× 0.20𝐸 − 16 + 0.59𝐸 − 8

0.85 𝐶
12
× 0.59𝐸 − 16 + 0.81𝐸 − 8

1 𝐶
12
× 0.48𝐸 − 14 + 0.97𝐸 − 7

Example 10. Let us consider the Lane-Emden equation

𝑦
󸀠󸀠

(𝑥) +

2

𝑥

𝑦
󸀠

(𝑥) − 2 (2𝑥
2
+ 3) 𝑦 (𝑥) = 0,

𝑦 (0) = 1, 𝑦
󸀠

(0) = 0,

(51)

Table 4: Comparison with the absolute errors and their estimated
upper bounds obtained byTheorem 6 for Example 10.

𝑡
Upper bound of the absolute
error by usingTheorem 6 Absolute error

0 0.14𝐸 − 5 0

0.1 0.13𝐸 − 5 0.29𝐸 − 8

0.26 0.17𝐸 − 5 0.36𝐸 − 8

0.4 0.19𝐸 − 5 0.41𝐸 − 8

0.55 0.23𝐸 − 5 0.47𝐸 − 8

0.6 0.24𝐸 − 5 0.50𝐸 − 8

0.7 0.28𝐸 − 5 0.58𝐸 − 8

0.85 0.35𝐸 − 5 0.75𝐸 − 8

1 0.29𝐸 − 5 0.17𝐸 − 6

having 𝑦(𝑥) = 𝑒𝑥
2

as exact solution [14, 18, 33]. Assuming
that the exact solution 𝑓 is unknown and 𝑓 ∈ 𝐶(𝑛)[0, 𝑅], an
upper bound depending on 𝑓(𝑛) is obtained by Theorem 6.
The errors for 𝑛 = 9 and 𝑛 = 12 are given in Tables 2 and
3, respectively. To obtain 𝑝

𝑛
and 𝑒

𝐻
, the equidistant nodes

and the Chebyshev collocation nodes are used, respectively.
Here,𝐻

8
and𝐻

11
are the Hermite interpolation polynomials

on the sets {0, 𝑥
4
, 1} and {0, 𝑥

4
, 𝑥
8
, 1}, respectively. 𝐶

9
and

𝐶
12

represent the values of 𝑓(9) and 𝑓(12) in ∞-norms,
respectively. By calculating ‖𝑓(12)‖

∞
and using Theorem 6,

the upper bounds of the absolute errors on the equidistant
nodes are given in Table 4 by comparison with the absolute
error. As seen from the table, these upper bounds bound
the absolute error on some reference points. In Table 5,
a comparison between Bernstein series solutions for 𝑛 =
10, 20 and the approximate solution obtained by the Hermite
functions collocation (HFC) method [18] for 𝑛 = 30, 𝑘 = 6,
and 𝑙 = 2 is given. The results are as follows.
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Table 5: Comparison of 𝑦(𝑥), between present method and HFC method for Example 10, digits: 50.

𝑡

Bernstein series solutions Corrected Bernstein series solution HFC method [18]
𝑛 = 10 𝑛 = 20 𝑛 = 10,𝑚 = 12 𝑛 = 30, 𝑘 = 6, 𝑙 = 2

