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Thepurpose of this paper is to present the sufficient𝜓-exponential, uniform exponential, and global exponential stability conditions
for nonlinear impulsive dynamic systems on time scales.

1. Introduction

In recent years, a significant progress has been made in the
stability theory of impulsive systems [1, 2], and in [3] authors
studied the 𝜓-exponential stability for nonlinear impulsive
differential equations. There are various types of stability of
dynamic systems on time scales such as asymptotic stability
[4, 5], exponential and uniform exponential stability [6–8],
and ℎ-stability [9]. In the past decade, many authors studied
impulsive dynamic systems on time scales [10–14]. There
are some papers on the theory of the stability of impulsive
dynamic systems on time scales. In [15], stability criteria for
impulsive systems are given and in [16], authors studied 𝜓-
uniform stability of linear impulsive dynamic systems.

In this paper, we consider the 𝜓-exponential stability
of the zero solution of the first-order nonlinear impulsive
dynamic system

𝑥
Δ
(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ T
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𝑘
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+

𝑘
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𝑘
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𝑘
)) , 𝑡 = 𝑡

𝑘
, 𝑘 = 1, 2, . . . , 𝑛,

𝑥 (𝑡
+

0
) = 𝑥
0
,

(1)

where T is a time scale which has at least finitely many right-
dense points of impulsive 𝑡

𝑘
, 𝑓 : [0,∞) × R𝑛 → R𝑛 is

a nonlinear function and rd continuous in (𝑡
𝑘−1
, 𝑡
𝑘
] × R𝑛,

𝐼
𝑘
∈ 𝐶rd[R

𝑛
,R𝑛], and 0 ≤ 𝑡

0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑛
< 𝑡 are

fixed moments of impulsive effect. Let 𝜓
𝑖
: T → (0,∞),

𝑖 = 1, 2, . . . , 𝑛, be rd continuous functions and let 𝜓 =

diag[𝜓
1
, 𝜓
2
, . . . , 𝜓

𝑛
]. Throughout the paper, we assume that

𝑓(𝑡, 0) = 0, for all 𝑡 in the time scale interval [0,∞), and call
the zero function the trivial solution of (1) and we consider
T+
𝑡0
= {𝑡 ∈ T : 𝑡 ≥ 𝑡

0
}. Existence and uniqueness of solutions

of (1) have been studied in [10].
In the following part we present some basic concepts

about time scale calculus and we refer the reader to resource
[17] for more detailed information on dynamic equations on
time scales.

2. Preliminaries

A time scale T is an arbitrary nonempty closed subset of
the real numbers R. For 𝑡 ∈ T we define the forward jump
operator 𝜎 : T → T by

𝜎 (𝑡) := inf {𝑠 ∈ T : 𝑠 > 𝑡} (2)

while the backward jump operator 𝜌 : T → T is defined by

𝜌 (𝑡) := sup {𝑠 ∈ T : 𝑠 < 𝑡} . (3)
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If 𝜎(𝑡) > 𝑡, we say that 𝑡 is right scattered, while if 𝜌(𝑡) < 𝑡,
we say that 𝑡 is left scattered. Also, if 𝜎(𝑡) = 𝑡, then 𝑡 is called
right dense, and if 𝜌(𝑡) = 𝑡, then 𝑡 is called left dense. The
graininess function 𝜇 : T → [0,∞) is defined by

𝜇 (𝑡) := 𝜎 (𝑡) − 𝑡. (4)

We introduce the set T𝜅 which is derived from the time
scale T as follows. If T has a left-scattered maximum𝑚, then
T𝜅 = T − {𝑚}; otherwise T𝜅 = T .

A function𝑓 on T is said to be delta differentiable at some
point 𝑡 ∈ T if there is a number𝑓Δ(𝑡) such that for every 𝜀 > 0
there is a neighborhood 𝑈 ⊂ T of 𝑡 such that

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠) − 𝑓

Δ
(𝑡) (𝜎 (𝑡) − 𝑠)

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀 |𝜎 (𝑡) − 𝑠| ,

𝑠 ∈ 𝑈.

