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Abstract In this paper, we suggest pretest and shrinkage ridge regression estimators
for a partially linear regression model, and compare their performance with some
penalty estimators. We investigate the asymptotic properties of proposed estimators.
We also consider a Monte Carlo simulation comparison, and a real data example is
presented to illustrate the usefulness of the suggested methods.
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spline · Partially linear model

1 Introduction

We are interested in estimating the following partially linear regression model
(PLRM):

yi = x′
iβ + f (ti ) + εi , i = 1, . . . , n, (1)

where yi ’s are observed values of response variable, x′
i = (

xi1, . . . , xip
)
is the

i th observed vector of explanatory variables including p−dimensional vector with
p ≤ n, ti ’s are values of an extra univariate variable satisfying t1 ≤ · · · ≤ tn ,
β = (

β1, . . . , βp
)′ is an unknown p−dimensional vector of regression coefficients,

f (·) is an unknown smooth function, and εi ’s are random disturbances assumed to be
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as N
(
0, σ 2

)
. Also, the vector β is the parametric part of the model, and f (·) is the

nonparametric part of the model. The model (1) also called a semi-parametric model,
and in vector–matrix form is written as

y = Xβ + f + ε, (2)

where y = (y1, . . . , yn)′, X = (x1, . . . , xn)′, f = ( f (t1) , . . . , f (tn))′, and ε =
(ε1, . . . , εn)

′ is random vector with E (ε) = 0 and Var (ε) = σ 2In .
The PLRMgeneralizes both parametric linear regression and nonparametric regres-

sion models which correspond to the cases β = 0 and f = 0, respectively. The key
idea is to estimate the parameter vector β, the function f and the mean vectorXβ + f .

PLRMs have many applications. These models were originally studied by Engle
et al. (1986) to determine the effect of weather on the electricity sales. In the following,
several authors have investigated the PLRM, includingSpeckman (1988), Eubank et al.
(1998), Schimek (2000), Liang (2006), Ahmed (2014), Aydın (2014) andWu andAsar
(2016), among others. The most popular approach for the PLRM is based on the fact
that the cubic spline is a linear estimator for the nonparametric regression problem.
Hence, the nonparametric procedure can be naturally extended to handle the PLRM.

In the using linear least squares regression, it is often encountered the problem
of multicollinearity. In order to solve this issue, ridge regression has been proposed
by Hoerl and Kennard (1970). It is well known that ridge estimator provides a slight
improvement on the estimations of partial regression coefficients when the column
vectors of thematrix in a linearmodel y = Xβ+ε are highly correlated. In recent years
a number of authors have proposed the use of the ridge type (biased) estimate approach
to solve the problem of multicollinearity on estimating the parameters of the PLRMs,
see Roozbeh and Arashi (2013), Arashi and Valizadeh (2015) and Yüzbaşı and Ahmed
(2016).Contrary to these studies,we combine the idea of Speckman’s smoothing spline
with the Ridge type-estimation in a optimal way in order to controlling bias parameter
because of several reasons. Here are two of them: (1-) The principle of adding a
penalty term to a sum of squares or more generally to a log-likelihood applies to a
wide variety of linear and non-linear problems. (2-) The researchers, especially Shiller
(1984), Green et al. (1985) and Eubank (1986), think that this method simply seems
to work well.

For PLRMs, Ahmed et al. (2007) considered a profile least squares approach based
on using kernel estimates of f (·) to construct absolute penalty, shrinkage, and pretest
estimators of β in the case where β = (

β ′
1,β

′
2

)′
. Similarly, for PLRMs, the suitability

of estimating the nonparametric component based on the B-spline basis function is
explored by Raheem et al. (2012).

