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Abstract

The purpose of this study is to give a Taylor polynomial approximation for the solution ofmth-order linear
differential-difference equations with variable coefficients under the mixed conditions about any point. For this
purpose, Taylor matrix method is introduced. This method is based on first taking the truncated Taylor expansions
of the functions in the differential-difference equations and then substituting their matrix forms into the equation.
Hence, the result matrix equation can be solved and the unknown Taylor coefficients can be found approximately.
In addition, examples that illustrate the pertinent features of the method are presented, and the results of study are
discussed. Also we have discussed the accuracy of the method. We use the symbolic algebra program, Maple, to
prove our results.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years, the studies of differential-difference equations, i.e. equations containing shifts of the
unknown function and its derivatives, are developed very rapidly and intensively[1–4,8,11]. Problems
involving these equations arise in studies of control theory[4] in determining the expected time for
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the generation of action potentials in nerve cells by random synaptic inputs in the dendrites[3], in the
modelling of the activation of a neuron[3], in the works on epidemics and population[8], in the two-
body problems in classical electrodynamics in the physical systems whose acceleration depends upon its
velocity and its position at earlier instants, and in the formulation of the biological reaction phenomena
to X-rays[8]. Also, the differential-difference equations occur frequently as a model in mathematical
biology and the physical sciences[11].
A Taylor method for solving Fredholm integral equations has been presented in[5] and then this

method has been extended by Sezer to Fredholm integro-differential equations[7] and second-order
linear differential[9,10].
In this study, the basic ideas of the above studies are developed and applied to themth-order linear

differential-differenceequation (whichcontainsonlynegativeshift in thedifferentiated term)with variable
coefficients[8, pp. 228, 229]

m∑
k=0

Pk(x)y
(k)(x)+

R∑
r=0

P ∗
r (x)y

(r)(x − �)= f (x),

R�m, �>0, −��x�0, (1)

with the mixed conditions

m−1∑
k=0

[aiky(k)(a)+ biky
(k)(b)+ ciky

(k)(c)] = �i (2)

i = 0(1)(m− 1), a�c�b and the solution is expressed in the form

y(x)=
N∑
n=0

y(n)(c)

n! (x − c)n, a�c�b, N�m (3)

which is a Taylor polynomial of degreeN atx = c, wherey(n)(c), n= 0(1)N are the coefficients to be
determined.
HerePk(x), P ∗

r (x) andf (x) are functions defined ona�x�b; the real coefficientsaik, cik, bik and
�i are appropriate constants.
The rest of this paper is organized as follows. Higher-order linear differential-difference equation with

variable coefficients and fundamental relations are presented in Section 2. The new scheme are based on
Taylor matrix method. The method of finding approximate solution is described in Section 3. To support
our findings, we present result of numerical experiments in Section 4. Section 5 concludes this article
with a brief summary.

2. Fundamental relations

Let us consider the linear differential-difference equation with variable coefficients (1) and find the
truncated Taylor series expansions of each term in expression (1) atx=c and their matrix representations.
We first consider the desired solutiony(x) of Eq. (1) defined by a truncated Taylor series (3). Then we
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can put series (3) in the matrix form

[y(x)] = XM 0Y, (4)

where

X = [1 (x − c) (x − c)2 . . . (x − c)N ],

M0 =




1

0! 0 0 . . . 0

0
1

1! 0 . . . 0

0 0
1

2! . . . 0

. . . .

. . . .

. . . .

0 0 0 . . .
1

N !




, Y =




y(0)(c)

y(1)(c)

y(2)(c)

.

.

.

y(N)(c)



.

