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Abstract

In this work, by using rare sets, we introduce a new type of convergence in topological spaces,
called rare convergence, which is weaker than ordinary convergence. After presenting some exam-
ples, we investigate the relationship of rare convergence with continuity and rare continuity. Using
rare convergence, we also construct a new topology, called rarely sequential topology, which is
coarser than sequential topology.
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1 Introduction and Preliminaries

A set R in a topological space is called rare if
int (R) = /0. Popa introduced the notion of rare
continuity by using rare sets as follows:

Definition 1 (Popa (1979)) Let f : X → Y be a
function between topological spaces. Then f is
called rarely continuous if for each x in X and
each open set G containing f (x), there is a rare
set RG with G∩ cl (RG) = /0 and an open set U
containing x such that f (U)⊆ G∪RG.

Afterwards, many authors have investigated
this notion (Jafari 1997, 1995; Long & Herring-
ton 1982; Roy 2014). Weak and strong forms
of rare continuity have also been studied (Cal-
das & Jafari 2005, 2006; Ekici & Jafari 2009;
Jafari & Noiri 2000; Jafari & Sengül 2013; Ja-
fari 2005). Multifunctions and their continuity
in terms of rare sets have been studied by many
authors (Caldas et al. 2005; Ekici & Jafari 2013;
Popa 1989).

In this paper, in a similar manner, by using
rare sets, we introduce a notion of rare con-
vergence that is weaker than ordinary conver-
gence. We give some examples showing that or-
dinary divergent sequences may be rarely con-
vergent. Also, we investigate the relationship of
rare convergence with continuity and rare con-
tinuity. Unfortunately, neither of these two pre-
serves rare convergence. But if a function is con-
tinuous and one to one then it preserves rare con-
vergence. However, we show that for a rarely
continuous function, the image of a convergent
sequence is rarely convergent. Moreover, by
using rare convergence, we define the class of
rarely sequentially open sets. Then it is proven
that a subset is rarely sequentially open if and
only if it is sequentially open and contains all
rare sets. Hence the family of rarely sequen-
tially open sets forms a topology which we call
rarely sequential topology. We also note that the
given topology and the induced rarely sequential
topology on a given set cannot overlap (except
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when the given topology is the discrete or the
indiscrete topology).

The following Definition and Theorem will be
used in the sequel.

Definition 2 (Franklin (1965)) A subset A of a
topological space (X ,τ) is said to be sequen-
tially open if for every sequence {xn} in X con-
verging to a point in A, there is n0 ∈ N such that
for all n ≥ n0, xn ∈ A .

Theorem 3 (Long & Herrington (1982)) Let
f : X → Y be a continuous and one-to-one
function between two topological spaces. If R is
rare in X then f (R) is rare in Y .

2 Results

Definition 4 Let (X ,τ) be a topological space,
{xn} be a sequence in X. Then {xn} is said to be
rarely convergent to x in X if for any open set G
containing x, there is a rare set RG in X such that
G∩cl (RG) = /0 and there is n0 ∈N such that for
all n ≥ n0, xn ∈ G∪RG.

Remark 5 It is obvious that ordinary conver-
gence implies rare convergence but the converse
is not true , as shown by the next example.

Example 6 Consider the real numbers R with
usual topology. The sequence {(−1)n} is or-
dinary divergent but it rarely converges to any
point x in R. In fact, any sequence in R rarely
converges to any point in R. Let {xn} be any
sequence, x ∈ R and D = {xn : n ∈ N}. For any
open set G containing x, we choose RG = D−G.
Since D has countably many elements and RG ⊆
D, int (RG) = /0. On the other hand since G is
open and RG ⊆ Gc, G∩ cl (RG) = /0. As a result
for all n∈N, we have xn ∈G∪RG , which means
that {xn} rarely converges to any point.

We know that if X is a Hausdorff space and
{xn} is a convergent sequence, then the limit is
unique. But for a rarely convergent sequence,
the limit is not unique as shown by the above
example.