(5)

The function 𝑝 : T → R is said to be regressive provided
1 + 𝜇(𝑡)𝑝(𝑡) ̸= 0 for all 𝑡 ∈ T𝜅. The set of all regressive rd-
continuous functions 𝑓 : T → R is denoted byR.

Let 𝑝 ∈ R and 𝜇(𝑡) ̸= 0 for all 𝑡 ∈ T . The exponential
function on T , defined by

𝑒
𝑝 (𝑡, 𝑠) = exp(∫

𝑡

𝑠

1

𝜇 (𝑧)
log (1 + 𝜇 (𝑧) 𝑝 (𝑧)) Δ𝑧) , (6)

is the solution to the initial value problem 𝑦
Δ

= 𝑝(𝑡)𝑦,
𝑦(𝑠) = 1. Properties of the exponential function on T are
given in [6].

In [6] authors defined the Lyapunov function on time
scales, type I Lyapunov function 𝑉 as,

𝑉 (𝑥) =

𝑛

∑

𝑖=1

𝑉
𝑖
(𝑥
𝑖
) = 𝑉
1
(𝑥
1
) + ⋅ ⋅ ⋅ + 𝑉

𝑛
(𝑥
𝑛
) , (7)

and Δ derivative of type I Lyapunov function as follows:

[𝑉 (𝑥 (𝑡))]
Δ

=

{{{

{{{

{

𝑛

∑

𝑖=1

[𝑉
𝑖
(𝑥
𝑖
+ 𝜇 (𝑡) 𝑓𝑖 (𝑡, 𝑥)) − 𝑉𝑖 (𝑥𝑖)]

𝜇 (𝑡)
for 𝜇 (𝑡) ̸= 0,

∇𝑉 (𝑥) ⋅ 𝑓 (𝑡, 𝑥) for 𝜇 (𝑡) = 0.
(8)

We start introducing notations that will be used
in the following sections. In the Euclidean 𝑛-space,
norm of a vector 𝑥 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
}
𝑇 is given by ‖𝑥‖ =

max{|𝑥
1
|, |𝑥
2
|, . . . , |𝑥

𝑛
|}. The induced norm of an 𝑛×𝑛matrix

𝐴 is defined to be ‖𝐴‖ = sup
‖𝑥‖≤1

‖𝐴𝑥‖.
Now, we give definition of 𝜓-exponential, 𝜓-uniform

exponential, 𝜓-global exponential stability, and stability con-
ditions for the solution of nonlinear impulsive dynamic
system (1).

3. 𝜓-Exponential Stability

Definition 1. The trivial solution to (1) is 𝜓 exponentially
stable on [0,∞) if any solution 𝑥(𝑡, 𝑡

0
, 𝑥
0
) of the system (1)

satisfies for all 𝑡 ∈ [𝑡
𝑘−1
, 𝑡
𝑘
), 𝑘 = 1, 2, . . . , 𝑛,

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡, 𝑡0, 𝑥0)
󵄩󵄩󵄩󵄩 ≤ 𝐶 (

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 , 𝑡0) (𝑒⊖𝑀 (𝑡, 𝑡0))

𝑑
, (9)

where 𝑑 is a positive constant and 𝐶(ℎ, 𝑡) ∈ R+ × T+
𝑡0
→ R+

is a nonnegative increasing function,𝑀 > 0. If the function
𝐶 is independent of 𝑡

0
, then the trivial solution to system (1)

is said to be 𝜓 uniformly exponentially stable on [0,∞).