0.00 0.00 0.00 0.00 0.00
0.01 4.05𝐸 − 9 4.77𝐸 − 17 4.29𝐸 − 14 2.24𝐸 − 8

0.02 1.39𝐸 − 8 1.33𝐸 − 16 5.88𝐸 − 13 1.58𝐸 − 8

0.05 5.47𝐸 − 8 3.16𝐸 − 16 1.80𝐸 − 12 2.12𝐸 − 8

0.10 1.03𝐸 − 7 3.90𝐸 − 16 8.45𝐸 − 12 1.78𝐸 − 8

0.20 1.26𝐸 − 7 4.34𝐸 − 16 1.88𝐸 − 11 2.09𝐸 − 8

0.50 1.67𝐸 − 7 5.57𝐸 − 16 4.36𝐸 − 11 2.62𝐸 − 8

0.70 2.14𝐸 − 7 7.11𝐸 − 16 1.00𝐸 − 10 3.27𝐸 − 8

0.80 2.52𝐸 − 7 8.27𝐸 − 16 2.17𝐸 − 10 3.79𝐸 − 6

0.90 1.65𝐸 − 7 9.87𝐸 − 16 2.53𝐸 − 10 5.48𝐸 − 8

1.00 5.90𝐸 − 6 2.75𝐸 − 14 7.52𝐸 − 8 2.51𝐸 − 9

Table 6: The ∞-norms of the absolute errors, estimations of the
absolute errors, and∞-norms of the corrected absolute errors for
Example 11.

𝑛 ‖𝑓 − 𝑝
𝑛
‖
∞

‖𝑒
∗

15
‖
∞

‖𝑓 − 𝑝
𝑛
− 𝑒
∗

15
‖
∞

4 5.70𝐸 − 3 5.69𝐸 − 3 5.0𝐸 − 16

7 1.0𝐸 − 5 1.01𝐸 − 5 3.16𝐸 − 16

10 3.0𝐸 − 9 2.97𝐸 − 9 5.5𝐸 − 16

13 7.2𝐸 − 13 7.15𝐸 − 13 1.3𝐸 − 14

16 1.3𝐸 − 11 1.06𝐸 − 11 2.7𝐸 − 12

19 1.2𝐸 − 10 1.27𝐸 − 10 2.22𝐸 − 11

22 3.5𝐸 − 10 4.52𝐸 − 9 4.8𝐸 − 9

25 2.0𝐸 − 7 2.66𝐸 − 7 7.5𝐸 − 8

Table 7: The ∞-norms of the absolute errors, estimations of the
absolute errors, and∞-norms of the corrected absolute errors for
Example 12 (digits: 20).

𝑛 ‖𝑓 − 𝑝
𝑛
‖
∞

‖𝑒
∗

10
‖
∞

‖𝑓 − 𝑝
𝑛
− 𝑒
∗

10
‖
∞

8 2.0𝐸 − 10 2.0𝐸 − 10 2.0𝐸 − 13

10 2.5𝐸 − 13 4.3𝐸 − 13 2.0𝐸 − 13

12 2.30𝐸 − 15 2.27𝐸 − 15 8.5𝐸 − 17

14 4.0𝐸 − 14 2.8𝐸 − 14 1.1𝐸 − 14

16 4.1𝐸 − 12 4.5𝐸 − 12 7.0𝐸 − 13

18 8.20𝐸 − 12 1.02𝐸 − 11 1.85𝐸 − 11

25 6.23𝐸 − 8 1.39𝐸 − 7 2.0𝐸 − 7

30 0.4𝐸 − 4 0.75𝐸 − 4 5.0𝐸 − 4

Example 11. Let us consider the equation

𝑦
󸀠󸀠

(𝑥) +

2

𝑥

𝑦
󸀠

(𝑥) − 4𝑦 (𝑥) = −2, 0 ≤ 𝑥 ≤ 1, (52)

with the boundary conditions 𝑦(1) = 5.5 and 𝑦󸀠(0) = 0. The
exact solution of (49) is [14, 33]

𝑦 (𝑥) =

1

2

+

5 sinh (2𝑥)
𝑥 sinh (2)

. (53)

Table 8: The ∞-norms of the absolute errors, estimations of the
absolute errors, and∞-norms of the corrected absolute errors for
Example 11 (digits: 40).