Example 7 Similarly it can be shown that every
sequence in R with lower (upper) limit topology
rarely converges to any point in R.

Theorem 8 Let (X ,τ) be a topological space. If
{xn} is a sequence rarely converging to x in X,
then any subsequence of {xn} rarely converges
to x.

Proof. Obvious.

Example 9 Let X = {x,y,z} and τ = { /0,X ,{x} ,
{y} ,{x,y}} be a topology on X. In this space
{z} is the only rare set. Let’s determine the
rarely convergence of following sequences.
i) If {xn} is a sequence given by x,x,x, . . ., then
{xn} (rarely) converges to x and z but {xn} does
not rarely converge to y.
ii) If {xn} is a sequence given by z,z,z, . . ., then
{xn} rarely converges to x,y and z.
iii) If {xn} is a sequence given by x,y,x,y,x,y, . . .,
then {xn} converges to z but {xn} does not rarely
converge to x and y.
iv) If {xn} is a sequence given by x,z,x,z,x,z, . . .,
then {xn} converges to z, {xn} rarely converges
to x but {xn} does not rarely converge to y.
v) If {xn} is a sequence given by y,z,y,z,y,z, . . .,
then {xn} converges to z, {xn} rarely converges
to y but {xn} does not rarely converge to x.
vi) If {xn} is a sequence given by
x,y,z,x,y,z,x,y,z, . . ., then {xn} does not
rarely converge to x and y but {xn} converges to
z.

Now we generalize the above example.

Proposition 10 Let R be a rare set in a topolog-
ical space (X ,τ) and r ∈ R. Then;
i) If {xn} is a sequence given by x,r,x,r,x,r, . . .,
then {xn} rarely converges to x for any x ∈ X.
ii) If {xn} is a sequence given by r,r,r, . . ., then
{xn} rarely converges to x for any x ∈ X.

Proof. i) Consider any open set G containing
x. If r ∈ G then it is obvious. If r /∈ G then
choose RG = {r}⊆ R which is also rare in X and
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G∩cl (RG) = /0 since RG ⊆Gc. For all n∈N, we
have xn ∈ G∪ RG. Therefore {xn} rarely con-
verges to x.
ii) The result follows by Theorem 8 and Part i).

Let X be a topological space. If there is at
least one rare element say r, then by Proposition
10, the sequence {xn} given by r,r,r, . . . rarely
converges to any x in X . If there are no rare el-
ements in X , then it means that X is the discrete
space and any rarely convergent sequence has a
unique limit (see Example 12). Hence if X is a
topological space having the property that every
rarely convergent sequence {xn} has a unique
limit, then X is the discrete space.

We know that if X is a first countable space
and has the property that every convergent se-
quence {xn} has a unique limit, then X is Haus-
dorff. This statement is also true when ordinary
convergence is replaced by rare convergence.
But the only topological space that satisfies this
condition is the discrete space.

Remark 11 Let X be a topological space and
{xn} be a divergent sequence rarely converging
to x. Let R be the set of rare elements of {xn}
which is not necessarily rare set in X. By the def-
inition, there are some rare elements in the se-
quence causing {xn} not to converge to x. There
are two cases: When we omit the rare elements
in {xn}, if there exist infinitely many elements
then they form a subsequence {xnk} of {xn} con-
verging to x. If there exist finitely many elements,
then it implies that there exists n0 ∈ N such that
xn ∈ R for n ≥ n0.

Example 12 In a discrete space, since there are
no rare sets, a sequence is rarely convergent iff
it is convergent (constant).

It is well known that for a continuous func-
tion f : X → Y , if {xn} converges to x in X then
{ f (xn)} converges to f (x) in Y . But this fact
is not valid for rarely continuous functions and
rarely convergent sequences.