In this paper, we introduce estimations techniques based on ridge regression when
the matrix X′X appears to be ill-conditioned in the PLRM using smoothing splines.
Also, we consider that the coefficients β can be partitioned as

(
β1,β2

)
where β1

is the coefficient vector for main effects, and β2 is the vector for nuisance effects.
We are essentially interested in the estimation of β1 when it is reasonable that β2 is
close to zero. We suggest pretest ridge regression, shrinkage ridge regression and pos-
itive shrinkage ridge regression estimators for PLRMs. In the empirical applications,
shrinkage estimators have been not paid attention to much due to the computational
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load till recently. However, with improvements in computing capability, this situation
has changed. For example, as our real data example in Sect. 6, the annual salary of a
baseball playermay ormay or not be effected by a number of situations (co-variates). A
real baseball coach’s opinion, experience, and knowledge often give precise informa-
tion regarding certain parameter values in an annual salary of a baseball player model.
Furthermore, some variable selections techniques give an idea about important co-
variates. Hence, researchers may take into consideration this auxiliary information
and choose either the full model or the candidate sub-model for following work. The
Stein-rule and pretest estimation procedures has received considerable attention from
researchers since these methods can be obtained by shrinking the full model estimates
in the direction of the subspace leads to more efficient estimators when the shrinkage
is adaptive and based on the estimated distance between the subspace and the full
space, for more information.

The organization of this study is given as following: the full and sub-model esti-
mators are given in Sect. 2. The pretest, shrinkage estimators and some penalized
estimations, namely the least absolute shrinkage and selection operator (Lasso), the
adaptive Lasso (aLasso) and the smoothly clipped absolute deviation (SCAD) are also
presented in Sect. 3. The asymptotic investigations of listed estimators are given in
Sect. 4. In order to demonstrate the relative performance with our suggested estima-
tors, a Monte Carlo simulation study is conducted in Sect. 5. A real data example is
presented to illustrate the usefulness of the suggested estimators in Sect. 6. Finally,
the conclusions and remarks are given in Sect. 7.

2 Full model estimation

Generally, the back-fitting algorithm is considered for the estimation of the model
(2) . In this paper, we consider Speckman approach based on penalized residual sum
of squares method for estimation purpose. We estimate β and f by minimizing the
following penalized sum of squares equation

SS (β, f ) =
n∑

i=1

(
yi − x′

iβ − f (ti )
)2 + λ

b∫

a

(
f ′′ (t)

)2
dt

= (y − Xβ − f )′ (y − Xβ − f ) + λ f ′K f , (3)

where K is positive definite penalty matrix with solution,

̂f = Sλy,

where Sλ = (In − λK)−1 is a well-known positive-definite (symmetrical) smoother
matrix which depends on fixed smoothing parameter λ > 0 and the knot points
t1, . . . , tn . The smoother matrix Sλ is obtained from univariate cubic spline smoothing
(i.e. from penalized sum of squares equation (3) without parametric termsXβ). Func-
tion f̂λ, the estimator of function f, is obtained by cubic spline interpolation that rests
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on condition f̂ (ti ) = (
f̂
)
i , i = 1, . . . , n. The penalty K matrix in (3) is obtained by

means of the knot points, and defined as following way:

K = U′R−1U,

where h j = t j+1 − t j , j = 1, 2, . . . , n − 1, U is tri-diagonal (n − 2) × n matrix
with U j j = 1/h j , U j, j+1 = − (

1/h j + 1/h j+1
)
, U j, j+2 = 1/h j+1 and R is

symmetric tri-diagonal matrix of order (n − 2) with R j−1, j = R j, j−1 = h j/6 and
R j j = (

h j + h j+1
)
/3.

The first term in the Eq. (3) denotes the residual sum of the squares and it penalizes
the lack of fit. The second term in the same equation denotes the roughness penalty
and it penalizes the curvature of the function. The amount of penalty is controlled
by a smoothing parameter λ > 0. In general, large values of λ produce smoother
estimators while smaller values produce more wiggly estimators. Thus, the λ plays
a key role in controlling the trade-off between the goodness of fit represented by
(y − Xβ − f )′ (y − Xβ − f ) and smoothness of the estimate measured by λ f ′K f .