Now we consider the differential partPk(x)y(k)(x) of Eq. (1) and can write it as the truncated Taylor
series expansion of degreeN atx = c in the form

Pk(x)y
(k)(x)=

N∑
n=0

1

n! [Pk(x)y
(k)(x)](n)x=c(x − c)n. (5)

By the Leibnitz’s rule we evaluate

[Pk(x)y(k)(x)](n)x=c =
n∑
i=0

(
n

i

)
P
(n−i)
k (c)y(i+k)(c)

and substitute in expression (5). Thus expression (5) becomes

Pk(x)y
(k)(x)=

N∑
n=0

n∑
i=0

1

(n− i)!i! P
(n−i)
k (c)y(i+k)(c)(x − c)n (6)

and its matrix form

[Pk(x)y(k)(x)] = XPkY, (7)
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where

Pk =




0 . . . 0
P
(0)
k

(c)

0!0! 0 0 . . . 0 0

0 . . . 0
P
(1)
k

(c)

1!0!
P
(0)
k

(c)

0!1! 0 . . . 0 0

0 . . . 0
P
(2)
k

(c)

2!0!
P
(1)
k

(c)

1!1!
P
(0)
k

(c)

0!2! . . . 0 0

. . . . . . .

. . . . . . .

. . . . . . .

0 . . . 0
P
(N−k)
k

(c)

(N − k)!0!
P
(N−k−1)
k

(c)

(N − k − 1)!1!
P
(N−k−2)
k

(c)

(N − k − 2)!2! . . .
P
(1)
k

(c)

1!(N − k − 1)!
P
(0)
k

(c)

0!(N − k)!

0 . . . 0
P
(N−k+1)
k

(c)

(N − k + 1)!0!
P
(N−k)
k

(c)

(N − k)!1!
P
(N−k−1)
k

(c)

(N − k − 1)!2!
P
(2)
k

(c)

2!(N − k − 1)!
P
(1)
k

(c)

0!(N − k)!
. . . . . . .

. . . . . . .

. . . . . . .

0 . . . 0
P
(N−1)
k

(c)

(N − 1)!0!
P
(N−2)
k

(c)

(N − 2)!1!
P
(N−3)
k

(c)

(N − 3)!2! . . .
P
(k)
k

(c)

k!(N − k − 1)!
P
(k−1)
k

(c)

(k − 1)!(N − k)!

0 . . . 0
P
(N)
k

(c)

N !0!
P
(N−1)
k

(c)

(N − 1)!1!
P
(N−2)
k

(c)

(N − 2)!2! . . .
P
(k+1)
k

(c)

(k + 1)!(N − k − 1)!
P
(k)
k

(c)

k!(N − k)!



(N+1)x(N+1)

.

Now in a similar way we consider the difference partP ∗
r (x)y

(r)(x − �) of Eq. (1) and can write it as
the truncated series expansion of degreeN atx = c in the form

P ∗
r (x)y

(r)(x − �)=
N∑
n=0

1

n! [P
∗
r (x)y

(r)(x − �)](n)x=c(x − c)n. (8)

By the Leibnitz’s rule we evaluate

[P ∗
r (x)y

(r)(x − �)](n)x=c =
n∑
i=0

(
n

i

)
P ∗(n−i)
r (c)y(i+r)(c − �)

and substitute in expression (8). Thus expression (8) becomes

P ∗
r (x)y

(r)(x − �)=
N∑
n=0

n∑
i=0

1

(n− i)!i! P
∗(n−i)
r (c)y(i+r)(c − �)(x − c)n

and its matrix form

[P ∗
r (x)y

(r)(x − �)] = XP∗
rY�,

Y� = [y(0)(c − �) y(1)(c − �) . . . y(N)(c − �)]T, (9)

whereP∗
r can be obtained by substituting the quantitiesP

∗(r)
r (c) instead ofP (k)

k (c) in relation (7).
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Now substituting quantities(x − �) instead ofx in (3) and differentiating both side with respect tox
we obtain

y(0)(x − �)=
N∑
n=0

y(n)(c)

n! (x − � − c)n,

y(1)(x − �)=
N∑
n=1

y(n)(c)

(n− 1)! (x − � − c)n−1,

y(2)(x − �)=
N∑
n=2

y(n)(c)

(n− 2)! (x − � − c)n−2,

...

y(N)(x − �)=
N∑

n=N

y(n)(c)

(n−N)! (x − � − c)n−N (10)

or the matrix form forx = c

Y� = X�Y, (11)

where

X� =




1

0!
(−�)1

1!
(−�)2

2! . . .
(−�)N

N !
0

1

0!
(−�)1

1! . . .
(−�)N−1

(N − 1)!

