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Abstract

The purpose of this study is to give a Taylor polynomial approximation for the solutionttebrder linear
differential-difference equations with variable coefficients under the mixed conditions about any point. For this
purpose, Taylor matrix method is introduced. This method is based on first taking the truncated Taylor expansions
of the functions in the differential-difference equations and then substituting their matrix forms into the equation.
Hence, the result matrix equation can be solved and the unknown Taylor coefficients can be found approximately.
In addition, examples that illustrate the pertinent features of the method are presented, and the results of study are
discussed. Also we have discussed the accuracy of the method. We use the symbolic algebra program, Maple, to
prove our results.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, the studies of differential-difference equations, i.e. equations containing shifts of the
unknown function and its derivatives, are developed very rapidly and inten$ivedy8,11] Problems
involving these equations arise in studies of control thddiyin determining the expected time for
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the generation of action potentials in nerve cells by random synaptic inputs in the defR]triiaghe
modelling of the activation of a neurd8], in the works on epidemics and populatif@}, in the two-

body problems in classical electrodynamics in the physical systems whose acceleration depends upon it
velocity and its position at earlier instants, and in the formulation of the biological reaction phenomena
to X-rays[8]. Also, the differential-difference equations occur frequently as a model in mathematical
biology and the physical sciencpdl].

A Taylor method for solving Fredholm integral equations has been presen{&fl &md then this
method has been extended by Sezer to Fredholm integro-differential equaficarsd second-order
linear differentiall9,10].

In this study, the basic ideas of the above studies are developed and appliedrtb-reer linear
differential-difference equation (which contains only negative shiftin the differentiated term) with variable
coefficientd8, pp. 228, 229]

m R
Y PP @+ ) Py (-0 = f(0),

k=0 r=0
R<m, >0, —1<x<0, 1)

with the mixed conditions

m—1

S laiey® (@) + by ® ) + iy @] = iy )
k=0

i =0()(m — 1), a<c<b andthe solution is expressed in the form

()
NEOED — (=0, a<c<b, Nzm (3)
n:
n=0

which is a Taylor polynomial of degrdé atx = ¢, wherey™(c), n = 0(1)N are the coefficients to be
determined.

HereP(x), P*(x)andf(x) are functions defined an<x <b; the real coefficients;, cix, bix and
w; are appropriate constants.

The rest of this paper is organized as follows. Higher-order linear differential-difference equation with
variable coefficients and fundamental relations are presented in Section 2. The new scheme are based ¢
Taylor matrix method. The method of finding approximate solution is described in Section 3. To support
our findings, we present result of numerical experiments in Section 4. Section 5 concludes this article
with a brief summary.

2. Fundamental relations
Let us consider the linear differential-difference equation with variable coefficients (1) and find the

truncated Taylor series expansions of each term in expression(H@and their matrix representations.
We first consider the desired solutieix) of Eq. (1) defined by a truncated Taylor series (3). Then we



M. Gilsu, M. Sezer / Journal of Computational and Applied Mathematics 186 (2006) 349—-364

can put series (3) in the matrix form

[y(x)]=XMoY,

where
X=[1 (x—¢) (x—0¢)? ... (x—0V],
_1 —
g 0 0 ... 0
-1 BAGH
0 7 0 ... 0 yD(c)
1 y@(e)
0 0 = 0
Mo = 2! , Y=
1 Ly™(e)-
o 0o 0 . . . —
n N!

351

(4)

Now we consider the differential paf (x)y* (x) of Eqg. (1) and can write it as the truncated Taylor

series expansion of degrdeat x = ¢ in the form
N1
Pe(x)y® ) =" S[Px)y® @))%, (x — o).
= n!