Example 13 Let X = R and τ = { /0,R,(−∞,0],
(0,∞)}. The sequence {(−1)n} rarely converges
to 1. Indeed, there are two open sets contain-
ing 1. For G = R, there is no need to look
for any rare set since R contains all elements
of the sequence. For G = (0,∞), we choose
RG = {−1}. It is clear that int (RG) = /0 and
cl (RG) = (−∞,0]. Hence RG is a rare set in X
and G∩ cl (RG) = (0,∞)∩ (−∞,0] = /0. There-
fore for all n ∈ N, xn ∈ G∪RG = R. Now con-
sider f : (X ,τ)→ ({−1,1} ,D)

f (x) =


−1 , x ∈ (−∞,0]
1 , x ∈ (0,∞)

where D is discrete topology. Then f is contin-
uous, hence rarely continuous and {xn} rarely
converges to 1 but { f (xn)}= {(−1)n} does not
rarely converge to f (1) = 1 since it is not con-
stant (see Example 12).

The above example also shows that continu-
ous functions do not preserve rarely convergence
of sequences. However, we have the following
theorem.

Theorem 14 Let f : (X ,τ1)→ (Y,τ2) be a con-
tinuous and one to one function. If {xn} rarely
converges to x in X, then { f (xn)} rarely con-
verges to f (x) in Y .

Proof. Let G be an open set containing f (x) in
Y . Since f is continuous, there is an open set
U containing x in X such that f (U) ⊆ G. Since
{xn} rarely converges to x and U is open set con-
taining x, there is a rare set RU in X such that
U ∩cl (RU) = /0 and there is n0 ∈N such that for
n ≥ n0, xn ∈U ∪RU . Hence for n ≥ n0, we have

f (xn)∈ f (U ∪RU)= f (U)∪ f (RU)⊆G∪ f (RU) .

Since f is continuous and one to one, f (RU) is
rare in Y by Theorem 3. Here we have two cases:
f (RU) is a subset of G or not. It is obvious that
if f (RU) ⊆ G then { f (xn)} rarely converges to
f (x). On the other hand if f (RU)  G then we
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choose RG = f (RU)−G and since f (RU) is rare
in Y and RG ⊆ f (RU), RG is rare in Y . Moreover,
since RG ⊆ Gc we have G∩ cl (RG) = /0. As a
result { f (xn)} rarely converges to f (x).

The following example shows that rarely con-
tinuous functions do not necessarily preserve the
convergence of sequences.

Example 15 Let U be the usual topology on R.
Consider f : (R,U )→ (R,U ) defined by

f (x) =


0 , x ∈Q
1 , x ∈Qc .

Then f is rarely continuous (Long & Herring-
ton 1982). As Q is dense in R, then there is a
sequence {xn} in Q such that {xn} converges to
x for any x ∈ Qc. But { f (xn)} = {0} does not
converge to f (x) = 1.

In above example, however { f (xn)} rarely
converges to f (x). In the following theorem, we
prove that this is not a coincidence.

Theorem 16 Let f : (X ,τ1) → (Y,τ2) be a
rarely continuous function. If {xn} converges to
x in X, then { f (xn)} rarely converges to f (x) in
Y .

Proof. Let G be an open set containing f (x) in
Y . Since f is rarely continuous, there is a rare set
RG in Y such that G∩cl (RG) = /0 and there is an
open set U containing x in X such that f (U) ⊆
G∪RG. Since {xn} converges to x and U is open
set containing x, there is n0 ∈N such that xn ∈U
for n ≥ n0. Hence f (xn) ∈ f (U) ⊆ G∪RG for
n ≥ n0 which implies { f (xn)} rarely converges
to f (x).

In the following, we define rarely sequentially
open sets in a similar manner to sequentially
open sets.

Definition 17 A subset A of a topological space
(X ,τ) is said to be rarely sequentially open set if
for every sequence {xn} in X rarely converging
to a point in A, there is n0 ∈ N such that for all
n ≥ n0, xn ∈ A.

An open set or a sequentially open set may not
be rarely sequentially open.

Example 18 Consider the real numbers R with
the usual topology, then A = (0,2) is open and
sequentially open but it is not rarely sequentially
open. In particular, the sequence {xn} with xn =
3 rarely converges to 1 ∈ A but xn /∈ A for all n ∈
N. As a result of Example 6, any sequence in R
rarely converges to any point in R. This implies
that the only rarely sequentially open sets are R
and /0.