Definition 2. The trivial solution to (1) is 𝜓 globally exponen-
tially stable on [0,∞) if there exist some constants 𝛿 > 0

and 𝑀 ≥ 1 such that any solution 𝑥(𝑡, 𝑡
0
, 𝑥
0
) of (1), for all

𝑡 ∈ [𝑡
𝑘−1
, 𝑡
𝑘
), 𝑘 = 1, 2, . . . , 𝑛, we have

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡, 𝑡0, 𝑥0)
󵄩󵄩󵄩󵄩 ≤ 𝑀𝑒

⊖𝛿
(𝑡, 𝑡
0
) . (10)

Now, we shall present sufficient conditions for the 𝜓-
exponential stability, 𝜓 uniformly exponential stability, and
𝜓 globally exponentially stability of(1).

Theorem3. Assume that𝐷 ⊂ R𝑛 contains the origin and there
exists a type I Lyapunov function 𝑉 : T+

𝑡0
× 𝐷 → [0,∞) such

that, for all (𝑡, 𝑥) ∈ T+
𝑡0
× 𝐷 and 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
), 𝑘 = 1, 2, . . . , 𝑛,

𝜆
1 (𝑡)

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)
󵄩󵄩󵄩󵄩
𝑝
≤ 𝑉 (𝑡, 𝑥) ≤ 𝜆2 (𝑡)

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)
󵄩󵄩󵄩󵄩
𝑞
, (11)

𝑉
Δ
(𝑡, 𝑥) ≤

−𝜆
3 (𝑡)

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)
󵄩󵄩󵄩󵄩
𝑟
− 𝐿 (𝑀 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 𝑡0)

1 +𝑀𝜇 (𝑡)
,

(12)

𝑉 (𝑡, 𝑥) − 𝑉
𝑟⟋𝑞

(𝑡, 𝑥) ≤ 𝛾𝑒⊖𝛿 (𝑡, 𝑡0) , (13)

where𝜆
1
(𝑡),𝜆
2
(𝑡), and𝜆

3
(𝑡) are positive functions, where𝜆

1
(𝑡)

is nondecreasing; 𝑝, 𝑞, 𝑟, and 𝛾 are positive constants; 𝐿 is a
nonnegative constant, and 𝛿 > 𝑀 := inf

𝑡≥0
𝜆
3
(𝑡)⟋[𝜆

2
(𝑡)]
𝑟⟋𝑞

>

0. Then the trivial solution to (1) is 𝜓 exponentially stable on
[0,∞).

Proof. Let 𝑥 be a solution to (1) that stays in 𝐷 for all 𝑡 ≥ 𝑡
0
.

As𝑀 := inf
𝑡≥0
𝜆
3
(𝑡)⟋[𝜆

2
(𝑡)]
𝑟⟋𝑞

> 0, 𝑒
𝑀
(𝑡, 𝑡
0
) is well defined

and positive. Thus 𝜆
3
(𝑡)⟋[𝜆

2
(𝑡)]
𝑟⟋𝑞

≥ 𝑀. Consider

[𝑉 (𝑡, 𝑥 (𝑡)) 𝑒𝑀 (𝑡, 𝑡0)]
Δ

= 𝑉
Δ
(𝑡, 𝑥 (𝑡)) 𝑒

𝜎

𝑀
(𝑡, 𝑡
0
) + 𝑉 (𝑡, 𝑥 (𝑡)) 𝑒

Δ

𝑀
(𝑡, 𝑡
0
) ,

≤ (−𝜆
3 (𝑡)

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)
󵄩󵄩󵄩󵄩
𝑟
− 𝐿 (𝑀 ⊖ 𝛿) 𝑒⊝𝛿 (𝑡, 𝑡0)) 𝑒𝑀 (𝑡, 𝑡0)

+ 𝑀𝑉 (𝑡, 𝑥 (𝑡)) 𝑒𝑀 (𝑡, 𝑡0)

= (−𝜆
3(𝑡)

󵄩󵄩󵄩󵄩𝜓 (𝑡)𝑥 (𝑡)
󵄩󵄩󵄩󵄩
𝑟
+𝑀𝑉(𝑡, 𝑥 (𝑡))−𝐿(𝑀 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 𝑡0))