0 0
1

0! . . .
(−�)N−2

(N − 2)!
. . . .

. . . .

. . . .

0 0 0 . . .
1

0!



(N+1)x(N+1)

.

Putting relation (11) in (9), the matrix representation becomes

[P ∗
r (x)y

(r)(x − �)] = XP∗
rX�Y. (12)

Let the functionf (x) be approximated by a truncated Taylor series

f (x)=
N∑
n=0

f (n)(c)

n! (x − c)n.

Then we can put this series in the matrix form

[f (x)] = XM 0F, (13)
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where

F = [f (0)(c) f (1)(c) . . . f (N)(c) ]T.

Substituting the matrix forms (7), (12) and (13) corresponding to the functionsPk(x)y
(k)(x), P ∗

r (x)y
(r)

(x − �) andf (x), into Eq. (1), and then simplifying the resulting equation, we have the matrix equation

(
m∑
k=0

Pk +
R∑
r=0

P∗
rX�

)
Y =M0F. (14)

The matrix equation (14) is a fundamental relation formth-order linear differential-difference equation
with variable coefficients (1).
On the other hand, if we take(+�) instead of(−�) in Eq. (1) we can obtain the fundamental relation,

as (14), of the equation

m∑
k=0

Pk(x)y
(k)(x)+

R∑
r=0

P ∗
r (x)y

(r)(x + �)= f (x), �>0. (15)

Next, we can obtain the corresponding matrix forms for conditions (2) as follows.
Using relation (10), we find the matrix representations of the functions in (2), for the pointsa, b and

c, in the forms

[y(k)(a)] = PMkY, (16)

[y(k)(b)] =QM kY, (17)

[y(k)(c)] = RM kY, (18)

where

P= [1 (a − c) (a − c)2 (a − c)3 . . . (a − c)N ],
Q = [1 (b − c) (b − c)2 (b − c)3 . . . (b − c)N ],
R = [1 0 0 . . . 0],
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Mk =




0 0 . . .
1

0! 0 . . . 0

0 0 . . . 0
1

1! . . . 0

. . . . .

. . . . .

. . . . .

0 0 . . . 0 0 . . .
1

(N − k)!
0 0 . . . 0 0 . . . 0

. . . . .

. . . . .

. . . . .

0 0 . . . 0 0 . . . 0



(N+1)x(N+1)

.

Substituting the matrix representations (16)–(18) into Eq. (2), we obtain the matrices system

m−1∑
k=0

{aikP+ bikQ + cikR}M kY = [�i]. (19)

Let us defineUi as

Ui =
m−1∑
k=0

{aikP+ bikQ + cikR}M k ≡ [ui0 ui1 . . . uiN ], i = 0(1)m− 1. (20)

Thus, the matrix forms of conditions (2) become

UiY = [�i], i = 0,1, . . . , m− 1. (21)

3. Method of solution

Let us consider the fundamentalmatrix equation (14) corresponding to themth-order linear differential-
difference equation with variable coefficients (1). We can write Eq. (14) in the form

WY =M0F, (22)

where

W = [wij ] =
(

m∑
k=0

Pk +
R∑
r=0

P∗
rX�

)
, i = 0(1)N, j = 0(1)N . (23)
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The augmented matrix of Eq. (22) becomes

[W;M0F] =




w00 w01 . . . w0N ; f (0)(c)

0!
w10 w11 . . . w1N ; f (1)(c)

1!
. . .

. . .

. . .

wN0 wN1 . . . wNN ; f (N)(c)

N !