By the Leibnitz’s rule we evaluate
n " ) .
[Py O 012, =) ( l. ) Py (e
i=0
and substitute in expression (5). Thus expression (5) becomes
Pe)y® () = ZO ZO ).,, Py 00 (x — o)
n 1

and its matrix form

[Pe(x)y® (x)] = XPyY,

()

(6)

()
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where
r e)
0. ..0 — 0 0 o 0 0
0 0 el 7© 0 0 0
o 10 o
P2 o) PP PO
0.0 20! m 02! 0 0
re=lo PN PNV pN D PP e)
(N=00  N-k-DI (N—k-22 " TN—k-D 0N — k!
. PNk pVRy Nk @0 o
(N—k+DI0l  (N—RA  (N—k-D2! 20V —k—1)! 0N — k!
. PN Ve p N p VT P PP )
' V=D V-2 N-32 = RN-k-D  k-DN_R!
. PN o) PNy pNDe P ) PR e)
> N V=D =22  G+DN—k-DI KNk

S (N+Dx(N+D)

Now in a similar way we consider the difference p&ft(x)y" (x — 1) of Eq. (1) and can write it as

the truncated series expansion of ded¥es x = ¢ in the form

N

1
PryP @ =0 =) SR 0y @ — ol (= o).
n=0

By the Leibnitz’s rule we evaluate

n

[Wuwmu—wﬁ;=§j@>x“”@w“”w—o

i=0

and substitute in expression (8). Thus expression (8) becomes

N n
1 . .
Pray" -0 =) §jajgmﬂwﬂmw“”@—ﬂu—@"
n=0 i=0 o

and its matrix form

[PF(x)y" (x — )] = XPFY,,
Y.=yQC -1 yPec-v ... yM(e-2],

(8)

(9)

where P} can be obtained by substituting the quantitiéﬁm(c) instead oka(k)(c) in relation (7).
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Now substituting quantitieéx — 1) instead ofx in (3) and differentiating both side with respectto
we obtain

N o,
YO —n=3 2oy,

v n!
N L
y(l)(x _ ‘E) _ Z (y (;j' (x o C)nfl’
n=1
N o )
Pe-n=3 ¢ =2
' N (n)
ywkx—rr=§jzgj%%ﬂx—r—ch (10)
n=N ’

or the matrix form forx = ¢

Y.=X.Y, (11)
where
1 (9t (=P 0" 7
o 1 2 N
o L (—oN!
0! 1! ST (N =D
1 (_T)N—Z
0 0 — e
Xe= 0! (N —2)!
0 0 0 L
B o o Jdw+nrwv+n
Putting relation (11) in (9), the matrix representation becomes
[PF(x)y" (x — )] = XP¥X, Y. (12)

Let the functionf (x) be approximated by a truncated Taylor series

(n)
f()_zf () _c)n.

n=0
Then we can put this series in the matrix form

[f ()] =XMqF, (13)
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where

F=[fQ0©) D@ ... M1

Substituting the matrix forms (7), (12) and (13) corresponding to the funcipng y® (x), P*(x)y™"
(x — 1) and f (x), into Eq. (1), and then simplifying the resulting equation, we have the matrix equation

m R
(Z Pe+ ) P;*‘xf) Y = MgF. (14)
k=0 r=0

The matrix equation (14) is a fundamental relationriwh-order linear differential-difference equation
with variable coefficients (1).

On the other hand, if we takerr) instead of(—r) in Eq. (1) we can obtain the fundamental relation,
as (14), of the equation

m R
D RP@yP @+ Y PreyPx+0=f(x), >0, (15)

k=0 r=0

Next, we can obtain the corresponding matrix forms for conditions (2) as follows.
Using relation (10), we find the matrix representations of the functions in (2), for the @ointsnd
c, in the forms

[y® (@) =PMY, (16)

y®®B)1=QMm,Y, (17)

[y® ()] =RM,Y, (18)
where

P=[1 (a—¢) (@—¢)? @—0¢° ... (@a—oVl,

Q=[1 (b—0) (b-0> b-0° ... b-0"],

R=[1 0 O ... O],
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— 1 —

00 g 0 0
oo...o%... 0
_ 1
Mc=log 0. . . 0 o oo
00 0 0 0
_0 0 . . . O 0 . . . 0 _ (N+l)x(N+l)