Example 19 Consider the real numbers R with
co-countable topology. It is well known that in
this space, any subset is sequentially open since
convergent sequences are constant. On the other
hand, it can be easily shown that (as in Example
6) any sequence rarely converges to any point
which means that R and /0 are the only rarely
sequentially open sets. Therefore any open set
different from R and /0 is not rarely sequentially
open.

Example 20 Consider X =
1

n : n ∈ N

∪ {0}

with the subspace topology of usual topology on
R. In this space, the only rare set is {0}. Let
{xn} be a sequence in X. We have the following
characterizations.
i) {xn} rarely converges to a = 0 if and only if
there is n0 ∈ N such that for all n ≥ n0, xn = 0
or a.
ii) {xn} rarely converges to 0 if and only if xn = 0
or 1

n or subsequence of 1
n or combination of first

and last (for example xn = 1/2,0,1/3,0,1/4,0,
. . . ,1/n,0, . . .).
In this space, the only rarely sequentially
open sets are the sets containing An0 =1

n : n ≥ n0,n0 ∈ N

∪{0} along with /0.

In above examples, we observe that rarely se-
quentially open sets are sequentially open sets
containing all rare sets.

Theorem 21 Let (X ,τ) be a topological space.
A subset A ⊆ X is rarely sequentially open if and
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N. As a result of Example 6, any sequence in R
rarely converges to any point in R. This implies
that the only rarely sequentially open sets are R
and /0.

Example 19 Consider the real numbers R with
co-countable topology. It is well known that in
this space, any subset is sequentially open since
convergent sequences are constant. On the other
hand, it can be easily shown that (as in Example
6) any sequence rarely converges to any point
which means that R and /0 are the only rarely
sequentially open sets. Therefore any open set
different from R and /0 is not rarely sequentially
open.

Example 20 Consider X =
1

n : n ∈ N

∪ {0}

with the subspace topology of usual topology on
R. In this space, the only rare set is {0}. Let
{xn} be a sequence in X. We have the following
characterizations.
i) {xn} rarely converges to a = 0 if and only if
there is n0 ∈ N such that for all n ≥ n0, xn = 0
or a.
ii) {xn} rarely converges to 0 if and only if xn = 0
or 1

n or subsequence of 1
n or combination of first

and last (for example xn = 1/2,0,1/3,0,1/4,0,
. . . ,1/n,0, . . .).
In this space, the only rarely sequentially
open sets are the sets containing An0 =1

n : n ≥ n0,n0 ∈ N

∪{0} along with /0.

In above examples, we observe that rarely se-
quentially open sets are sequentially open sets
containing all rare sets.

Theorem 21 Let (X ,τ) be a topological space.
A subset A ⊆ X is rarely sequentially open if and

• 

• 
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only if it is sequentially open and contains all
rare sets.

Proof. Let A be a rarely sequentially open set
in X . Now we show that A is sequentially open.
Since a convergent sequence is also rarely con-
vergent, then for all x ∈ A and all sequences {xn}
in X converging to x, there is n0 ∈ N such that
xn ∈ A for all n ≥ n0 which implies that A is se-
quentially open in X . Moreover, if R is a rare
set in X , then by Proposition 10, the sequence
{x,r,x,r,x,r, . . .} rarely converges to x for all
r ∈ R. Hence, r ∈ A and R ⊆ A for any rare set R
in X . On the other hand, we assume that A is a
sequentially open set containing all rare sets. Let
a ∈ A and {xn} be a sequence rarely converging
to x. Here we consider two cases.
Case 1) {xn} converges to x. Since A is sequen-
tially open, there is n0 ∈ N such that for n ≥ n0,
xn ∈A which implies that A is rarely sequentially
open in X .
Case 2) {xn} rarely converges to x but {xn} does
not converge to x. By Remark 11, here we have
two cases.
Case 2-a) Suppose that there is a subsequence
{xnk} of {xn} converging to x. Since A is se-
quentially open, there is n0 ∈ N such that for all
nk ≥ n0, xnk ∈ A. Since the other terms of {xn}
are rare elements and by the hypothesis, they are
also contained in A. Therefore A is rarely se-
quentially open in X .
Case 2-b) Suppose that there exists n0 ∈ N such
that xn is a rare element for n ≥ n0. Again by the
hypothesis, they are also contained in A. There-
fore A is rarely sequentially open in X