In this paper we have discussed the partially linear model with a univariate non-
parametric predictor t given in model (1). If t > 1, then a single smooth function in
model (1) is replaced by two or more unspecified smooth functions. In this case, the
fitted model is of the form

yi = x′
iβ +

p∑

j=1

f j
(
ti j
) + εi , i = 1, 2, . . . , n, (4)

The model (4) is also called as the partially linear additive model.
As stated previously, the main idea in PLRM is to estimate the vector β and f by

minimizing the penalized residual sum of squares criterion (3). We carry this idea a
step further for the partially linear additive model (4). In this context, the optimization
problem is to minimize

(β̂; ̂f ) = argmin
β, f

⎧
⎪⎨

⎪⎩

∑n

i=1

⎛

⎝ỹi − x̃′
iβ −

p∑

j=1

f j
(
ti j
)
⎞

⎠

2

+
p∑

j=1

λ j

b∫

a

(
f ′′
j (t)

)2
dt

⎫
⎪⎬

⎪⎭
,

(5)

over all twice differentiable functions f j defined on [a, b]. In here f j is a unspecified
univariate function and λ j ’s are separate smoothing parameters for each smooth func-
tions f j . As in the case with a single smooth function, if the λ j ’s are all zero, we get
a smooth system that interpolates the data. Also, when each λ j goes to ∞, we obtain
a standard least squares fit.

In the partially linear additive regression models, the functions λ j can be estimated
by a single smoothing spline manner. Using a straightforward extension of the argu-
ments used in a univariate smoothing spline, the solution to Eq. (5) can be obtained
by minimizing the matrix–vector form of Eq. (5), given by
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(β̂; ̂f ) = argmin
β, f

⎧
⎨

⎩

⎛

⎝y − Xβ −
p∑

j=1

f j

⎞

⎠

′ ⎛

⎝y − Xβ −
p∑

j=1

f j

⎞

⎠ +
p∑

j=1

λ j f j ′K j f j

⎫
⎬

⎭
,

whereK j ’s are the penalty matrices for each predictor, similarly to theK for a univari-
ate predictor given in Eq. (3), see Hastie and Tibshirani (1990) for additive models.

The resulting estimator is called as partial spline, see Wahba (1990). On the other
hand, Eq. (3) is also known as the roughness penalty approach Green and Silverman
(1994). This estimation concept is based on iterative solution of the normal equations
Rice (1986) indicated that partial spline estimator is asymptotically biased for the
optimal choice as the components X depend on t . Applying results due to Speckman
(1988), this bias can be substantially reduced. In the following section, we present full
model semi-parametric estimation based on ridge regression.

2.1 Full model and sub-model semi-parametric ridge strategies

For a pre-specified value of λ the corresponding estimators β and f for based on
model (2) can be obtained by

̂β =
(
X̃′X̃

)−1
X̃′ỹ and ̂f = Sλ

(
y − Xβ̂

)
,

where X̃ = (In − Sλ)X and ỹ = (In − Sλ) y, respectively.
By multiplying both sides of model (2) with (In − Sλ),

ỹ = X̃β + ε̃, (6)

where f̃ = (In − Sλ) f , ε̃ = f̃ + ε∗ and ε∗ = (In − Sλ) ε.
Therefore, model (6) is transformed into an optimal problem to estimate semi-

parametric estimator. We now consider model (6) with ridge penalty to estimate semi-
parametric ridge estimator. We formulate this as follows:

argmin
β

(
ỹ − X̃β

)′ (
ỹ − X̃β

)
+ kβ ′β, (7)

where k ≥ 0 is the tuning parameter. By solving (7), we get full model semi-parametric
ridge regression estimator of β as follows:

β̂
Ridge =

(
X̃′X̃ + kIp

)−1
X̃′ỹ.

Let β̂
FM
1 be the semi-parametric unrestricted or full model ridge estimator of β1.

From model (7), the semi-parametric full model ridge estimator ̂β
FM
1 of β1 is

β̂
FM
1 =

(
X̃′
1M̃

R
2 X̃1 + kIp1

)−1
X̃′
1M̃

R
2 ỹ,
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where M̃
R
2 = In − X̃2

(
X̃′
2X̃2 + kIp2

)−1
X̃′
2 and X̃i = (In − Sλ)Xi , i = 1, 2.

Now, consider β2 = 0, and add ridge penalty function on model (1) ,

yi = x′
iβ + f (ti ) + εi subject to β ′β ≤ φ2 and β2 = 0 .

Hence we have the following partially linear sub-model

y = X1β1 + f + ε subject to β ′
1β1 ≤ φ2. (8)

Let us denote β̂
SM
1 the semi-parametric sub-model or restricted ridge estimator of

β1 as defined subsequently. Generally speaking, β̂
SM
1 performs better than β̂

FM
1 when

β2 close to 0. However, for β2 away from the origin 0, β̂
SM
1 can be inefficient. From

model (8), the semi-parametric sub-model ridge estimator ̂β
SM
1 of β1 has the form

β̂
SM
1 =

(
X̃′
1X̃1 + kIp1

)−1
X̃′
1ỹ.