Substituting the matrix representations (16)—(18) into Eq. (2), we obtain the matrices system

m—1

> " {aikP + bixQ + cixRIMLY = [, (19)
k=0

Let us defindJ; as

m—1
U = Z {aixP 4+ bi1Q + cixRIMy = [ujo0 w1 ... ujy], i=01)m —1. (20)
k=0

Thus, the matrix forms of conditions (2) become

UY=1[yl, i=01,....m—1. (21)

3. Method of solution

Letus consider the fundamental matrix equation (14) correspondingnatiherder linear differential-
difference equation with variable coefficients (1). We can write Eq. (14) in the form

WY = MF, (22)

where

m R
W = [w;j] = (Z Pt P:xf) , i=0()N, j=01)N. (23)
k=0 r=0
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The augmented matrix of Eq. (22) becomes

- FO%) 7
woo wo1 - . - WON
0]l
F )
wip w11 . . . WIN
1!
[W;MoFl=| - : : : (24)
FM(e)
| WNO WNL - . . WNN N1 A

We now consider the matrix equations (21) corresponding to conditions (2). Then the augmented matrices
of Egs. (21) become

(Uispil=luio win ... uiy 5 wl, i=0D)(m—1), (25)

where the elementsgg, u;1, ..., u;y are defined in relation (20).

Consequently, to find the unknown Taylor coefficieyitd(c), n=0(1)N, related with the approximate
solution of the problem consisting of Eq. (1) and conditions (2), by replacingttosv matrices (25) by
the lastmrows of augmented matrix (24), we have new augmented matrix

B OO0 7
woo wo1 e WON 5
o
A )
w10 w11 e WIN 5
1!
[W*F] = A
’ wam,O wam,l . . . wam,N ) I E—
(N —m)!
uoo uo1 ce UuoN 5 Ho
uio uil .. uin s M1
L Um—1,0 Up-11 - - - Un—IN ; Hm—1 a

or the corresponding matrix equation

WHY = F* (26)
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so that
[ woo wo1 WoN ]
_ y(O) (C) -
w10 wi1 WiN
yP(e)
Y@ ()
W WN-—m,0 WN-—m,1 WN—m,N v
1o uo1 uon
u10 uil UIN
Ly@™)(e)
L Um;m—1,0 Um—-1,1 Up—-1,N -
e [ 9@ O FN (e T
ol 1 (N —m)! Ho Hi Mp—1 | -

If detW* #£ 0, we can write Eq. (26) as

and the matrix’ is uniquely determined. Thus timeth-order linear differential-difference equation with
variable coefficients (1) with conditions (2) has a unique solution.This solution is given by the truncated
Taylor series

(27)

N o)
y(x) = Z Y n!(c) (x —o)".
n=0

In the augmented matripV*;F*], if we takeu;; = 0 andy; = 0, we may obtain the general solution
of Eq. (1). In the augmented matri¥V; MoF], if detW £ 0, we may obtain the particular solution of
Eq. (1).

We can easily check the accuracy of this solution as follows:

Since the Taylor polynomial (3) is an approximate solution of Eg. (1), when the soltiorand its
derivatives are substituted in Eq. (1), the resulting equation must be satisfied approximately; that is, for
x =x; € la, b]

m R
EG) =Y Pe)y® @)+ Prai)y” (i — 1) — f(x)| =0

k=0 r=0

or
E(x;)<107% (k; is any positive integer

If max (10~%) = 107* (k is any positive integer) is prescribed, then the truncation INri# increased
until the differenceE (x;) at each of the points becomes smaller than the prescribed 10
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4. Numerical experiment

In this section, we report on numerical results of some examples, selected differential-difference equa-
tions, solved by matrix method described in this paper. For Examples 1-4, we have repoatgd$1—5
the values of exact solutioy(x), polynomial approximate solutioyy (x), absolute errofy (x) — yn (x)|
and estimation error (denoted by exact, Present,Ey, respectively) at selected points of the given
interval.

