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Abstract: The large-scale penetration of electric vehicles (EVs) into the power system will provoke new challenges needed to
be handled by distribution system operators (DSOs). Demand response (DR) strategies play a key role in facilitating the
integration of each new asset into the power system. With the aid of the smart grid paradigm, a day-ahead charging operation of
large-scale penetration of EVs in different regions that include different aggregators and various EV parking lots (EVPLs) is
propounded in this study. Moreover, the uncertainty of the related EV owners, such as the initial state-of-energy and the arrival
time to the related EVPL, is taken into account. The stochasticity of PV generation is also investigated by using a scenario-
based approach related to daily solar irradiation data. Last but not least, the operational flexibility is also taken into consideration
by implementing peak load limitation (PLL) based DR strategies from the DSO point of view. To reveal the effectiveness of the
devised scheduling model, it is performed under various case studies that have different levels of PLL, and for the cases with
and without PV generation.

௑Nomenclature
In this section, the main nomenclature used throughout the study is
detailed as abbreviations, set and indices, parameters, and
variables.

Abbreviations

DR demand response
DSO distribution system operator
EPA-IM240 environmental protection agency-inspection &

maintenance
EUDC extra urban driving schedule
EV electric vehicle
EVPL electric vehicle parking lot
FTP federal test producer
GHG greenhouse gas
HDUDD heavy duty urban dynamometer driving
HWFET highway fuel economy test
LA-92 light duty unified driving schedule
PLL peak load limitation
PV photovoltaic
SoE state-of-energy
SOS2 special order sets of type 2
UDDS urban dynamometer driving schedule
US06 high acceleration aggressive driving schedule

Sets and indices

t period of the day index in time units (min)
s set of EVs arrival/departure time scenarios
n set of aggregators
k set of EVPLs
m set of EVs
v set of PV generation scenarios
b set of branches
i set of nodes
r set of regions

Parameters

CEm
EV charging efficiency of EV m

CRm
EV charging rate of EV m (kW)

f b
max maximum power capacity of the branch b (kW)

N sufficiently large positive constant
Pi

f , max maximum power that feeder of node i can provide
(kW)

Pt
imposed peak power limit demanded by LSE during period t

(kW)
Pv, t

pv total PV power production in scenario v in period t
(kW)

SoEm,
EV, ini initial SoE of EV m (kWh)

SoEm
EV, maks maximum SoE of EV m (kWh)

SoEm
EV, min minimum SoE of EV m (kWh)

Tr, n, k, m, s
a arrival time period of EV m to EVPL k under

aggregator n in region r for scenario s
Tr, n, k, m, s

d departure time period of EV m to EVPL k under
aggregator n in region r for scenario s

T1 starting period of the peak load limitation from LSE
T2 ending period of the peak load limitation from LSE
Yp Y-coordinate of point p that is used for approximation
Xp X-coordinate of point p that is used for approximation
ΔT time granularity (min)
πs probability value of scenario s
πv probability value of scenario v

Variables

Fb, v, s, t approximate value of the square of the flow
through branch b in scenario vand s during period
t (kW2)

f b, v, s, t active power flow of branch b in scenario v and s
during period t (kW)
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Pr, n, v, s, t
agg total charging power of aggregator n under region r

during period t for scenarios s and v (kW)
Pr, n, k, m, v, s, t

EV, ch charging power of EV m in EVPL k under
aggregator n in region r during period t for
scenarios s and v (kW)

Pr, n, k, v, s, t
EVPL total charging power of EVPL k under aggregator n

in region r during period t for scenarios s and v
(kW)

Pi, v, s, t
f total active power provided by substation at node i

in scenario v and s during period t (kW)
Pi, v, s, t

f , load active power provided by substation at node i in
scenario v and s during period t to cover the
demand (kW)

Pb, v, s, t
loss power losses of branch b in scenario v and s during

period t (kW)
Pr, v, s, t

region, tot total active power demanded of region r in
scenario v and s during period t (kW)

Pv, s, t
sell, grid power injected to upstream grid in scenario v and s

during period t (kW)
SoEr, n, k, m, v, s, t

EV SoE of EV m in EVPL k under aggregator n in
region r during period t for scenarios s and v
(kWh)

uv, s, t
grid binary variable. 1 if there is a power exchange

between upstream grid and regions in scenario v
and s in period t; else 0

zb, v, s, t, p SOS2 variables that are used to approximate the
power losses

1௑Introduction
1.1 Motivation and background

In recent decades, the incessant technological needs of humankind
play a key role in the increase in electrical energy use. The
irresistible spreading of technology and augmentation of industrial
applications have resulted in a copious amount of environmental
problems together with imbalances between supply and demand
sides. According to the revealed report [1], it was stated that total
electricity demand has increased by the rate of 3.1% in 2017. After
three years of remaining value as flat, global greenhouse gas
(GHG) emission rose by 1.4% sets a historical record of 32.4 G [1].