. (24)

We now consider thematrix equations (21) corresponding to conditions (2). Then the augmentedmatrices
of Eqs. (21) become

[Ui;�i] = [ui0 ui1 . . . uiN ; �i ], i = 0(1)(m− 1), (25)

where the elementsui0, ui1, . . . , uiN are defined in relation (20).
Consequently, to find theunknownTaylor coefficientsy(n)(c), n=0(1)N , relatedwith the approximate

solution of the problem consisting of Eq. (1) and conditions (2), by replacing them row matrices (25) by
the lastm rows of augmented matrix (24), we have new augmented matrix

[W∗;F∗] =




w00 w01 . . . w0N ; f (0)(c)

0!
w10 w11 . . . w1N ; f (1)(c)

1!
. . . . . . . . . ; . . .

wN−m,0 wN−m,1 . . . wN−m,N ; f (N−m)(c)
(N −m)!

u00 u01 . . . u0N ; �0

u10 u11 . . . u1N ; �1

. . . . . . . . . ; . . .

um−1,0 um−1,1 . . . um−1,N ; �m−1




or the corresponding matrix equation

W∗Y = F∗ (26)
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so that

W∗ =




w00 w01 . . . w0N

w10 w11 . . . w1N

. . . . . . . . .

wN−m,0 wN−m,1 . . . wN−m,N
u00 u01 . . . u0N

u10 u11 . . . u1N

. . . . . . . . . . . .

um−1,0 um−1,1 . . . um−1,N




, Y =




y(0)(c)

y(1)(c)

y(2)(c)

.

.

.

y(N)(c)



,

F∗ =
[
f (0)(c)

0!
f (1)(c)

1! . . .
f (N−m)(c)
(N −m)! �0 �1 . . . �m−1

]T
.

If detW∗ �= 0, we can write Eq. (26) as

Y = (W∗)−1F∗

and the matrixY is uniquely determined. Thus themth-order linear differential-difference equation with
variable coefficients (1) with conditions (2) has a unique solution.This solution is given by the truncated
Taylor series

y(x)=
N∑
n=0

y(n)(c)

n! (x − c)n. (27)

In the augmented matrix[W∗;F∗], if we takeuij = 0 and�i = 0, we may obtain the general solution
of Eq. (1). In the augmented matrix[W;M0F], if detW �= 0, we may obtain the particular solution of
Eq. (1).
We can easily check the accuracy of this solution as follows:
Since the Taylor polynomial (3) is an approximate solution of Eq. (1), when the solutiony(x) and its

derivatives are substituted in Eq. (1), the resulting equation must be satisfied approximately; that is, for
x = xi ∈ [a, b]

E(xi)=
∣∣∣∣∣
m∑
k=0

Pk(xi)y
(k)(xi)+

R∑
r=0

P ∗
r (xi)y

(r)(xi − �)− f (xi)

∣∣∣∣∣�0
or

E(xi)�10−ki (ki is any positive integer).

If max (10−ki ) = 10−k (k is any positive integer) is prescribed, then the truncation limitN is increased
until the differenceE(xi) at each of the points becomes smaller than the prescribed 10−k.
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4. Numerical experiment

In this section, we report on numerical results of some examples, selected differential-difference equa-
tions, solved bymatrixmethod described in this paper. For Examples 1–4, we have reported inTables 1–5,
the values of exact solutiony(x), polynomial approximate solutionyN(x), absolute error|y(x)− yN(x)|
and estimation error (denoted by exact, Present,eN,EN , respectively) at selected points of the given
interval.

Example 1. Consider the following third-order linear differential-difference equation with constant co-
efficients:

y′′′(x)− y′′(x)− y(x)+ (e − 2)y′′(x − 1)+ y′(x − 1)+ y(x − 1)= 2e − 7

with conditions

y(0)= 1, y′(0)= 0, y′′(0)= 1,−1�x�0

and approximate the solutiony(x) by the Taylor polynomial

y(x)=
5∑

n=0

1

n! y
(n)(c)x(x − c)n, (28)