× 𝑒
𝑀
(𝑡, 𝑡
0
)

≤ (
−𝜆
3 (𝑡)

[𝜆
2 (𝑡)]
𝑟⟋𝑞

𝑉
𝑟⟋𝑞

(𝑡, 𝑥 (𝑡)) + 𝑀𝑉 (𝑡, 𝑥 (𝑡))

−𝐿 (𝑀 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 𝑡0)) 𝑒𝑀 (𝑡, 𝑡0)



Abstract and Applied Analysis 3

≤ (𝑀(𝑉 (𝑡, 𝑥 (𝑡)) − 𝑉
𝑟⟋𝑞

(𝑡, 𝑥 (𝑡)))−𝐿 (𝑀 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 𝑡0))

× 𝑒
𝑀
(𝑡, 𝑡
0
)

≤ (𝑀𝛾 − 𝐿 (𝑀 ⊖ 𝛿)) 𝑒𝑀⊖𝛿 (𝑡, 𝑡0) .

(14)

Integrating both sides of above inequality from 𝑡
0
to 𝑡 with

𝑥
0
= 𝑥(𝑡
0
), we obtain, for 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
),

𝑉 (𝑡, 𝑥) 𝑒𝑀 (𝑡, 𝑡0) ≤ 𝑉 (𝑡0, 𝑥0)

+ ∫

𝑡

𝑡0

(𝑀𝛾 − 𝐿 (𝑀 ⊖ 𝛿)) 𝑒𝑀⊖𝛿 (𝜏, 𝑡0) Δ𝜏

= 𝑉 (𝑡
0
, 𝑥
0
) + (

𝑀𝛾

𝑀 ⊖ 𝛿
− 𝐿) 𝑒

𝑀⊖𝛿
(𝑡, 𝑡
0
)

+
𝑀𝛾

𝛿 ⊖𝑀
+ 𝐿

≤ 𝑉 (𝑡
0
, 𝑥
0
) +

𝑀𝛾

𝛿 ⊖𝑀
+ 𝐿.

(15)

From condition 𝑉(𝑡
0
, 𝑥
0
) ≤ 𝜆
2
(𝑡
0
)‖𝜓(𝑡
0
)𝑥
0
‖
𝑞

𝑉 (𝑡, 𝑥) 𝑒𝑀 (𝑡, 𝑡0) ≤ 𝜆2 (𝑡0)
󵄩󵄩󵄩󵄩𝜓 (𝑡0) 𝑥0

󵄩󵄩󵄩󵄩
𝑞
+

𝑀𝛾

𝛿 ⊖𝑀
+ 𝐿. (16)

Letting

𝜆
2
(𝑡
0
)
󵄩󵄩󵄩󵄩𝜓 (𝑡0) 𝑥0

󵄩󵄩󵄩󵄩
𝑞
+

𝑀𝛾

𝛿 ⊖𝑀
+ 𝐿 = 𝐶 (

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 , 𝑡0) > 0 (17)

we get,

𝑉 (𝑡, 𝑥) 𝑒𝑀 (𝑡, 𝑡0) ≤ 𝐶 (
󵄩󵄩󵄩󵄩𝑥0

󵄩󵄩󵄩󵄩 , 𝑡0) . (18)

By condition (11), we have

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝜆
−1⟋𝑝

1
(𝑡) (𝑉 (𝑡, 𝑥))

1⟋𝑝 (19)

And by the fact that 𝜆
1
(𝑡) ≥ 𝜆

1
(𝑡
0
), we obtain

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝜆
−1⟋𝑝

1
(𝑡
0
) (𝑉 (𝑡, 𝑥))

1⟋𝑝
. (20)

From (18) and (20) we obtain the result for all, 𝑡 ∈ [𝑡
𝑘−1
, 𝑡
𝑘
),

𝑘 = 1, 2, . . . , 𝑛,
󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝜆
−1⟋𝑝

1
(𝑡
0
) (𝐶 (

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 , 𝑡0))

1⟋𝑝
𝑒
⊖𝑀
(𝑡, 𝑡
0
)
1⟋𝑝

.