To tackle the energy demand and GHG emissions, researchers
have investigated new remedies on sustainable and renewable
energy. International Renewable Energy Agency published a
capacity statistic report related to renewable energy systems in
which an increase in total RES capacity around 4.83 and 6.84% is
stated for Europe and USA, respectively [2].

At the same time, transportation systems also need to be
evolved into the paradigm of green vehicles to gradually decrease
GHG emissions and dependence on fossil fuels. Therefore, the
aforementioned paradigm has caused the emergence of a new
player named as electric vehicle (EV). The number of EVs has
outstandingly increased in recent years and this increment will
proceed without a doubt. It is stated in a published report in [3] that
the worldwide number of EVs is expected to be exceeded over 150
million in 2040.

Thanks to the increase in the number of EVs, a crucial amount
of decreasing in the GHG emission will also be provided. Because
it has already indicated in [4] that the transportation sector is
responsible for 23% of the energy-related GHG emissions in the
year 2017.

The aforementioned circumstances suggest that owing to the
smart grid concept, the energy imbalances between demand and
supply sides can be handled by implementing demand response
(DR) strategies as an alternative way along with the increasing
amount of electricity generation.

Moreover, EVs can be taken into consideration as a substantial
asset to provide a more flexible power system in an operational
manner [5, 6]. Last but not least, energy efficiency can be enhanced
by accurate scheduling of charging operations among the different
regions.

1.2 Relevant literature

There are many studies dealing with the scheduling of the EVs’
charging operations in the existing literature. However, only a few
of them have concerned the parking lots framework, and among
them, while some studies considered DR strategies, the others did
not even mention.

Rezaee et al. [7] investigated the total daily impact of EVs
charging/discharging interactions in the EV parking lot (EVPL) on
the grid based on statistical data and the general regulations.
Chukwu and Mahajan [8] presented mathematical models to
estimate the power capacity of an EVPL which is enriched with
vehicle-to-grid (V2G) feature. Moreover, together with the
stochasticity, photovoltaic (PV) rooftops were taken into
consideration to enhance the related power capacity in the EVPL.
In [9], Shaaban et al. stated that a novel online charging
coordination method was devised in a smart distribution network
with the aims of maximising the EV owners’ satisfaction and
minimising system operating cost. Furthermore, different busses
were considered as having different EVPLs. Yazdani-Damavandi et
al. [10] modelled an EVPL within the concept of a multi-energy
system (MES) considering the uncertain behaviour of the EV
owners. In [10], the authors developed a new operational process
of the parking lots by considering MES and EVPL simultaneously.
In [11], a centralised EVs recharging scheduling system was
proposed by considering real mobility/parking profile on individual
EVPL. Also, the objective of that work was twofold, which were to
maximise the income of the parking lot and the number of
recharged EVs.

In [12], an energy management system (EMS) for charging/
discharging operations of an EVPL was propounded. It was stated
that the EMS aimed to minimise the cost of charge and to
maximise their profit by selling energy back to the grid. Ghazanfari
et al. [13] devised a decentralised management for DC EVPLs
equipped with diverse types of distributed generation units.
Moreover, the devised model was demonstrated in real-time
hardware-in-the-loop studies. In [14–16] the topic was approached
from different points of view. With the aid of EVs' V2G feature,
EVPLs were considered to enhance distribution system reliability
enriched by renewable generation units. The work in [17] proposed
planning for the penetration of renewable energy sources, energy
storage, and EVs. Moreover, a comparison between coordinated
and uncoordinated charging was provided by the devised model.
Shafie-Khah et al. [18] propounded a two-level model for EVPLs
in renewable-based distribution systems to minimise the overall
cost from distribution system operator (DSO) point of view and
maximising EVPL and the relevant aggregator profit. In [19], the
power flow of EVs due to traffic flow was investigated, and
EVPL's charging operations based on traffic pattern were explored.
In [20], Chen et al. studied on the charging facilities planning
equipped with multiple-charger multiple-port charging to schedule
charging/discharging transactions in an effective manner. Shafie-
Khah et al. explored the optimal EVPL behaviour in another study
[21]. It should be noted that EVPLs were evaluated as DR agents
considering price and incentive based DR strategies. In [22], both
EVPLs located near commercial places and residential buildings
were addressed by taking day-time and night-time periods into
account. Furthermore, thanks to the dynamic electricity price, DR
strategies were also regarded. Neyestani et al. [23] suggested a
model to explore the interactions of EVPLs with the electricity
markets. The proposed model was equipped with distributed
generation units and DR programs were considered. Sengor et al.
[24] devised an EVPL model to schedule the charging operations
of EVs under peak load reduction based DR programs.