Table 1
Numerical results of Example 1

N x Exact Present method eN EN

N = 5 0.0 1.000000 1.000000 0.000000 0.300E-9
−0.2 1.021269 1.021385 0.116E-3 0.122E-2
−0.4 1.089679 1.090666 0.986E-3 0.983E-2
−0.6 1.211188 1.214754 0.356E-2 0.331E-1
−0.8 1.390671 1.399830 0.915E-2 0.786E-1
−1.0 1.632120 1.651724 0.196E-1 0.153660

N = 7 0.0 1.000000 1.000000 0.000000 0.586E-2
−0.2 1.021269 1.021294 0.250E-4 0.397E-2
−0.4 1.089679 1.089903 0.223E-4 0.200E-2
−0.6 1.211188 1.212030 0.842E-4 0.384E-3
−0.8 1.390671 1.392907 0.223E-2 0.412E-2
−1.0 1.632120 1.637029 0.490E-2 0.109E-2

N = 9 0.0 1.000000 1.000000 0.000000 0.658E-2
−0.2 1.021269 1.021269 0.476E-6 0.518E-2
−0.4 1.089679 1.089695 0.152E-4 0.393E-2
−0.6 1.211188 1.211279 0.909E-4 0.276E-2
−0.8 1.390671 1.390985 0.314E-3 0.158E-2
−1.0 1.632120 1.632941 0.821E-3 0.223E-3
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Table 2
Numerical results of Example 2

N x Exact Present method eN EN

N = 4 0.0 1.000000 1.000000 0.000000 0.400E-8
−0.2 0.677461 0.677554 0.929E-4 0.751E-2
−0.4 0.500640 0.499863 0.776E-3 0.557E-1
−0.6 0.457623 0.453034 0.458E-2 0.173502
−0.8 0.538657 0.525359 0.132E-1 0.376299
−1.0 0.735758 0.707317 0.284E-1 0.666666

N = 6 0.0 1.000000 1.000000 0.000000 0.400E-8
−0.2 0.677461 0.677518 0.565E-4 0.104E-4
−0.4 0.500640 0.500954 0.314E-3 0.304E-3
−0.6 0.457623 0.458517 0.894E-3 0.210E-2
−0.8 0.538657 0.540542 0.188E-2 0.794E-2
−1.0 0.735758 0.739080 0.332E-2 0.214E-1

N = 8 0.0 1.000000 1.000000 0.000000 0.400E-8
−0.2 0.677461 0.677453 0.817E-5 0.880E-8
−0.4 0.500640 0.500599 0.406E-4 0.144E-5
−0.6 0.457623 0.457516 0.107E-3 0.235E-4
−0.8 0.538657 0.538445 0.212E-3 0.166E-3
−1.0 0.735758 0.735403 0.355E-3 0.749E-3

Table 3
Numerical results of Example 3

N x Exact Present method eN EN

N = 9 0.0 1.000000 1.000000 0.000000 0.000000
−0.2 1.221402 1.221251 0.123E-3 0.400E-8
−0.4 1.491824 1.491179 0.432E-3 0.512E-6
−0.6 1.822118 1.820567 0.851E-2 0.856E-5
−1.0 2.718281 2.713298 0.183E-2 0.288E-3
−2.0 7.389056 7.353509 0.481E-2 0.254E-1

N = 10 0.0 1.000000 1.000000 0.000000 0.200E-9
−0.2 1.221402 1.221521 0.118E-3 0.100E-8
−0.4 1.491824 1.492332 0.508E-3 0.000000
−0.6 1.822118 1.823340 0.122E-2 0.103E-6
−1.0 2.718281 2.722206 0.392E-2 0.204E-4
−2.0 7.389056 7.417016 0.279E-1 0.117E-1

N = 11 0.0 1.000000 1.000000 0.000000 0.000000
−0.2 1.221402 1.221458 0.554E-4 0.000000
−0.4 1.491824 1.492061 0.237E-3 0.600E-8
−0.6 1.822118 1.822688 0.569E-3 0.202E-6
−1.0 2.718281 2.720112 0.183E-2 0.187E-4
−2.0 7.389056 7.402098 0.130E-1 0.783E-2
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Table 4
The maximum error for� = 1 and for different� values