(21)

By Definition 1 system (1) is 𝜓 exponentially stable.

If we consider 𝜓 as scaler function independent of 𝑡, then
we get a sufficient condition for 𝜓 uniformly exponential
stability as stated below.

Theorem 4. InTheorem 3 if 𝜓 is a constant function indepen-
dent of 𝑡 and 𝜆

𝑖
(𝑡) = 𝜆

𝑖
, 𝑖 = 1, 2, 3, are positive constants, then

the trivial solution to system (1) is 𝜓 uniformly exponentially
stable on [0,∞).

Proof. The proof is similar to proof of Theorem 3 by taking
𝛿 > 𝜆

3
⟋[𝜆
2
]
𝑟⟋𝑞 and𝑀 = 𝜆

3
⟋[𝜆
2
]
𝑟⟋𝑞, hence omitted.

Theorem5. Assume that𝐷 ⊂ R𝑛 contains the origin and there
exists a type I Lyapunov function 𝑉 : T+

𝑡0
× 𝐷 → [0,∞) such

that, for all (𝑡, 𝑥) ∈ T+
𝑡0
× 𝐷 and 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
), 𝑘 = 1, 2, . . . , 𝑛,

𝜆
1

󵄩󵄩󵄩󵄩𝜓𝑥 (𝑡)
󵄩󵄩󵄩󵄩
𝑝
≤ 𝑉 (𝑥) , (22)

𝑉
Δ
(𝑡, 𝑥) ≤

−𝜆
2
𝑉 (𝑥) − 𝐿 (𝑀 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 0)

1 +𝑀𝜇 (𝑡)
, (23)

where 𝜓 is a constant function independent of 𝑡. 𝜆
1
, 𝜆
2
, 𝑝, 𝛿 >

0, 𝐿 ≥ 0 are constants and 0 < 𝑀 < min{𝜆
2
, 𝛿}. Then the

trivial solution to (1) is 𝜓 uniformly exponentially stable on
[0,∞).

Proof. Let 𝑥 be a solution to (1) that stays in 𝐷 for all 𝑡 ≥
𝑡
0
. Since𝑀 ∈ R+, 𝑒

𝑀
(𝑡, 0) is well defined and positive. Now

consider

[𝑉 (𝑥 (𝑡)) 𝑒𝑀 (𝑡, 0)]
Δ

= 𝑉
Δ
(𝑡, 𝑥 (𝑡)) 𝑒

𝜎

𝑀
(𝑡, 0) + 𝑀𝑉 (𝑥 (𝑡)) 𝑒𝑀 (𝑡, 0) ,

≤ (−𝜆
2
𝑉 (𝑥 (𝑡)) − 𝐿 (𝑀 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 0)) 𝑒𝑀 (𝑡, 0)

+ 𝑀𝑉 (𝑥 (𝑡)) 𝑒𝑀 (𝑡, 0)

= (−𝜆
2
𝑉 (𝑥 (𝑡))+𝑀𝑉(𝑥 (𝑡))−𝐿 (𝑀 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 0)) 𝑒𝑀 (𝑡, 0)

≤ ((𝑀 − 𝜆
2
) 𝑉 (𝑥 (𝑡)) − 𝐿 (𝑀 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 0)) 𝑒𝑀 (𝑡, 0)

≤ −𝐿 (𝑀 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 0) 𝑒𝑀 (𝑡, 0)

= −𝐿 (𝑀 ⊖ 𝛿) 𝑒𝑀⊖𝛿 (𝑡, 0) .