The research by Yang et al. [25] explored the wind power
potential on the roof of high-rise buildings for EV charging
demand to maximise profit of buildings. Also, the authors
considered the uncertainty of wind power generation together with
EV owners’ behaviour. However, any DR programs were not
mentioned. In [26], the authors improved a real-time optimal
energy management controller for EVs' charging in a microgrid
environment. The proposed management systems aimed to
minimise the cost of energy at the workplace. The stochasticity of
PV generation along with the EV journey pattern was addressed.
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However, DR programs were neglected. The authors in [27]
proposed an efficient power management algorithm in fuzzy logic
inference for an EVPL. However, power flow among the regions in
a distribution system and the renewable energy systems were
neglected in this paper. In [28], the charging management of EVs
in a commercial parking lots was handled as a real-time model
together with considering PV based renewable energy and energy
storage systems. Nevertheless, the propounded model focused on a
single EVPL so neither different aggregators nor different EVPLs
were evaluated. In [29, 30], the charging scheduling of the EVs in
an EVPL was addressed considering PV based renewable energy
systems and the profit maximisation was the main goal in both
studies. However, peak load limitation (PLL) based DR and power
flow among the regions were not evaluated in the scope of the
papers.

The main difference of this study from the abovementioned
works is to evaluate charging operations of many EVPLs
controlled by multiple aggregators under different regions from
DSO point of view. In the existing models, the charging
management of a single EV or EVs in the parking lots were
investigated from either aggregator perspective or the EV owners’
profit point of view. In this study, the DSO can directly manipulate
the total load demands of a distribution system by limiting the peak
load. Moreover, the power limitation reflects the regions based on
the power demand of the aggregators and EVPLs owing to the
power flow among the related regions. It is worth noting that DSO
handles improved operational flexibility via a direct access ability
to impose PLL during the daily operation of the regions and it is
properly applied to the other regions by considering power flow in
this study.

1.3 Contributions and organisation

In this study, day-ahead scheduling of EVs charging operation
among the regions that include multiple aggregators and various
EVPLs is propounded in a mixed integer linear programming
(MILP) framework. Herein, the power flow between the regions is
considered with the aim of minimising the branch energy losses.
As seen in Table 1, many studies have focused on EVs' charging
from different points of view. It can be deduced from the table that
centralised and decentralised management perspectives together
with multiple aggregators under different regions is taken into
account the first time in the existing literature. It should be
underlined that dealing with the topic from the perspective of DSO
separates this study from the other studies in the literature.

The novel contributions are threefold:

i. The centralised direct manipulation capability of the DSO on
EV operation is taken into account together with the
decentralised management strategies of EVPL aggregators and
EVPLs as the first time in the literature. Moreover, the
proposed model was tested in a real distribution system in
Turkey along with in a test system existing in the literature.

ii. EVs’ charging coordination among the PV generation-based
regions including multiple aggregators and various EVPLs is
presented together as a hierarchical structure.

iii. Along with the PV generations’ stochasticity, the uncertainties
related to EV owners’ behaviours such as remaining state-of-
energy (SoE) and arrival time to a parking lot are also
considered. Besides, power flow among the regions is taken
into account during implementation of PLL-based DR
strategies to provide a more realistic approach.

The presentation of the paper is organised as follows: Section 2
gives the details about mathematical basis of the EV motion power
and the devised energy management structure among the regions.
Input data and the discussion of the related results of the selected
case studies are presented in Section 3. Finally, concluding remarks
are highlighted in Section 4.

2௑Methodology
2.1 An overview of the proposed structure

The proposed EVPL aggregators’ EMS can be demonstrated with
the block diagram as shown in Fig. 1. It is worthy to indicate that
one of the most important targets of this model is to schedule the
charging behaviour of EVs in different regions under EVPLs and
aggregators to enhance the effectiveness of DSO.

On the other hand, there is a connection between the upstream
grid and the regions, which enables bi-directional power flow in
parties. Thus, demanded power is supplied by upstream grid and/or
locally distributed PV plants. Also, the available energy can be
injected to the upstream grid and/or stored in EVs’ battery units by
taking optimal operational requirements into consideration. A
considerable amount of different types and brands of EVs and a
DR strategy demanded by the load-serving entity (LSE) are
considered in this detailed framework. Moreover, the stochastic
nature of PV production plants and the behaviour of EVs are
modelled as a scenario-based stochastic optimisation approach to
address various uncertainties. The rest of this section describes the
mathematical background of both the EV motion and the devised
energy management strategy, respectively.