� eN = 5 eN = 6 eN = 7

0.01 0.005766 0.001419 0.000291
0.03 0.006249 0.001616 0.000286
0.06 0.007000 0.002052 0.000194

Table 5
The maximum error for� = 2 and for different� values

� eN = 5 eN = 6 eN = 7

0.01 0.0003259 0.0000478 0.0000054
0.03 0.0003328 0.0000558 0.5040E-7
0.06 0.0003328 0.0000558 0.0000206

whereN = 5, c= 0, � = 1, P0= −1,P2(x)= −1,P3(x)= 1,P ∗
0 (x)= 1,P ∗

1 (x)= 1,P ∗
2 (x)= (e− 2),

f (x)= 2e − 7.
Then, forN = 5, the matrix equation (14) becomes

[P0 + P2 + P3 + (P∗
1 + P∗

2 + P∗
3)X1]Y =M0F,

where

P0 =




−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1
2 0 0 0

0 0 0 −1
6 0 0

0 0 0 0 −1
24 0

0 0 0 0 0 −1
120



, P2 =




0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1
2 0

0 0 0 0 0 −1
6

0 0 0 0 0 0

0 0 0 0 0 0



,

P3 =




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1
2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



, P ∗

0 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1
2 0 0 0

0 0 0 1
6 0 0

0 0 0 0 1
24 0

0 0 0 0 0 1
120



,
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P ∗
1 =




0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
6 0

0 0 0 0 0 1
24

0 0 0 0 0 0



, P ∗

2 =




0 0 e − 2 0 0 0

0 0 0 e − 2 0 0

0 0 0 0 1
2 e − 1 0

0 0 0 0 0 1
6 e − 1

3

0 0 0 0 0 0

0 0 0 0 0 0



,

X1 =




1 −1 1
2

−1
6

1
24

−1
120

0 1 −1 1
2

−1
6

1
24

0 0 1 −1 1
2

−1
6

0 0 0 1 −1 1
2

0 0 0 0 1 −1
0 0 0 0 0 1



, M0 =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1
2 0 0 0

0 0 0 1
6 0 0

0 0 0 0 1
24 0

0 0 0 0 0 1
120



,

F = [−1.563436344 0 0 0 0 0]T,
Y = [y(0)(0) y(1)(0) y(2)(0) y(3)(0) y(4)(0) y(5)(0) ]T.

For the conditionsy(0)= 1, y′(0)= 0 andy′′(0)= 1, the augmented matrices become

[U0;�0] = [1 0 0 0 0 0 ; 1],
[U1;�1] = [0 1 0 0 0 0 ; 0],
[U2;�2] = [0 0 1 0 0 0 ; 1]

from (25). Using the matricesP0, P2, P3, P∗
0, P

∗
1, P

∗
2, X1, M0, andF, we find matricesW∗ andF∗

in (26) as

W∗ =




0 0 −7
2 + e 10

3 − e −9
8 + 1

2 e
11
30 − 1

6 e

0 0 0 −7
2 + e 10

3 − e −9
8 + 1

2 e

0 0 0 0 −7
4 + 1

2 e
5
3 − 1

2 e

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0



,

F∗ = [−1.563436344 0 0 1 0 1]
and thus the solution

Y = [1 0 1 −1.083363644 −0.9279509059 −1.179407056]T. (29)
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Fig. 1. Numerical and exact solution of Example 1 for variousN.

Substituting the elements of column matrix (29) into (28), we obtain the approximate solution in terms
of the Taylor polynomial of degree five aboutx = 0 as

y(x)= 1+ 0.5x2 − 0.1805606073x3 − 0.03866462108x4 − 0.009828392133x5.

We use the absolute error to measure the difference between the numerical and exact solutions. InTable
1 the solutions obtained forN = 5,7,9 are compared with the exact solutiony(x)= x2+ x + 2− ex [6]
(seeFig. 1).