Remark 22 The above theorem says that the
family of rarely sequentially open sets is a spe-
cial class of the family of sequentially open sets
containing all rare sets. Since the family of se-
quentially open sets denoted by τs is a topology
on X then the family of rarely sequentially open
sets denoted by τrs is also a topology on X.

Definition 23 Let (X ,τ) be a topological space.
Then τrs is called rarely sequential topology and
(X ,τrs) is called rarely sequential space.

Remark 24 If (X ,τ) is sequential space, i.e.
τ = τs, then τrs is coarser than τ , i.e. τrs ⊆ τ .

Example 25 If (X ,τ) is indiscrete topological
space then τrs = τ .

Example 26 If (X ,τ) is discrete topological
space then τrs = τ .

Remark 27 If (X ,τ) is a topological space such
that {x} is rare in X for any x ∈ X then τrs =
{ /0,X}.

Remark 28 Let (X ,τ) be a topological space.
If X contains no rare sets, then τrs = τs = τ is the
discrete topology since {x} ∈ τ for any x ∈ X.

Proposition 29 Let (X ,τ) be a topological
space. If τ is different from indiscrete and dis-
crete topology then τ = τrs.

Proof. Assume that τrs = τ . Since τ is different
from indiscrete and discrete topology, there is an
open set U having at least two elements and x ∈
U such that {x} is rare in X . Consider an element
y∈Uc. Here {y} cannot be rare in X . Otherwise,
since U ∈ τ = τrs and {y} is rare in X , y ∈ U ,
which yields a contradiction. Therefore {y} is
not rare in X . Then we have int ({y}) = /0 implies
int ({y}) = {y} and {y} ∈ τ = τrs. Since {x} is
rare in X , we have x∈ {y} that is a contradiction.
Therefore τ and τrs cannot be the same.

Theorem 30 Let (X ,τ) be a topological space.
If {xn} is a sequence rarely converging to x in
(X ,τ) then {xn} converges to x in (X ,τrs).

Proof. Assume that {xn} rarely converges to x
in (X ,τ). Let G be an open set containing x in
(X ,τrs). Then G is rarely sequentially open set
containing x in (X ,τ). Hence there is n0 ∈ N
such that for all n ≥ n0, xn ∈ G. Therefore {xn}
converges to x in (X ,τrs).

In the following, we give an example to show
that the converse of the above theorem is not
true.

6 Rarely convergent sequences in topological spaces

Example 31 Consider the information in Ex-
ample 20. Let


1, 1

2 ,1,
1
3 , . . . ,1,

1
n , . . .


be a se-

quence in X. Then {xn} converges to 1 in (X ,τrs)
but {xn} does not rarely converge to 1 in (X ,τ).

Remark 32 Let x be a rare element in (X ,τ).
Then the following questions arise: Whether or
not x is a rare element in (X ,τrs). The an-
swer depends on the number of rare elements in
(X ,τ). If x is the only rare element in (X ,τ) then
x may not be a rare element in (X ,τrs). Consider
(R,τ) where τ = P(R−{0})∪{U ⊆R : 0 ∈U,
Uc is countable}. Then the only rare element in
(X ,τ) is 0. It is clear that {0} is sequentially
open since the only sequence converging to 0 is
constant. Therefore {0} ∈ τrs which means x is
not rare element in (X ,τrs). For the other case,
we give the following theorem.

Theorem 33 Let (X ,τ) be a topological space.
If the number of rare elements in (X ,τ) is
greater than 1 and x is a rare element in (X ,τ)
then x is also rare element in (X ,τrs).