2.2 Mathematical background of EV motion

The mathematical model of EV motion is presented in this section
to obtain different scenarios of EV arrival times and also calculate
the remaining SoE that belongs to each EV by taking different
driving cycles into consideration. The mathematical framework is
presented to model an EV motion based on Newton's second law of
motion by analysing the forces acting on it. These forces can be
demonstrated as in Fig. 2, which have an impact on EV motion
during travel. It is to be indicated that the total traction force Ft t

is the total force required to move the EV and also aided to

Table 1 Considered driving cycles to generate scenarios
for EVs’ uncertainties
Driving cycles [31] Journey time, s
UDDS 1370
EPA IM240 240
FTP 1875
HDUDD 1060
HWFET 765
US06 600
EUDC 400
LA92 1435
 

Fig. 1௒ Block diagram of the proposed regional EVPL aggregator model
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determine the maximum torque need as expressed in (1). It consists
of five main forces, which are aerodynamic drag force, Fa, t ,
rolling friction (resistance) force, Fr, t , the force caused by the
gravity when driving on non-horizontal roads, Fg, t , the
disturbance force that summarises all other effects, Fd, t , and lastly
the force by the acceleration of the vehicle [21].

Equation (2) states the aerodynamic drag force where A
expresses front surface of vehicle in m

2, Cx represents the drag
coefficient, and ρ indicates air density in kg/m3. Rolling friction
force is an opposing motion that occurs due to the rolling motion
between wheels and surface as indicated in (3). Besides, the other
forces acting on the motion are expressed by (4). So, it is evident
that it depends on the values of Cr, α, g, mv which represent the
rolling resistance coefficient, road slope in rad, the gravity of earth
in m/s2, and mass of the vehicle in kg, respectively. More
specifically, the gravity force can be defined as a resistance that
pulls the vehicle back on the non-horizontal roads.

The vehicle acceleration can be expressed by (5) with using the
difference between consecutive values of v t  divided by the time
granularity ΔT . It is noted that if the EV is slowing down
acceleration will be negative. Equation (6) states the electrical
power demand of the EV in period t in watt, P t , where Pv t

represents the mechanical power need in period t in watt, and
driving efficiency is expressed by ηd. Pv, t  is obtained by
multiplying vehicle speed v t  in m/s in period t, and total traction
force Ft, t  in Newton acting on EV in period t in (7)

Ft, t = mv

dv t

dt
+ Fa, t + Fr, t + Fg, t + Fd, t (1)

Fa, t =
1
2

⋅ ρ ⋅ A ⋅ Cx ⋅ v t
2 (2)

Fr, t = mv ⋅ Cr ⋅ g ⋅ cos α (3)

Fg, t = mv ⋅ g ⋅ sin α (4)

dv t

dt
=

v t − v t − 1

ΔT
(5)

P t =
Pv, t

ηd
(6)

Pv, t = v t ⋅ Ft, t (7)

2.3 Devised regional EVPL aggregator energy management
model

An optimisation based EVPL aggregator energy management
framework is presented in this study, to enhance the DSO
effectiveness and also to provide more flexible power system
considering highly penetrated EV integration. The comprehensive
mathematical model aims to analyse system requirements and
conditions to accomplish management strategies within the scope
of smart grid paradigm.

2.3.1 Objective function: The objective function expressed by (8)
is created aiming at minimising total losses in the branches

Minimise Losses = ∑
t

∑
b

∑
v

∑
s

πv ⋅ πs ⋅ Pb, v, s, t
loss ∀b ∈ B, t

∈ T , ∀v, ∀s
(8)

2.3.2 Power balance, branch flow limits, and substation
limits: Herein, the power balance of this model, given in (9),
includes total generated power by PV plants Pv, t

pv, tot  and the power
injected from the upstream grid for meeting the regions’ demand
Pr, v, s, t

region, total . Also the powers which enter the node and are sent
from reference bus i to load busses are considered in (9) and
represented as Pi, v, s, t

f , load, ∑b ∈ B: i ∈ Ωb
j f b, v, s, t, ∑b ∈ B: i ∈ Ωb

i f b, v, s, t,

respectively.
Equation (10) states that the active power can be transmitted to

upstream grid or vice versa during the period t in scenario v and s
according to the optimal solution within the constraint of the
branch flow capacity. Also, the amount of transferred power from
the upstream grid Pi, v, s, t

f  should meet the demand of buses
Pi, v, s, t

f , load  and losses Pb, v, s, t
loss  as indicated in (11). To schedule energy

exchanges between parties, the unit commitment based
formulations are to be used.