3 Pretest, shrinkage and some penalty estimation strategies

The pretest estimator is a combination of β̂
FM
1 and β̂

SM
1 via an indicator function

I
(
Tn ≤ cn,α

)
, where Tn is an appropriate test statistic to test H0 : β2 = 0 versus

HA : β2 �= 0. Moreover, cn,α is an α−level critical value using the distribution of Tn .
We define test statistics for testing null hypothesis H0 : β2 = 0 as follows:

Tn = n

σ̂ 2
̂β

′
2

(
X̃′
2M̃1X̃2

)
β̂2,

where

σ̂ 2 = 1

n
.

‖(In − Hλ) ỹ‖2
tr (In − Hλ)

′ (In − Hλ)
,

and

β̂2 =
(
X̃′
2M̃1X̃2

)−1
X̃′
2M̃1ỹ,

with M̃1 = In − X̃1

(
X̃′
1X̃1

)−1
X̃′
1 andHλ is called as smoother matrix for the model

(1).
The Hλ matrix is obtained as follows:

ŷ = Xβ̂
FM + ̂f

= X
(
X̃′X̃ + kIp

)−1
X̃′ỹ + Sλ

(
y − X

(
X̃′X̃ + kIp

)−1
X̃′ỹ

)
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= X (I − Sλ)
(
X̃′X̃ + kIp

)−1
X̃′y

+Sλ

(
y − X (I − Sλ)

(
X̃′X̃ + kIp

)−1
X̃′y

)

= X̃
(
X̃′X̃ + kIp

)−1
X̃′y + Sλ

(
y − X̃

(
X̃′X̃ + kIp

)−1
X̃′y

)

= Hy + Sλy − SλHy

= (Sλ + (In − Sλ)H) y

= Hλy,

where H = X̃
(
X̃′X̃ + kIp

)−1
X̃′. Thus, the mentioned smoother matrix is

Hλ = Sλ + (In − Sλ)H.

Under H0, the test statistic Tn follows chi-square distribution with p2 degrees of
freedom for large n values. Then, we can choose an α−level critical value cn,α.

The semi-parametric ridge pretest estimator β̂
PT
1 of β1 is defined by

β̂
PT
1 = β̂

FM
1 −

(
β̂
FM
1 − ̂β

SM
1

)
I
(
Tn ≤ cn,α

)
.

The shrinkage estimator for a PLRM was introduced by Ahmed et al. (2007). This
shrinkage estimator is a smooth function of the test statistic.

The semi-parametric ridge shrinkage or Stein-type estimator β̂
S
1 of β1 is defined

by

β̂
S
1 = β̂

SM
1 +

(
β̂
FM
1 − ̂β

SM
1

) (
1 − (p2 − 2)T −1

n

)
, p2 ≥ 3.

The positive part of the semi-parametric ridge shrinkage estimator ̂β
PS
1 ofβ1 defined

by

β̂
PS
1 = β̂

SM
1 +

(
β̂
FM
1 − ̂β

SM
1

) (
1 − (p2 − 2)T −1

n

)+
,

where z+ = max (0, z)

3.1 Some penalty estimation strategies

Now,we suggest the semi-parametric penalty estimators by using the smoothing spline
method. For a given penalty function π (·) and regularization parameter λ, the general
form of the objective function of semi-parametric penalty estimators can be written
as

∑n

i=1

(
ỹi − x̃′

iβ
)2 + λπ (·) ,
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where ỹi is the i th observation of ỹ, x̃′
i is the i th row of X̃ and π (·) = ∑p

i=1 |βi |ι,
ι > 0.

If ι = 2, then the ridge regression estimator can be written

β̂
Ridge = argmin

β

⎧
⎨

⎩

∑n

i=1

(
ỹi − x̃′

iβ
)2 + λ

p∑

j=1

∣∣β j
∣∣2
⎫
⎬

⎭
.