Proof. Assume that x is not a rare element in
(X ,τrs). Then {x} ∈ τrs and by Theorem 21, it
must contain all rare elements in (X ,τ) which is
a contradiction.

The following theorem discusses the case of
non-rare elements in any given topological space
except the discrete space.

Theorem 34 Let (X ,τ) be a topological space
where τ is different from discrete topology. If
{x} is not rare in (X ,τ), then {x} is rare in
(X ,τrs).

Proof. Assume that x is not a rare element in
(X ,τrs). Then {x} ∈ τrs and by Theorem 21,
there are no rare elements in (X ,τ). This im-
plies that τ is discrete which is a contradiction.

Corollary 35 Let (X ,τ) be a topological space
and the number of rare elements is greater than
1 then (τrs)rs is indiscrete topology.

Proof. Since there are some rare elements, τ is
different from discrete topology. By Theorem 33
and 34, any x is rare in (X ,τrs) and by Remark
27, (X ,(τrs)rs) is indiscrete topological space.
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only if it is sequentially open and contains all
rare sets.

Proof. Let A be a rarely sequentially open set
in X . Now we show that A is sequentially open.
Since a convergent sequence is also rarely con-
vergent, then for all x ∈ A and all sequences {xn}
in X converging to x, there is n0 ∈ N such that
xn ∈ A for all n ≥ n0 which implies that A is se-
quentially open in X . Moreover, if R is a rare
set in X , then by Proposition 10, the sequence
{x,r,x,r,x,r, . . .} rarely converges to x for all
r ∈ R. Hence, r ∈ A and R ⊆ A for any rare set R
in X . On the other hand, we assume that A is a
sequentially open set containing all rare sets. Let
a ∈ A and {xn} be a sequence rarely converging
to x. Here we consider two cases.
Case 1) {xn} converges to x. Since A is sequen-
tially open, there is n0 ∈ N such that for n ≥ n0,
xn ∈A which implies that A is rarely sequentially
open in X .
Case 2) {xn} rarely converges to x but {xn} does
not converge to x. By Remark 11, here we have
two cases.
Case 2-a) Suppose that there is a subsequence
{xnk} of {xn} converging to x. Since A is se-
quentially open, there is n0 ∈ N such that for all
nk ≥ n0, xnk ∈ A. Since the other terms of {xn}
are rare elements and by the hypothesis, they are
also contained in A. Therefore A is rarely se-
quentially open in X .
Case 2-b) Suppose that there exists n0 ∈ N such
that xn is a rare element for n ≥ n0. Again by the
hypothesis, they are also contained in A. There-
fore A is rarely sequentially open in X

Remark 22 The above theorem says that the
family of rarely sequentially open sets is a spe-
cial class of the family of sequentially open sets
containing all rare sets. Since the family of se-
quentially open sets denoted by τs is a topology
on X then the family of rarely sequentially open
sets denoted by τrs is also a topology on X.

Definition 23 Let (X ,τ) be a topological space.
Then τrs is called rarely sequential topology and
(X ,τrs) is called rarely sequential space.

Remark 24 If (X ,τ) is sequential space, i.e.
τ = τs, then τrs is coarser than τ , i.e. τrs ⊆ τ .

Example 25 If (X ,τ) is indiscrete topological
space then τrs = τ .

Example 26 If (X ,τ) is discrete topological
space then τrs = τ .

Remark 27 If (X ,τ) is a topological space such
that {x} is rare in X for any x ∈ X then τrs =
{ /0,X}.

Remark 28 Let (X ,τ) be a topological space.
If X contains no rare sets, then τrs = τs = τ is the
discrete topology since {x} ∈ τ for any x ∈ X.

Proposition 29 Let (X ,τ) be a topological
space. If τ is different from indiscrete and dis-
crete topology then τ = τrs.