Thanks to the inequalities (12) and (13), it is not possible to
provide bi-directional power flow at the same time. N is chosen as
a sufficiently large positive constant as a limitation for the power
exchange with the upstream grid. Lastly, substation node's
generator power limit Pi

f , max  is determined by (14)
(see (9)) 

− f b
max ≤ f b, v, s, t ≤ f b

max ∀b ∈ B, t ∈ T , ∀v, ∀s (10)

Pi, v, s, t
f = Pi, v, s, t

f , load + ∑
b ∈ B

Pb, v, s, t
loss + Pv, s, t

sell, grid ∀i ∈ Ωi
f , ∀t

∈ T , ∀v, s
(11)

Pi, v, s, t
f ≤ N ⋅ uv, s, t

grid (12)

Pv, s, t
sell, grid ≤ N ⋅ 1 − uv, s, t

grid (13)

0 ≤ Pi, v, s, t
f ≤ Pi

f , max ∀i ∈ Ωi
f , ∀t ∈ T , ∀v, ∀s (14)

2.3.3 Linear approximation of the losses: The active power
losses in the branches are formulated as a second-order function
with the constants of d and c as expressed in (15). However, it
consists of a non-linear term f b, v, s, t

2  that should be linearised.
Therefore, Special Order Sets of Type 2 (SOS2), one of the most
common linearisation methods in the literature, is used in order to
obtain appropriate function and integrate into MILP framework.
Equation (16) states the SOS2 variables while the power flow is
approximated by using these variables and constraints in (17) and
(18)

Pb, v, s, t
loss = d ⋅ f b, v, s, t + c ⋅ f b, v, s, t

2 ∀b ∈ B, ∀t ∈ T , ∀v, ∀s (15)

∑
p ∈ P

zb, v, s, t, p = 1 ∀b ∈ B, ∀t ∈ T (16)

f b, v, s, t = ∑
p ∈ P

Xp ⋅ zb, v, s, t, p ∀b ∈ B, ∀t ∈ T (17)

Fig. 2௒ Forces acting on the EV motion
 

Pv, t
pv, tot + Pi, v, s, t

f , load + ∑
b ∈ B: i ∈ Ωb

j

f b, v, s, t − ∑
b ∈ B: i ∈ Ωb

i

f b, v, s, t = Pr, v, s, t
region, total

∀i ∈ I, ∀t ∈ T , ∀v, ∀s, ∀r

(9)
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Fb, v, s, t = ∑
p ∈ P

Yp ⋅ zb, v, s, t, p ∀b ∈ B, ∀t ∈ T (18)

2.3.4 Regional limits: It is worth noting that this coordinated
scheme proposes a hierarchical system design in which every party
is controlled by upper layers during the whole simulation.

Hence, the total active power demand of each region Pr, v, s, t
region, tot

is obtained by summation of charging power of aggregators
Pr, n, v, s, t

agg  during period t for scenarios v and s as expressed in (19).
Similarly, the total charging power of aggregator n can be
calculated by summation of every EVPLs’ power need Pr, n, k, v, s, t

EVPL

as stated in (20). Lastly, the total power for each EVPL is obtained
by the summation of charging power of EVs Pr, n, k, m, v, s, t

EV, ch  charged
in EVPL k in (21)

Pr, v, s, t
region, tot = ∑

n

Pr, n, v, s, t
agg , ∀s, ∀v, ∀n, ∀t (19)

Pr, n, v, s, t
agg = ∑

k

Pr, n, k, v, s, t
EVPL , ∀s, ∀v, ∀k, ∀n, ∀t (20)

Pr, n, k, v, s, t
EVPL = ∑

m

Pr, n, k, m, v, s, t
EV, ch , ∀s, ∀v, ∀k, ∀n, ∀m, ∀t (21)

2.3.5 EV charging limitations and SoE constraints: EV
charging model is formulated in (22)–(27) that represent EVs’
behaviour under some specific conditions. First, it is not possible to
take greater values for charging power of each EV Pr, n, k, m, v, s, t

EV, ch

than the charging capacity of related station CRm
EV  as denoted in

(22). SoE dynamics of EV are described in (23)–(27) considering
arrival and departure times and also battery's specifications.
Equation (23) states the SoE variations of an EV which is only
available when it connects to the charging station between the
periods of Tr, n, k, m, s

a  and Tr, n, k, m, s
d . To assign a value for

SoEr, n, k, m, v, s, t − 1
EV , (24) is integrated into the mathematical model

that is associated with the scenarios s and v . Furthermore, there is
an important constraint in terms of preventing comfort losses
described by (25) indicating that EVs should be fully charged
SoEm

EV, maks  before leaving from buses. Inequality (26) is defined
to adjust SoE level between the specific bounds
SoEm

EV, min and SoEm
EV, maks  to ensure that battery is performing in

normal operating conditions. It should be highlighted that to
prevent charging transactions when EVs are not in any EVPL (27)
is introduced in the formulation

Pr, n, k, m, v, s, t
EV, ch ≤ CRm

EV, ∀s, ∀v, ∀n, ∀k, ∀m, t ∈

Tr, n, k, m, s
a , Tr, n, k, m, s

d (22)

SoEr, n, k, m, v, s, t
EV = SoEr, n, k, m, v, s, t − 1

EV + Pr, n, k, m, v, s, t
EV, ch ⋅ CEm

EV ⋅ ΔT ,

∀s, ∀v, ∀n, ∀k, ∀m, t ∈ Tr, n, k, m, s
a , Tr, n, k, m, s

d
(23)