Example 1. Consider the following third-order linear differential-difference equation with constant co-
efficients:

V') =y ) —y@)+ =2y x—D+yx-—D+yx—1)=2e—-7
with conditions
y(0)=1, y/(0=0, y"(0)=1,-1<x<0

and approximate the solutior(x) by the Taylor polynomial

5

1
v =)~y @x -0, (28)

n=0 "

Table 1

Numerical results of Example 1

N X Exact Present method eN En

N=5 0.0 1.000000 1.000000 0.000000 0.300E-9
-0.2 1.021269 1.021385 0.116E-3 0.122E-2
-0.4 1.089679 1.090666 0.986E-3 0.983E-2
-0.6 1.211188 1.214754 0.356E-2 0.331E-1
-0.8 1.390671 1.399830 0.915E-2 0.786E-1
-1.0 1.632120 1.651724 0.196E-1 0.153660

N=7 0.0 1.000000 1.000000 0.000000 0.586E-2
-0.2 1.021269 1.021294 0.250E-4 0.397E-2
-0.4 1.089679 1.089903 0.223E-4 0.200E-2
-0.6 1.211188 1.212030 0.842E-4 0.384E-3
-0.8 1.390671 1.392907 0.223E-2 0.412E-2
-1.0 1.632120 1.637029 0.490E-2 0.109E-2

N=9 0.0 1.000000 1.000000 0.000000 0.658E-2
-0.2 1.021269 1.021269 0.476E-6 0.518E-2
-0.4 1.089679 1.089695 0.152E-4 0.393E-2
—-0.6 1.211188 1.211279 0.909E-4 0.276E-2
-0.8 1.390671 1.390985 0.314E-3 0.158E-2
-1.0 1.632120 1.632941 0.821E-3 0.223E-3
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Table 2

Numerical results of Example 2

X Exact Present method en En
N=4 0.0 1.000000 1.000000 0.000000 0.400E-8
-0.2 0.677461 0.677554 0.929E-4 0.751E-2
-0.4 0.500640 0.499863 0.776E-3 0.557E-1
—0.6 0.457623 0.453034 0.458E-2 0.173502
-0.8 0.538657 0.525359 0.132E-1 0.376299
-1.0 0.735758 0.707317 0.284E-1 0.666666
N=6 0.0 1.000000 1.000000 0.000000 0.400E-8
-0.2 0.677461 0.677518 0.565E-4 0.104E-4
-0.4 0.500640 0.500954 0.314E-3 0.304E-3
—0.6 0.457623 0.458517 0.894E-3 0.210E-2
-0.8 0.538657 0.540542 0.188E-2 0.794E-2
-1.0 0.735758 0.739080 0.332E-2 0.214E-1
N=8 0.0 1.000000 1.000000 0.000000 0.400E-8
-0.2 0.677461 0.677453 0.817E-5 0.880E-8
-0.4 0.500640 0.500599 0.406E-4 0.144E-5
—-0.6 0.457623 0.457516 0.107E-3 0.235E-4
-0.8 0.538657 0.538445 0.212E-3 0.166E-3
-1.0 0.735758 0.735403 0.355E-3 0.749E-3
Table 3
Numerical results of Example 3
X Exact Present method en En
N=9 0.0 1.000000 1.000000 0.000000 0.000000
-0.2 1.221402 1.221251 0.123E-3 0.400E-8
-0.4 1.491824 1.491179 0.432E-3 0.512E-6
—-0.6 1.822118 1.820567 0.851E-2 0.856E-5
-1.0 2.718281 2.713298 0.183E-2 0.288E-3
—2.0 7.389056 7.353509 0.481E-2 0.254E-1
N =10 0.0 1.000000 1.000000 0.000000 0.200E-9
-0.2 1.221402 1.221521 0.118E-3 0.100E-8
-0.4 1.491824 1.492332 0.508E-3 0.000000
-0.6 1.822118 1.823340 0.122E-2 0.103E-6
-1.0 2.718281 2.722206 0.392E-2 0.204E-4
—2.0 7.389056 7.417016 0.279E-1 0.117E-1
N=11 0.0 1.000000 1.000000 0.000000 0.000000
-0.2 1.221402 1.221458 0.554E-4 0.000000
-0.4 1.491824 1.492061 0.237E-3 0.600E-8
-0.6 1.822118 1.822688 0.569E-3 0.202E-6
-1.0 2.718281 2.720112 0.183E-2 0.187E-4
-2.0 7.389056 7.402098 0.130E-1 0.783E-2
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Table 4