(24)

Integrating both sides of the above inequality from 𝑡
0
to 𝑡, we

obtain, for 𝑡 ∈ [𝑡
𝑘−1
, 𝑡
𝑘
),

𝑉 (𝑥 (𝑡)) 𝑒𝑀 (𝑡, 0) ≤ 𝑉 (𝑥0) 𝑒𝑀 (𝑡0, 0) − 𝐿𝑒𝑀⊖𝛿 (𝑡, 0)

+ 𝐿𝑒
𝑀⊖𝛿

(𝑡
0
, 0)

≤ 𝑉 (𝑥
0
) 𝑒
𝑀
(𝑡
0
, 0) + 𝐿𝑒

𝑀⊖𝛿
(𝑡
0
, 0)

≤ (𝑉 (𝑥
0
) + 𝐿) 𝑒

𝑀
(𝑡
0
, 0) .

(25)

This implies that

𝑉 (𝑥 (𝑡)) ≤ ((𝑉 (𝑥0) + 𝐿) 𝑒𝑀 (𝑡0, 0)) 𝑒⊖𝑀 (𝑡, 0)

= (𝑉 (𝑥
0
) + 𝐿) 𝑒

⊖𝑀
(𝑡, 𝑡
0
) .

(26)

From (26) and by invoking condition (22) we obtain, for all
𝑡 ∈ [𝑡
𝑘−1
, 𝑡
𝑘
), 𝑘 = 1, 2, . . . , 𝑛,

󵄩󵄩󵄩󵄩𝜓𝑥 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝜆
−1⟋𝑝

1
((𝑉 (𝑥

0
) + 𝐿) 𝑒

⊖𝑀
(𝑡, 𝑡
0
))
1⟋𝑝

. (27)

ByDefinition 1 system (1) is𝜓 uniformly exponentially stable.
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Theorem6. Assume that𝐷 ⊂ R𝑛 contains the origin and there
exists a type I Lyapunov function 𝑉 : T+

𝑡0
× 𝐷 → [0,∞) such

that, for all (𝑡, 𝑥) ∈ T+
𝑡0
× 𝐷 and 𝑡 ∈ [𝑡

𝑘−1
, 𝑡
𝑘
), 𝑘 = 1, 2, . . . , 𝑛,

𝜆
1

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)
󵄩󵄩󵄩󵄩
𝑝
≤ 𝑉 (𝑥) ≤ 𝜆2

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)
󵄩󵄩󵄩󵄩
𝑝
, (28)

𝑉
Δ
(𝑡, 𝑥) ≤

−𝜆
3

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)
󵄩󵄩󵄩󵄩
𝑝
− 𝐿 (𝐾 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 0)

1 + 𝐾𝜇 (𝑡)
, (29)

where 𝜆
1
, 𝜆
2
, 𝜆
3
, and 𝑝 are positive constants,𝐾 = 𝜆

3
/𝜆
2
, 𝐿 ≥

𝜆
1
is a nonnegative constant, and 𝛿 > 𝜆

3
/𝜆
2
. Then the trivial

solution to (1) is 𝜓 globally exponentially stable on [0,∞).

Proof. Let 𝑥 be a solution to (1) that stays in 𝐷 for all 𝑡 ≥ 𝑡
0
.

Since 𝐾 = 𝜆
3
/𝜆
2
, 𝑒
𝐾
(𝑡, 0) is well defined and positive. For all

𝑡 ∈ [𝑡
𝑘−1
, 𝑡
𝑘
), 𝑘 = 1, 2, . . . , 𝑛, consider

[𝑉 (𝑥 (𝑡)) 𝑒𝐾 (𝑡, 0)]
Δ

= 𝑉
Δ
(𝑡, 𝑥 (𝑡)) 𝑒

𝜎

𝐾
(𝑡, 0) + 𝑉 (𝑥 (𝑡)) 𝑒

Δ

𝐾
(𝑡, 0) ,

≤ (−𝜆
3

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)
󵄩󵄩󵄩󵄩
𝑝
− 𝐿 (𝐾 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 0)) 𝑒𝐾 (𝑡, 0)

+ 𝐾𝑉 (𝑥 (𝑡)) 𝑒𝐾 (𝑡, 0)