SoEr, n, k, m, v, s, t
EV = SoEm

EV, ini, ∀s, ∀v, ∀n, ∀k, ∀m, t = Tr, n, k, m, s
a (24)

SoEr, n, k, m, v, s, t
EV = SoEm

EV, maks ∀s, ∀v, ∀n, ∀k, ∀m, t = Tr, n, k, m, s
d (25)

SoEm
EV, min ≤ SoEr, n, k, m, v, s, t

EV ≤ SoEm
EV, maks, ∀s, ∀v, ∀n, ∀k, ∀m, ∀t

(26)

SoEr, n, k, m, v, s, t
EV = 0, Pr, n, k, m, v, s, t

EV, ch = 0, ∀s, ∀n, ∀k, ∀m, t ∉

Tr, n, k, m, s
a , Tr, n, k, m, s

d (27)

2.3.6 Imposed power constraint for PLL-based DR
strategy: Apart from all aforementioned formulations, (28) is
described to apply for PLL-based DR program in this optimisation-
based system structure. Each aggregator's peak power demand can

be restricted by the DSO to increase operational flexibility and to
provide more sustainable, economical, and a cost-efficient power
grid

Pt
imposed ≥ Pi, v, s, t

f , ∀s, ∀v, ∀n, t ∈ T1, T2 . (28)

3௑Test and results
3.1 Input data

In the scope of this study, ten different commercially available EVs
are considered along with the related simulations. To execute a
more realistic approach, totally 500 EVs, each with a different
remaining SoE and arrival times to the related EVPL. To ensure the
stochasticity of the initial SoE before charging operation and
arrival time to the related EVPLs of each EV, 8 different driving
cycles are taken into consideration which is given in Table 1. The
technical specifications of each used EV have already detailed in
[24].

Fig. 3 illustrates the arrival time frequencies of 100 EVs to the
related EVPLs. It should be reminded that the arrival density of
EVs is demonstrated for only 100 EVs for clearer representation. It
can be seen that EVs reach to the related EVPLs very frequently
throughout the day, which proves that the evaluated arrival times
are close to real-life. The devised model is addressed in a five-node
test system derived from [32] which is shown in Fig. 4 to explore
the operational feasibility. It is worthy to underline that each node
represents a region which is composed of three different
aggregators and each aggregator arranges two different EVPLs’
operations.

Throughout the study, it is assumed that the two selected
regions are supplied by 100 kW PV farms to support the regions
during EVs’ charging operations. Regarding the nature of the
renewable-based generation units, the power production of the PV
farms is modelled as a stochastic approach by using real irradiation
and temperature data from [33].

Herein, irradiation and temperature data from 4 real days are
used to obtain the power production patterns related PV farms.
Fig. 5 depicts PV power production profiles related to four
scenarios for the PV farm located in Region-2. It is worth noting
that the related scenarios are selected from both cloudy and sunny
days to provide a realistic approach. As can be seen in Fig. 5, while

Fig. 3௒ Arrival time frequency of 100 EVs in one day
 

Fig. 4௒ Five node test system in which two of the regions are enriched with
two PV farms
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the continuous lines represent the sunny days (v2–v4), the dot and
dashed lines illustrate the cloudy day scenarios.

3.2 Simulation results

To minimise the line losses between the regions during the
charging of EVs, the proposed MILP model is tested in GAMS
v.24.1.3 with CPLEX v.12 solver [34]. The input data for the
model such as the initial SoE just before plug-in and the arrival
time to the related EVPL of each EV are obtained by using
MATLAB/Simulink [35].

It is worth indicating that the substantial challenge for the
model execution is the computational burden of the simulations.
However, the longest case takes 4 h to solve the model by using a
computer with 2.3 GHz CPU and 32 GB RAM.

The performance of the proposed model has been investigated
under various case studies with and without PV production, and
also with different PLL imposed by the DSO. The addressed case
studies are detailed as follows:

• Case-1: There is no PLL and PV farms are not located in the
regions.

• Case-2: There is no PLL and 100 kW rated power PV farms are
located in two regions.

• Case-3: 200 kW PLL is imposed by the DSO and PV farms are
not located in the regions.

• Case-4: 200 kW PLL is imposed by the DSO and 100 kW rated
power PV farms are located in two regions.

• Case-5: 0 kW PLL is imposed by the DSO and 100 kW rated
power PV farms are located in two regions.

It must be underlined that for the all evaluated case studies, there is
an obligation for the EVs, which is to leave at least 12 am from the
related EVPL. The aggregators have more relaxation to arrange the
charging process owing to this circumstance. Another crucial
assumption is to be reminded that each EV has to be fully charged
before leaving from the related EVPL. It should also be stated that
the regions with PV farms can sell the excess energy back to the
grid thanks to the bidirectional power flow option.