Example 2. Secondly we can take the problem

2y′′(x)+ 2y′(x)− 4y(x)+ y′′(x − 1)+ y′(x − 1)− 2y(x − 1)= −6x2 + 10x + 8,

y(0)= 1, y′(0)= 2

so thatN = 4, c= 0, � = 1, P0(x)= −4,P1(x)= 2, P2(x)= 2, P ∗
0 (x)= −2,P ∗

1 (x)= 1, P ∗
2 (x)= 1,

f (x)= −6x2 + 10x + 8. Then forN = 4, the matrix equation is obtained as

[P0 + P1 + P2 + (P∗
0 + P∗

1 + P∗
2)X1]Y =M0F.

Following the previous procedures, we find matricesW∗ andF∗ in (26) as

W ∗ =




−6 5 1 −1
6

1
4

0 −6 5 1 −1
6

0 0 −3 5
2

1
2

1 0 0 0 0

0 1 0 0 0



,

F ∗ = [8 10 −6 1 2]T
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and its solution

Y = [1 2 494
123

88
41

56
41 ]. (30)

By using the elements of column matrix (30), we obtain the solution

y(x)= 1+ 2x + 247
123x

2 + 44
123x

3 + 7
123x

4.

The solutions obtained forN = 4,6,8 are compared with the exact solutiony(x)= 2ex + x2− 1, which
are given inTable 2.

Example 3.We now consider the equation with variable coefficients

y′′(x)+ xy′(x)+ xy(x)+ y′(x − 1)+ y(x − 1)= e−x ,

y(0)= 1, y′(0)= −1.
The exact solution isy(x)= e−x . For numerical results seeTable 3.

Example 4(Kadalbajoo and Sharma[4, Example 1]).

�y′′(x)+ y′(x − �)− y(x)= 0, −��x�0,

y(0)= 1, y(1)= 1.

The exact solution is

y(x)= (1− em2)em1x + (em1 − 1)em2x

em1 − em2
,

where

m1 = −1− √
1+ 4(� − �)

2(� − �)
, m2 = −1+ √

1+ 4(� − �)

2(� − �)
.

For numerical results, seeTables 4and5.

5. Conclusions

High-order linear differential-difference equations with variable coefficients are usually difficult to
solve analytically. In many cases, it is required approximate solutions. The present method is based on
computing the coefficients in the Taylor expansion of solution of a linear differential-difference equation.
To get the best approximating solution of the equation, we take more terms from the Taylor expansion

of functions; that is, the truncation limitNmust be chosen large enough. From the tabular points shown
in Table 1, it may be observed that the solution found forN =7 shows close agreement for various values
of xi . In particular, the solution of Example 2 forN = 8 shows a very close approximation to the exact
solution at the points in interval−1�x�0.
In Example 4, we compare the results for different� and� values and it is seen that when��1, our

results are in a good agreementwith the exact solution.Also, if 0< �<1, somemodifications are required.
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If the Taylor polynomial solutions are looked for about the points in the given conditions, we see
that there exists a solution which is closer to the exact solution. In the matrix[W;M0F], if detW �=
0, we can obtain a particular solution of Eq. (1). If the conditions given in (2) are not used and if
rank[W] = rank[W;M0F] = N + 1 in (22), then by replacing the last m rows of the matrix[W;M0F]
with zero, the general solution may be obtained.
A considerable advantage of the method is that Taylor coefficients of the solution are found very

easily by using the computer programs. We use the symbolic algebra program, Maple, to find the Taylor
coefficients of the solution.
The method can be developed and applied to system of linear difference equations. Also, the method

may be used to solve integrodifferential-difference equations in the form
m∑
k=0

Pk(x)y
(k)(x)+

n∑
h=1

P ∗
h (x)y

(h)(x − h)

= f (x)+ �

∫ b

a

p∑
i=0

Ki(x, t)y
(i)(t)dt + �

∫ x

a

q∑
j=0

Kj(x, t)y
(j)(t)dt

but somemodificationsare required.Note that thepresentedmethodcanbeused for solving thedifferential-
difference equations with positive shift, too.
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