For ι = 1, it is related to the Lasso, that is,

β̂
Lasso = argmin

β

⎧
⎨

⎩

∑n

i=1

(
ỹi − x̃′

iβ
)2 + λ

p∑

j=1

∣∣β j
∣∣

⎫
⎬

⎭
.

The aLasso estimator βaLasso is defined as

β̂
aLasso = argmin

β

⎧
⎨

⎩

∑n

i=1

(
ỹi − x̃′

iβ
)2 + λ

p∑

j=1

ζ̂ j
∣∣β j

∣∣

⎫
⎬

⎭
,

where the weight function is

ζ̂ j = 1

|β̂∗
j |ι

; ι > 0,

and β̂∗
j is a root-n consistent estimator of β.

The SCAD estimator β̂
SCAD

is defined as

β̂
SCAD = argmin

β

⎧
⎨

⎩

∑n

i=1

(
ỹi − x̃′

iβ
)2 +

p∑

j=1

Jα,λ

(
β j
)
⎫
⎬

⎭
,

where

Jα,λ (x) = λ

{
I (|x | ≤ λ) + (αλ − |x |)+

(α − 1) λ
I (|x | > λ)

}
, x ≥ 0.

In order to select the optimal regularization parameterλ, we used glmnet and ncvreg
packages in R for Lasso and SCAD, respectively. Also, the aLasso is obtained by 10
fold cross-validation with weights from the 10 fold cross-validated Lasso.

4 Asymptotic analysis

In this section, we define expressions for asymptotic distributional biases (ADBs),
asymptotic covariance matrices and asymptotic distributional risks (ADRs) of the
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pretest and shrinkage alongwith fullmodel and sub-model estimators. For this purpose
we consider a sequence {Kn} is given by

Kn : β2 = β2(n) = w√
n
, w = (

w1, . . . , wp2

)′ ∈ R
p2 .

Now, we define a quadratic loss function using a positive definite matrix (p.d.m)
W, by

L
(
β∗
1

) = n
(
β∗
1 − β1

)′ W
(
β∗
1 − β1

)
,

where β∗
1 is anyone of suggested estimators. Now, under {Kn} , we can write the

asymptotic distribution function of β∗
1 as

F (x) = lim
n→∞P

(√
n
(
β∗
1 − β1

) ≤ x|Kn
)
,

where F (x) is non degenerate. Then ADR of β∗
1 is defined as follows:

ADR
(
β∗
1

) = tr

(
W

∫

R
p1

∫
xx′dF (x)

)
= tr (WV) ,

where V is the dispersion matrix for the distribution F (x) .

Asymptotic distributional bias of an estimator β∗
1 is defined as

ADB
(
β∗
1

) = E
{
lim
n→∞

√
n
(
β∗
1 − β1

)}
.

We make the following two regularity conditions:

(i) 1
n max
1≤i≤n

x̃′
i (X̃

′X̃)−1x̃i → 0 as n → ∞, where x̃′
i is the i th row of X̃,

(ii) 1
n

∑n
i=1 X̃

′X̃ → Q̃, where Q̃ is a finite positive-definite matrix.

By virtue of Lemma 1, which is defined at appendix, assumed regularity conditions,
and local alternatives, the ADBs of the estimators are:

Theorem 1

ADB
(
β̂
FM
1

)
= −η11.2,

ADB
(
β̂
SM
1

)
= −ξ ,

ADB
(
β̂
PT
1

)
= −η11.2 − δHp2+2

(
χ2
p2,α;Δ

)
,

ADB
(
β̂
S
1

)
= −η11.2 − (p2 − 2)δE

(
χ−2
p2+2 (Δ)

)
,

ADB
(
β̂
PS
1

)
= −η11.2 − δHp2+2

(
χ2
p2,α;Δ

)
,

−(p2 − 2)δE
{
χ−2
p2+2 (Δ) I

(
χ2
p2+2 (Δ) > p2 − 2

)}
,
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where Q̃ =

(
Q̃11 Q̃12

Q̃21 Q̃22

)
, Δ =

(
wᵀ Q̃

−1
22.1w

)
σ−2, Q̃22.1 = Q̃22 − Q̃21 Q̃

−1
11 Q̃12,

η =

(
η1
η2

)
=−λ0 Q̃

−1
β, η11.2 = η1 − Q̃12 Q̃

−1
22

((
β2 − w

) − η2
)
, ξ = η11.2 − δ, δ

= Q̃
−1
11 Q̃12ω andHv (x,Δ) be the cumulative distribution function of the non-central

chi-squared distribution with non-centrality parameter Δ and v degree of freedom,
and

E
(
χ−2 j

v (Δ)
)

=
∫ ∞

0
x−2 j dHv (x,Δ) .