Proof. Assume that τrs = τ . Since τ is different
from indiscrete and discrete topology, there is an
open set U having at least two elements and x ∈
U such that {x} is rare in X . Consider an element
y∈Uc. Here {y} cannot be rare in X . Otherwise,
since U ∈ τ = τrs and {y} is rare in X , y ∈ U ,
which yields a contradiction. Therefore {y} is
not rare in X . Then we have int ({y}) = /0 implies
int ({y}) = {y} and {y} ∈ τ = τrs. Since {x} is
rare in X , we have x∈ {y} that is a contradiction.
Therefore τ and τrs cannot be the same.

Theorem 30 Let (X ,τ) be a topological space.
If {xn} is a sequence rarely converging to x in
(X ,τ) then {xn} converges to x in (X ,τrs).

Proof. Assume that {xn} rarely converges to x
in (X ,τ). Let G be an open set containing x in
(X ,τrs). Then G is rarely sequentially open set
containing x in (X ,τ). Hence there is n0 ∈ N
such that for all n ≥ n0, xn ∈ G. Therefore {xn}
converges to x in (X ,τrs).

In the following, we give an example to show
that the converse of the above theorem is not
true.

6 Rarely convergent sequences in topological spaces

Example 31 Consider the information in Ex-
ample 20. Let


1, 1

2 ,1,
1
3 , . . . ,1,

1
n , . . .


be a se-

quence in X. Then {xn} converges to 1 in (X ,τrs)
but {xn} does not rarely converge to 1 in (X ,τ).

Remark 32 Let x be a rare element in (X ,τ).
Then the following questions arise: Whether or
not x is a rare element in (X ,τrs). The an-
swer depends on the number of rare elements in
(X ,τ). If x is the only rare element in (X ,τ) then
x may not be a rare element in (X ,τrs). Consider
(R,τ) where τ = P(R−{0})∪{U ⊆R : 0 ∈U,
Uc is countable}. Then the only rare element in
(X ,τ) is 0. It is clear that {0} is sequentially
open since the only sequence converging to 0 is
constant. Therefore {0} ∈ τrs which means x is
not rare element in (X ,τrs). For the other case,
we give the following theorem.

Theorem 33 Let (X ,τ) be a topological space.
If the number of rare elements in (X ,τ) is
greater than 1 and x is a rare element in (X ,τ)
then x is also rare element in (X ,τrs).

Proof. Assume that x is not a rare element in
(X ,τrs). Then {x} ∈ τrs and by Theorem 21, it
must contain all rare elements in (X ,τ) which is
a contradiction.

The following theorem discusses the case of
non-rare elements in any given topological space
except the discrete space.

Theorem 34 Let (X ,τ) be a topological space
where τ is different from discrete topology. If
{x} is not rare in (X ,τ), then {x} is rare in
(X ,τrs).

Proof. Assume that x is not a rare element in
(X ,τrs). Then {x} ∈ τrs and by Theorem 21,
there are no rare elements in (X ,τ). This im-
plies that τ is discrete which is a contradiction.

Corollary 35 Let (X ,τ) be a topological space
and the number of rare elements is greater than
1 then (τrs)rs is indiscrete topology.

Proof. Since there are some rare elements, τ is
different from discrete topology. By Theorem 33
and 34, any x is rare in (X ,τrs) and by Remark
27, (X ,(τrs)rs) is indiscrete topological space.
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المتواليات نادرة التقارب في الفضاءات التوبولوجية

طارق أونر
 قسم الرياضيات- جامعة Mugla Sitki Kocman، تركيا 

ملخص
في هذا البحث نقدم نوعاُ جديداً من التقارب في الفضاءات التوبولوجية، وذلك باستخدام مجموعات نادرة تُسمى التقارب النادر، وهي 
أضعف من التقارب العادي. وعقب تقديم عدد من الأمثلة، سنقوم بدراسة العلاقة بين التقارب النادر مع الاستمرارية والاستمرارية 
النادرة. وباستخدام التقارب النادر، يتم ايضاً انشاء توبولوجيا جديدة يُطلق عليها التوبولوجيا نادرة التوالي، والتي تُعتبر أضعف من 

التوبولوجيا التتابعية.
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