= (−𝜆
3

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)
󵄩󵄩󵄩󵄩
𝑝
+ 𝐾𝑉 (𝑥 (𝑡)) − 𝐿 (𝐾 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 0))

× 𝑒
𝐾 (𝑡, 0)

≤ (
−𝜆
3

𝜆
2

𝑉 (𝑥 (𝑡)) + 𝐾𝑉 (𝑥 (𝑡)) − 𝐿 (𝐾 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 0)) 𝑒𝐾 (𝑡, 0)

= (−𝐿 (𝐾 ⊖ 𝛿) 𝑒⊖𝛿 (𝑡, 0)) 𝑒𝐾 (𝑡, 0)

= −𝐿 (𝐾 ⊖ 𝛿) 𝑒𝐾⊖𝛿 (𝑡, 0) .

(30)

Integrating both sides of the above inequality from 𝑡
0
to

𝑡, 𝑡 ̸= 𝑡
𝑘
, with 𝑥

0
= 𝑥(𝑡
0
), we obtain,

𝑉 (𝑥 (𝑡)) 𝑒𝐾 (𝑡, 0) ≤ 𝑉 (𝑥0) 𝑒𝐾 (𝑡0, 0)

+ 𝐿 (𝑒
𝐾⊖𝛿

(𝑡
0
, 0) − 𝑒

𝐾⊖𝛿 (𝑡, 0))

≤ 𝑉 (𝑥
0
) 𝑒
𝐾
(𝑡
0
, 0) + 𝐿𝑒

𝐾⊖𝛿
(𝑡
0
, 0)

≤ (𝑉 (𝑥
0
) + 𝐿) 𝑒

𝐾
(𝑡
0
, 0) .

(31)

This implies that

𝑉 (𝑥 (𝑡)) ≤ ((𝑉 (𝑥0) + 𝐿) 𝑒𝐾 (𝑡0, 0)) 𝑒⊖𝐾 (𝑡, 0)

= (𝑉 (𝑥
0
) + 𝐿) 𝑒

⊖𝐾
(𝑡, 𝑡
0
) .

(32)

From (32), and by invoking condition (28), we obtain, for all
𝑡 ∈ [𝑡
𝑘−1
, 𝑡
𝑘
), 𝑘 = 1, 2, . . . , 𝑛,

󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)
󵄩󵄩󵄩󵄩 ≤ 𝜆
−1⟋𝑝

1
((𝑉 (𝑥

0
) + 𝐿) 𝑒

⊖𝐾
(𝑡, 𝑡
0
))
1⟋𝑝

≤ 𝜆
−1⟋𝑝

1
((𝑉 (𝑥

0
) + 𝐿) 𝑒

⊖𝐾
(𝑡, 𝑡
0
))
1⟋𝑝

.

(33)

If we set𝑀 := ((𝑉(𝑥
0
) + 𝐿)/𝜆

1
)
1⟋𝑝, then (33) can be written

as
󵄩󵄩󵄩󵄩𝜓 (𝑡) 𝑥 (𝑡)

󵄩󵄩󵄩󵄩 ≤ 𝑀(𝑒
⊖𝐾
(𝑡, 𝑡
0
))
1⟋𝑝

. (34)

Since 𝑀 ≥ 1, by Definition 2 system (1) is 𝜓 globally
exponentially stable.