Proof See Appendix. �

Since the bias expressions for all the estimators are not in scaler form, we also con-

vert them to quadratic forms. Thus, we define the asymptotic quadratic distributional
bias (AQDB) of an estimator β∗

1 is

AQDB
(
β∗
1

) = (
ADB

(
β∗
1

))′ Q̃11.2
(
ADB

(
β∗
1

))
, (9)

where Q̃11.2 = Q̃11 − Q̃12 Q̃
−1
22 Q̃21.

Considering Eq. (9), we present the AQDBs of the estimators as follows:

AQDB
(
β̂
FM
1

)
= η′

11.2 Q̃11.2η11.2,

AQDB
(
β̂
SM
1

)
= ξ ′ Q̃11.2ξ ,

AQDB
(
β̂
PT
1

)
= η′

11.2 Q̃11.2η11.2 + η′
11.2 Q̃11.2δHp2+2

(
χ2
p2,α;Δ

)

+ δ′ Q̃11.2η11.2Hp2+2

(
χ2
p2,α;Δ

)

+ δ′ Q̃11.2δH
2
p2+2

(
χ2
p2,α;Δ

)
,

AQDB
(
β̂
S
1

)
= η′

11.2 Q̃11.2η11.2 + (p2 − 2)η′
11.2 Q̃11.2δE

(
χ−2
p2+2 (Δ)

)

+(p2 − 2)δ′ Q̃11.2η11.2E
(
χ−2
p2+2 (Δ)

)

+(p2 − 2)2δ′ Q̃11.2δ
(
E
(
χ−2
p2+2 (Δ)

))2
,

AQDB
(
β̂
PS
1

)
= η′

11.2 Q̃11.2η11.2 +
(
δ′ Q̃11.2η11.2 + η′

11.2 Q̃11.2δ
)

× [
Hp2+2 ((p2 − 2);Δ)

+(p2 − 2)E
{
χ−2
p2+2 (Δ) I

(
χ−2
p2+2 (Δ) > p2 − 2

)}]

+ δ′ Q̃11.2δ
[
Hp2+2 ((p2 − 2);Δ)

+ (p2 − 2)E
{
χ−2
p2+2 (Δ) I

(
χ−2
p2+2 (Δ) > p2 − 2

)}]2
.
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Assuming that Q̃12 �= 0, then

(i) The AQDB of β̂
FM
1 is an constant with η′

11.2 Q̃11.2η11.2.

(ii) The AQDB of β̂
SM
1 is an unbounded function of ξ ′ Q̃11.2ξ .

(iii) The AQDB of β̂
PT
1 begins from η′

11.2 Q̃11.2η11.2 atΔ = 0. ForΔ > 0, it increases
to a maximum and then decreases towards 0.

(iv) Similarly, the AQDB of β̂
S
1 starts from η′

11.2 Q̃11.2η11.2 atΔ = 0, and it increases
to a point and then decreases towards zero for non-zero Δ values because of

E
(
χ−2
p2+2 (Δ)

)
being a non increasing log convex function of Δ. Lastly, for all

Δ values, the behaviour of the AQDB of ̂β
PS
1 is almost the same β̂

S
1, but the

quadratic bias curve of β̂
PS
1 remains on below the curve of β̂

S
1.