The power balance of the bus which represents the Region-1 in
the Case 4 is illustrated in Fig. 6. It should be stated that this
decomposition is obtained for the driving cycle scenario-2 and PV
production scenario-3. It can be seen that the summation of the
total energy transferred by the related lines, the energy losses in
those lines, and the energy consumption of the Region-1 is equal to
the total injected energy from the upstream grid for each period.
Moreover, for a better presentation, a further zoomed subfigure is
also provided. As seen in the same illustration, PLL-based DR
strategy is demanded by the DSO for the period between 12 am
and 2 pm.

After the implementation of the PLL, Region-1 does not
consume energy during the DR program, only transfers the energy
to the other regions. Therefore, only the transferred energy and the
energy losses on the lines are observed in the related period.

In Fig. 7, the effect of the PLL demanded by the DSO on the
power consumption of each region can be observed. Moreover,
with the introduction of the PLL at 12 pm, the power consumption
of each region is remarkably decreased. Since the proposed model
is based on minimising power losses, the regions that are closer to
the substation are affected more negatively during the PLL based
DR program, as it is expected. For sure, this decreasing on the
power consumption is related with different parameters such as
EVs’ arrival/departure times and initial SoE levels just before
charging process.

Fig. 8 demonstrates the impacts of the PLL amount on the
energy flow during DR program. It has to be reminded that the
selected cases in the mentioned figure include PV farms. Although
the DSO does not request any PLL in Case-2, the power to be
supplied from the upstream grid is restricted in Case-4 and Case-5
by 200 and 0 kW, respectively. Moreover, it can be expressly
concluded from the further zoomed subfigure in Fig. 8 that
Region-1 is needed to be supplied by the regions enriched with PV
farms in Case-5. Because of the tough limitation of the grid power
in Case-5, the generator bus located in Region-1 is supplied by the
PV farms located in other regions. While line flows are positive in
other cases, it is negative in Case-5 due to the power flow from the
PV farms to the Region-1.

Fig. 9 is demonstrated to observe the impact of the weather
condition on the system operation. It should be stated that Fig. 9 is
illustrated for cloudy and sunny day scenarios in Case-5 for the
Region-2. In the mentioned figure, while the continuous blue line
represents the transferred energy on the related line for the sunny
day, the other is for the cloudy day. Further, the columns in the
figure are used for the indication of the PV farm power production.
As can be deduced from Fig. 9, the PV farm power production is
regular in case of the sunny day which is shown with the dark grey
column. Therefore, the energy transferred on the line is lower than
that of the cloudy day. Besides, the surplus energy is transferred to

Fig. 5௒ PV production of the PV farm located in Region-2 for the related
scenarios

 

Fig. 6௒ Energy balance decomposition of the Region-1 in Case-4
 

Fig. 7௒ Power consumptions of the regions for the driving cycle Scenario-4
in Case-3

 

Fig. 8௒ Energy decomposition of the Region-1 for the driving cycle
Scenario-3 and PV production Scenario-1 in the Case-2, Case-4, and
Case-5
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the other regions during the PLL-based DR program between 12
am and 2 pm.

Fig. 10 is illustrated to show the impacts of PV scenarios on the
energy losses in the lines between the regions. In the mentioned
figure, the hourly energy losses in the lines are observed according

to the cloudy and sunny day scenarios. As expected, further power
is needed to be supplied from the main grid for EVs' charging due
to the lack of PV production on a cloudy day. It can be seen from
Fig. 10 that hourly energy losses in the lines are much more on a
cloudy day than a sunny day.

Another substantial factor on the line losses is a limitation of
peak load demanded by the DSO. In Fig. 11, the hourly energy
losses are demonstrated for Case-1 and Case-3. While there are no
PV farms in any regions for both cases, 200 kW PLL is imposed in
only Case-3 between 12 am and 2 pm. Although there are fewer
energy losses during the DR program, the energy losses in the lines
relatively increase compared to the no PLL case before and after
DR. The model propounded to minimise the energy losses on the
lines is also addressed under various case studies to show the
validation of the study. Table 2 encloses the results of the evaluated
case studies in this study. It can be deduced from Table 2 that
Case-1 does not include either a PLL-based DR program or a PV
farm in any region. The DSO does not request any PLL hence the
related aggregators are more relax to schedule the EVs’ charging
operations. However, the energy losses, in that case, are 2706.82 
kWh for the day period. Comparing Case-2 with Case-1 reveals the
impact of the local PV farms on the energy losses during the
process on the lines. It can be seen that introducing PV farm in two
selected regions decreases the energy losses to 1848.50 kWh by a
rate of 32%.