4. Examples

Example 7. We consider Example (35) in [7] and extend the
example by using impulse condition,

𝑥
Δ
= −𝑥 +

1

5
𝑥
1/3
𝑒
⊖𝛿 (𝑡, 0) , 𝑡 ̸= 𝑡

𝑘
, 𝑡 ∈ T , (35)

𝑥 (𝑡
+

𝑘
) = −

1

3
, 𝑡 = 𝑘, 𝑘 = 1, 2, . . . , 𝑛, (36)

where 𝛿 > 0 is a constant 𝑥
0
∈ R. If there is a constant 0 <

𝑀 < 𝛿 such that

(𝜇 (𝑡) − 1) (1 +𝑀𝜇 (𝑡)) ≤ −𝑀, (37)

(
2

3
(
1

25
𝜇 (𝑡))

3/2

+

󵄨󵄨󵄨󵄨(2/5) − (2/5) 𝜇 (𝑡)
󵄨󵄨󵄨󵄨
3

3
) (1 +𝑀𝜇 (𝑡))

≤ −𝐿 (𝑀 ⊖ 𝛿) (𝑡) ,

(38)

for some constant 𝐿 ≥ 0 and all 𝑡 ̸= 𝑘, (35) is 𝜓 uniformly
exponentially stable.

Under above assumptions, we will show that the condi-
tions ofTheorem4 are satisfied. Let𝜓(𝑡) = 1/2, choose𝐷 = R

and 𝑉(𝑥) = 𝑥
2, 𝑡 ̸= 𝑘, then (11) holds with 𝑝 = 𝑞 = 2, 𝜆

1
=

𝜆
2
= 4. If we calculate 𝑉Δ, for all 𝑡 ̸= 𝑘,

𝑉
Δ
= 2𝑥 (−𝑥 +

1

5
𝑥
1/3
𝑒
⊖𝛿 (𝑡, 0))

+ 𝜇 (𝑡) (−𝑥 +
1

5
𝑥
1/3
𝑒
⊖𝛿 (𝑡, 0))

2

,

(39)

we have the following comparison:

𝑉
Δ
= 2𝑥 (−𝑥 +

1

5
𝑥
1/3
𝑒
⊖𝛿 (𝑡, 0))

+ 𝜇 (𝑡) (−𝑥 +
1

5
𝑥
1/3
𝑒
⊖𝛿 (𝑡, 0))

2

≤ (𝜇 (𝑡) − 1) 𝑥
2

+ [
2

3
(
1

25
𝜇 (𝑡))

3/2

+

󵄨󵄨󵄨󵄨(2/5) − (2/5) 𝜇 (𝑡)
󵄨󵄨󵄨󵄨
3

3
] 𝑒
⊖𝛿 (𝑡, 0) .

(40)

Dividing and multiplying the right-hand side by (1 +𝑀𝜇(𝑡)),
we see that (12) holds under the above assumptions with 𝑟 = 2
and 𝜆

3
= 4𝑀. Also, since 𝑝 = 𝑞 = 2, we have

𝑉 (𝑥) − 𝑉
𝑟⟋𝑞

(𝑥) = 𝑥
2
− (𝑥
2
)
2/2

= 0 ≤ 𝛾𝑒
⊖𝛿
(𝑡, 𝑡
0
) , (41)
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for all 𝑡 ̸= 𝑘. Therefore (13) is satisfied. Hence, all hypotheses
of Theorem 4 are satisfied and we conclude that the trivial
solution to (35) is 𝜓 uniformly exponentially stable. We
consider following two special cases of (35).

Case 1. If T = R, then 𝜇(𝑡) = 0. It is easy to see that (37) holds
for 𝑀 = 1. Also for 𝐿 = 8/[375(𝛿 − 𝑀)], condition (38) is
satisfied. Hence, we conclude that if 𝛿 > 1, then the trivial
solution to (35) is 𝜓 uniformly exponentially stable.

Case 2. If T = (1/2)Z, then 𝜇(𝑡) = 1/2. In this case rewriting
(37) we have

(−
1

2
) (1 +

𝑀

2
) ≤ −𝑀, (42)

then (37) holds for 2/3 > 𝑀 > 0. Also for 𝐿 = ((6 + √2)/

2250(𝛿−𝑀))(1−(𝑀/2))(1−(𝛿/2)), condition (38) is satisfied.
Therefore for 𝛿 > 2/3, then the trivial solution to (35) is 𝜓
uniformly exponentially stable.
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USA, 2001.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