𝑛 ‖𝑓 − 𝑝
𝑛
‖
∞

‖𝑒
∗

10
‖
∞

‖𝑓 − 𝑝
𝑛
− 𝑒
∗

10
‖
∞

15 6.0𝐸 − 21 1.33𝐸 − 20 7.0𝐸 − 21

20 2.0𝐸 − 30 3.90𝐸 − 29 4.2𝐸 − 29

25 4.5𝐸 − 27 6.33𝐸 − 27 1.1𝐸 − 26

30 1.5𝐸 − 23 3.69𝐸 − 23 2.3𝐸 − 23

Absolute error function
Estimation of the absolute error

0

0

1𝑒−09

2𝑒−09

3𝑒−09

4𝑒−09

0.2 0.4 0.6 0.8 1
𝑥

Figure 1: The absolute error function and estimation of the error
function 𝑒∗

12
in Example 9.

For different values 𝑛 and 𝑚 = 15, the norms of the
absolute errors, the estimations of the absolute errors, and
the corrected absolute errors are obtained on the equidistant
nodes and given in Table 6. As seen from Table 6, for 𝑛 ≤
16, corrected absolute errors are better than the absolute
errors. Moreover, residual correction procedure estimates the
absolute errors accurately.
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Table 9: Comparison of the approximate solutions, between present
method and the method given in [19] for Example 12.

𝑥 Bernstein series solution The method of [19]
0.5 6.4028𝐸 − 7 8.5210𝐸 − 7

1.0 6.8904𝐸 − 7 2.5303𝐸 − 6

1.5 5.8873𝐸 − 7 6.5438𝐸 − 6

2.0 4.2867𝐸 − 7 1.1482𝐸 − 6

2.5 2.5070𝐸 − 7 5.5047𝐸 − 6

3.0 7.8804𝐸 − 8 1.7238𝐸 − 6

3.5 5.8535𝐸 − 8 5.0772𝐸 − 6

4.0 1.4224𝐸 − 7 1.9317𝐸 − 6

4.5 6.2010𝐸 − 7 4.6236𝐸 − 6

5.0 1.9237𝐸 − 5 2.8580𝐸 − 6

Example 12. Let us consider the Lane-Emden equation [8, 17,
19]

𝑦
󸀠󸀠

(𝑥) +

2

𝑥

𝑦
󸀠

(𝑥) + 𝑦 (𝑥) = 0,

𝑦 (0) = 1, 𝑦
󸀠

(0) = 0,

(54)

which has exact solution (sin𝑥)/𝑥. To show the effect of
working with high accurate computations, Bernstein series
solutions are obtained for digits 20 and digits 40. The results
are given in Tables 7 and 8 for digits 20 and digits 40,
respectively. Table 9 shows the comparison of the Bernstein
series solution and the approximate solution given by Pandey
et al. [19].

Clearly, norms of the absolute errors decrease to 𝑛 = 12,
and then they increase after that point. These results can be
achieved by increasing digits number as in Table 8. Hence,
working with high accuracy may yield more accurate results.

6. Conclusions

To solve Lane-Emden type equations numerically, we intro-
duce a matrix method depending on Bernstein polynomials
and collocation points. The method is given with their
error analysis. By using Lagrange and Hermite interpolation
polynomials, some upper bounds obtained in Section 4
whenever the exact solution is sufficiently smooth. Also the
residual correction procedure is given to estimate the absolute
error. Even if the exact solution is unknown, one can find
an upper bound for the absolute error as in Example 10.
Numerical results are consistent with the theoretical results.
As in Example 11, increasing number of digits may decrease
the round-off error; therefore, more accurate results can be
obtained. On the other hand, for 𝑛 ≤ 𝑚, corrected Bernstein
series solution, 𝑝

𝑛
+ 𝑒
∗

𝑚
, is a better approximation than 𝑝

𝑛
in

∞-norm in the tables. As a disadvantage of the method, even
if Bernstein series solution for 𝑛 ≫ 20 can be obtained, the
results may not be reliable since cond(𝑊̃) increases.

As a future work, we will shortly extend our study to
nonlinear Lane-Emden type differential equation. The error
analysis of the method can be improved. The conditions that
guarantee the convergence of the method will be explored.
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