To figure out the effect of the PLL-based DR program on
energy losses, Case-3 is performed in the devised model. 200 kW
PLL is demanded by the DSO without PV farms in Case-3. It can
be declared that PLL has negative effects on the energy losses by
comparison of Case-3 with Case-1. In case of lacking energy, the
energy losses on the lines are raised because of the increasing
energy transferred from the regions which have PV farms. Case-4
and Case-5 are evaluated to show how the amount of PLL impacts
on energy losses. It can be deduced from the comparison of Case-2,
Case-4, and Case-5 that the amount of PLL has a crucial effect on
the line losses. When the DSO limits the grid power by 0 kW PLL,
the line losses are then gradually boosted with a rate of 11%
according to the Case-2.

Another quirky result is that the managing of EVs charging
transactions to minimise line losses plays a positive role in
increasing the load factor of the daily operation. Table 3 provides
some comparison samples related to the load factors for every level
of the hierarchical system. As seen from Table 3, while Region-1 is
operated with the load factor of 0.24 without the management
system, it increased to 0.325 with a rate of 35.4% after introducing
the proposed management system. A similar situation is observed
in aggregators and EVPLs level so that the load factor boosted by a
rate of 26.5 and 16.8%, respectively.

3.3 Implementation of the model in the real distribution
system

To test validity of the propounded model, the real data of a
distribution system in Turkey are provided. There are seven regions
fed by the substation; moreover, this distribution system has 650 
kWe PV based distribution generation unit. The single line diagram
of the real distribution system is given in Fig. 12. In the tests, fast
charging and normal charging are taken into account throughout
the simulations. Also, the PLL based DR program is assured to
enhance the operational flexibility of the DSO during the daily
operation of the distribution system.

In Fig. 13, the total drawn power of the distribution system is
demonstrated to reflect the impact of the PLL based DR program
together with the sunny and cloudy days. As expected, the amount
of drawn power in cloudy day scenario is more than the scenario
with the sunny day. Furthermore, in the case that the DSO requests
the PLL in a certain period of a day, while the power is limited
during DR program, to satisfy the aggregators’ demands the drawn
power is remarkably increased in the other periods of a day.
Figs. 14 and 15 are illustrated to validate the propounded model. 
As seen in Fig. 12, b1, b2, b3, b4, b5, and b6 present the branches
among the different regions in the distribution system. The power
flows in each branch are demonstrated based on the sunny and

Fig. 9௒ Comparison of the sunny and cloudy day scenarios effects on the
operation of the system

 

Fig. 10௒ Impacts of cloudy and sunny day scenarios on hourly energy
losses in the lines

 

Fig. 11௒ Impacts of PLL-based DR on hourly energy losses in the lines
 

Table 2 Results of the evaluated case studies
Case number Imposed PLL PV Farm rated

power
Total losses,

kWh
Case-1 — — 2706.82
Case-2 — 100 kW 1848.50
Case-3 200 kW — 2740.84
Case-4 200 kW 100 kW 1863.90
Case-5 0 kW 100 kW 2062.07

 

Table 3 Comparison of the load factors
Unit name LF (Before) LF (After) Rate of change, %
region-1 0.240 0.325 35.4
aggregator-1 0.211 0.267 26.5
EVPL-1 0.172 0.201 16.8

 

Fig. 12௒ Single line diagram of the real distribution system
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cloudy day scenarios in Figs. 14 and 5, respectively. In the sunny
day scenario in Fig. 14, three of the regions (power flows in
branches b1, b2, and b3 are from the grid to the loads) are supplied
by the grid, while the others from the PV farm. As seen from
Fig. 15, four of those regions are fed by the grid during the daily
operation because of the lack of irradiation in cloudy day scenario.
In addition, 100 kW PLL is applied to a distribution system in both
scenarios. As seen from the mentioned figures, PLL based DR
program affects the power flows in branches in different ways
thanks to the consideration of power flow in the proposed model.

4௑Conclusion
To minimise the total power losses in branches, a MILP-based
energy management model for scheduling of EVs’ charging
interactions was developed in this study. The proposed model was
implemented in the five node test system in which each of the
nodes represents the regions. Also, the model was assumed to be
composed of several EVPLs controlled by the different aggregators
under various regions. Furthermore, two selected regions were
enriched with 100 kW PV farms. It is worthy to underline that the
designed system was modelled in a scenario-based stochastic
manner by considering both EV owners' behaviour and PV farms’
generation by using real data. Last but not least, PLL-based DR
strategies were implemented to enhance the operational flexibility
in terms of the DSOs. In addition, to prove the effectiveness of the
designed model, various case studies were performed throughout
the study. Moreover, the propounded energy management model
was tested in a real distribution system so that the effectiveness of
the model was validated. Consequently, it has been observed that
including PV farms has a crucial impact on reducing the power
losses in the branches. Moreover, an important outcome of the
study was that even though a PLL-based DR strategy provides an

operational flexibility for the DSOs, it has unfavourable effects on
the power losses. It has to be stated that the proposed EMS, which
aims to minimise line losses, impacts the load factor during daily
operation in an enhancement manner.
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