Now, we present the asymptotic covariance matrices of the proposed estimators
which are given by as follows:

Theorem 2

Cov
(
β̂
FM
1

)
= σ 2 Q̃

−1
11.2 + η11.2η

′
11.2,

Cov
(
β̂
SM
1

)
= σ 2 Q̃

−1
11 + ξξ ′,

Cov
(
β̂
PT
1

)
= σ 2 Q̃

−1
11.2 + η11.2η

′
11.2 + 2η′

11.2δHp2+2

(
χ2
p2,α;Δ

)

+ σ 2
(
Q̃

−1
11.2 − Q̃

−1
11

)
Hp2+2

(
χ2
p2,α;Δ

)

+ δδ′ [2Hp2+2

(
χ2
p2,α;Δ

)
− Hp2+4

(
χ2
p2,α;Δ

)]
,

Cov
(
β̂
S
1

)
= σ 2 Q̃

−1
11.2 + η11.2η

′
11.2 + 2(p2 − 2)δη′

11.2E
(
χ−2
p2+2 (Δ)

)

− (p2 − 2)σ 2 Q̃
−1
11 Q̃12 Q̃

−1
22.1 Q̃21 Q̃

−1
11

{
2E

(
χ−2
p2+2 (Δ)

)

− (p2 − 2)E
(
χ−4
p2+2 (Δ)

)}

+ (p2 − 2)δδ′ {2E
(
χ−2
p2+2 (Δ)

)

− 2E
(
χ−2
p2+4 (Δ)

)
− (p2 − 2)E

(
χ−4
p2+4 (Δ)

)}
,

Cov
(
β̂
PS
1

)
= Cov

(
β̂
S
1

)

− 2δη′
11.2E

({
1 − (p2 − 2)χ−2

p2+2 (Δ)
}
I
(
χ2
p2+2 (Δ) ≤ p2 − 2

))

+ (p2 − 2)σ 2 Q̃
−1
11 Q̃12 Q̃

−1
22.1 Q̃21 Q̃

−1
11

×
[
2E

(
χ−2
p2+2 (Δ) I

(
χ2
p2+2 (Δ) ≤ p2 − 2

))

− (p2 − 2)E
(
χ−4
p2+2 (Δ) I

(
χ2
p2+2 (Δ) ≤ p2 − 2

))]

− σ 2 Q̃
−1
11 Q̃12 Q̃

−1
22.1 Q̃21 Q̃

−1
11 Hp2+2 ((p2 − 2);Δ)
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+ δδ′ [2Hp2+2 ((p2 − 2);Δ) − Hp2+4 ((p2 − 2);Δ)
]

− (p2 − 2)δδ′ [2E
(
χ−2
p2+2 (Δ) I

(
χ2
p2+2 (Δ) ≤ p2 − 2

))

− 2E
(
χ−2
p2+4 (Δ) I

(
χ2
p2+4 (Δ) ≤ p2 − 2

))

+ (p2 − 2)E
(
χ−4
p2+2 (Δ) I

(
χ2
p2+2 (Δ) ≤ p2 − 2

))]
.

Proof See Appendix. �

Finally, we obtain the ADRs of the estimators under {Kn} given as:

Theorem 3

ADR
(
β̂
FM
1

)
= σ 2tr

(
WQ̃

−1
11.2

)
+ η′

11.2Wη11.2,

ADR
(
β̂
SM
1

)
= σ 2 tr

(
WQ̃

−1
11

)
+ ξ ′Wξ ,

ADR
(
β̂
PT
1

)
= ADR

(
β̂
FM
1

)
− 2η′

11.2WδHp2+2

(
χ2
p2,α;Δ

)

− σ 2tr
(
WQ̃

−1
11.2 − WQ̃

−1
11

)
Hp2+2

(
χ2
p2,α;Δ

)

+ δ′Wδ
{
2Hp2+2

(
χ2
p2,α;Δ

)
− Hp2+4

(
χ2
p2,α;Δ

)}
,

ADR
(
β̂
S
1

)
= ADR

(
β̂
FM
1

)
+ 2(p2 − 2)η′

11.2WδE
(
χ−2
p2+2 (Δ)

)

−(p2 − 2)σ 2tr
(
Q̃21 Q̃

−1
11 WQ̃

−1
11 Q̃12 Q̃

−1
22.1

) {
2E

(
χ−2
p2+2 (Δ)

)

−(p2 − 2)E
(
χ−4
p2+2 (Δ)

)}

+ (p2 − 2)δ′Wδ
{
2E

(
χ−2
p2+2 (Δ)

)

−2E
(
χ−2
p2+4 (Δ)

)
− (p2 − 2)E

(
χ−4
p2+4 (Δ)

)}
,

ADR
(
β̂
PS
1

)
= ADR

(
β̂
S
1

)