The maximum error for = 1 and for different values

) eN = 5 eN = 6 eN = 7

0.01 0.005766 0.001419 0.000291
0.03 0.006249 0.001616 0.000286
0.06 0.007000 0.002052 0.000194
Table 5

The maximum error for = 2 and for differenb values

) ey = 5 eN = 6 eN = 7

0.01 0.0003259 0.0000478 0.0000054
0.03 0.0003328 0.0000558 0.5040E-7
0.06 0.0003328 0.0000558 0.0000206

whereN =5,c=0,1=1, Po=—1,P2(x) =—1,P3(x) =1, Pf(x) =1, P{(x) =1, P; (x) = (e — 2),

f(x)=2e¢—17.
Then, forN = 5, the matrix equation (14) becomes

[Po 4+ P2 + P3 + (P] + P3 + P3)X1]Y = MgF,

where
-1 0 O 0O 0 07 -0 0 —1
O -1 0 0O 0 o 00 O
O 0 % 0 0 O 00 O
Po= _ , P2=
o 0 0 F 0 o0 00 O
O 0 0 0 3 O 00 O
L0 0 0 0 0 5l L0 0 O
0 0 0 1 0 O (1 00 0 0 O
0 00O0T10 01000 O
|0 0000} P*_OO%OOO
*"loooooof” °looo0oti o0 o0
0000O0O0O 00004 O
L0 0 0 0O O Od 000 0O 0 L

ooo'\’|.LOO

o o9l © o o
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0 1 0 0 0 O 0 0 e—2 O 0 0 7
001000 00 0 e-2 0 0
000300 00 0 0 3e-1 0
Py = Py =
'“"looootdl of °? 1,11
0000 0 5 00 O 0 0
0 00 0 0 O L0 0 O 0 0
1 -1 3 2L o 1 0 0 0 0 07
o 1 -1 3 ZF X 100 0 O
1
o o 1 -1 3 03 0 0 O
X1= , Moo= 1 ,
o 0 0 1 -1 3 0003 0 O
o0 0 0 1 -1 00004 O
Lo 0 0 0 0 1 L0 0 0 0 0 £

JE
N
o

L

F=[—-15634363440 0 0 0 0,
Y=[90 »yP0 y20 y¥0 y»0 yO0]1".
For the conditions(0) = 1, y’(0) = 0 andy”(0) = 1, the augmented matrices become

[Uoigol=[1 0 0 0 0 0 ; 1],
[Uipl=[(0 1 0 0 0 0; O],
[Uzppl=[0 0 1 0 0 0; 1]

from (25). Using the matriceRy, P2, P3, Pj, P71, P53, X1, Mo, andF, we find matrice$V* andF*
in (26) as

0 0 Fre ¥oo Prie H-fer

00 0 FH4e Y- 2+1c
wi|0 0 0 0 F+3e 3-13e |

10 O0 0 0 0

01 0 0 0 0

Lo 0 1 0 0 0

F*=[—-1563436344 0 0 1 0 1L
and thus the solution

Y=[1 0 1 —1.083363644 —0.9279509059 —1.17940705§". (29)
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2

Exact - - - - - - N=5 —--—=N=7———N=9
1.8

1.6 1

1.4 A

y(x)

1.2 A

1

0.8

-1 -09 -08 -07 -06 -05 -04 -03 -02 -01 O
X

Fig. 1. Numerical and exact solution of Example 1 for variblus

Substituting the elements of column matrix (29) into (28), we obtain the approximate solution in terms
of the Taylor polynomial of degree five about= 0 as

y(x) = 14 0.5x2 — 0.1805606073% — 0.03866462108* — 0.009828392133°.

We use the absolute error to measure the difference between the numerical and exact sol(idhes. In
1 the solutions obtained fav =5, 7, 9 are compared with the exact solutipfx) = x2 + x 4+ 2 — e* [6]
(seeFig. 1.
Example 2. Secondly we can take the problem

2y"(¥) +2y'(x) = 4y(0) + )" (x = D +y'(x = 1) = 2y(x — 1) = —6x* + 10 + 8,

yO =1, y (0 =2

sothatN =4, ¢=0,71=1, Po(x)=—4,P1(x) =2, Po(x)=2, Pj(x)=-2,P(x)=1 P;j(x)=1,
f(x) = —6x2 + 10x + 8. Then forN = 4, the matrix equation is obtained as

[Po+ P1+ P2+ (Pg + PT + P3)X1]Y = MoF.

Following the previous procedures, we find matrigés andF* in (26) as

-6 5 1 Z 77
0o -6 5 1
W=1o o -3 3 1/,
1 0 0 0 O
Lo 1 0 0 ol

F*=[8 10 -6 1 2"
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and its solution
494 88 56
By using the elements of column matrix (30), we obtain the solution

y)=1+2x + 22+ B3+ Lt

The solutions obtained fav =4, 6, 8 are compared with the exact solutip(x) = 2e* + x2 —1, which
are given infable 2

Example 3. We now consider the equation with variable coefficients
V') +xy' ) Fxy(x) 4y (x =D +yx - =€,
y©0 =1, (0 =-1
The exact solution is(x) = e~*. For numerical results s@able 3
Example 4(Kadalbajoo and Sharmpt, Example 1}.
ey"(x) +y'(x —=0) —y(x) =0, —6<x<0,
yO=1 y@=1.

The exact solution is
(1 — @"2)@"* 4+ (@'t — 1)gn2*

yx) = pTT—— ,
where
—1— 1+ 4(—9) -1+ 1+ 4(—9)
mi1 = , mp= .

2(e —90)

For numerical results, s@ables 4and5.

2(e —0)

5. Conclusions

High-order linear differential-difference equations with variable coefficients are usually difficult to
solve analytically. In many cases, it is required approximate solutions. The present method is based on
computing the coefficients in the Taylor expansion of solution of a linear differential-difference equation.

To get the best approximating solution of the equation, we take more terms from the Taylor expansion
of functions; that is, the truncation limiM must be chosen large enough. From the tabular points shown
in Table 1 it may be observed that the solution found M 7 shows close agreement for various values
of x;. In particular, the solution of Example 2 fof = 8 shows a very close approximation to the exact
solution at the points in interval 1 <x <0.

In Example 4, we compare the results for differerind values and it is seen that whep 1, our
results are in a good agreement with the exact solution. Alscs if & 1, some modifications are required.



364 M. Gllsu, M. Sezer / Journal of Computational and Applied Mathematics 186 (2006) 349—-364

If the Taylor polynomial solutions are looked for about the points in the given conditions, we see
that there exists a solution which is closer to the exact solution. In the nj§liriM oF], if detW #£
0, we can obtain a particular solution of Eqg. (1). If the conditions given in (2) are not used and if
rankW1] = ranfW;MoF] = N + 1 in (22), then by replacing the last m rows of the mafi; M gF]
with zero, the general solution may be obtained.

A considerable advantage of the method is that Taylor coefficients of the solution are found very
easily by using the computer programs. We use the symbolic algebra program, Maple, to find the Taylor
coefficients of the solution.

The method can be developed and applied to system of linear difference equations. Also, the method
may be used to solve integrodifferential-difference equations in the form

Z Pr(x)y® () + Z Pir(x)y™ (x — h)

—f(x)-i-A/ Z Ky [ Z K, 0y (0 i

but some modifications are required. Note thatthe presented method can be used for solving the differential
difference equations with positive shift, too.
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