− 2η′
11.2WδE

({
1 − (p2 − 2)χ−2

p2+2 (Δ)
}
I
(
χ2
p2+2 (Δ) ≤ p2 − 2

))

+ (p2 − 2)σ 2tr
(
Q̃21 Q̃

−1
11 WQ̃

−1
11 Q̃12 Q̃

−1
22.1

)

×
[
2E

(
χ−2
p2+2 (Δ) I

(
χ2
p2+2 (Δ) ≤ p2 − 2

))

−(p2 − 2)E
(
χ−4
p2+2 (Δ) I

(
χ2
p2+2 (Δ) ≤ p2 − 2

))]

− σ 2tr
(
Q̃21 Q̃

−1
11 WQ̃

−1
11 Q̃12 Q̃

−1
22.1

)
Hp2+2 ((p2 − 2);Δ)

+ δ′Wδ
[
2Hp2+2 ((p2 − 2);Δ) − Hp2+4 ((p2 − 2);Δ)

]

− (p2 − 2)δ′Wδ
[
2E

(
χ−2
p2+2 (Δ) I

(
χ2
p2+2 (Δ) ≤ p2 − 2

))

− 2E
(
χ−2
p2+4 (Δ) I

(
χ2
p2+4 (Δ) ≤ p2 − 2

))
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+(p2 − 2)E
(
χ−4
p2+2 (Δ) I

(
χ2
p2+2 (Δ) ≤ p2 − 2

))]
.

Proof See Appendix. �

If Q̃12 = 0, then δ = 0, ξ = η11.2 and Q̃11.2 = Q̃11, all the ADRs reduce to

common value σ 2tr
(
W Q̃

−1
11

)
+ η′

11.2Wη11.2 for all ω. On the other hand, assuming

Q̃12 �= 0, then

(i) As Δ moves away from 0, the ADR
(
β̂
SM
1

)
becomes unbounded. Furthermore,

the ADR
(
β̂
PT
1

)
perform better than ADR

(
β̂
FM
1

)
for all values of Δ ≥ 0, that

is ADR
(
β̂
PT
1

)
≤ ADR

(
β̂
FM
1

)
.

(ii) For all W and ω, ADR
(
β̂
S
1

)
≤ ADR

(
β̂
FM
1

)
, if

tr
(
Q̃21 Q̃

−1
11 W Q̃

−1
11 Q̃12 Q̃

−1
22.1

)

chmax

(
Q̃21 Q̃

−1
11 W Q̃

−1
11 Q̃12 Q̃

−1
22.1

) ≥ p2 + 2

2
,

where chmax (·) is the maximum characteristic root.

(iii) To compare β̂
PS
1 and β̂

S
1, we observe that the ADR

(
β̂
PS
1

)
overshadows

ADR
(
β̂
S
1

)
for all the values of ω. Moreover, with result (ii), we have

ADR
(
β̂
PS
1

)
≤ ADR

(
β̂
S
1

)
≤ ADR

(
β̂
FM
1

)
allW and ω.

5 Simulation studies

In this section, we consider aMonte Carlo simulation to evaluate the relative quadratic
risk performance of the listed estimators. All calculations were carried out in R Devel-
opment Core Team (2010). We simulate the response from the following model:

yi = x1iβ1 + x2iβ2 + · · · + xpiβp + f (ti ) + εi , i = 1, . . . , n, (10)

where xi ∼ N (0,Σ x ) and εi are i.i.d. N (0, 1). We also define Σ x that is positive
definite covariance matrix. The off-diagonal elements of the covariance matrixΣ x are
considered to be equal to ρ with ρ = 0.25, 0.5, 0.75. The condition number (CN) is
used to test the multicollinearity, which is defined as the ratio of the largest eigenvalue
to the smallest eigenvalue of matrix X′X. If CN is larger than 30, then it implies the
existence of multicollinearity in the data set, Belsley (1991). We also get α = 0.05
and ti = (i − 0.5) /n. Furthermore, we consider the hypothesis H0 : β j = 0, for
j = p1 + 1, p1 + 2, . . . , p, with p = p1 + p2. Hence, we partition the regression
coefficients as β = (

β1,β2
) = (

β1, 0
)
with β1 = (1, 1, 1, 1, 1). In (10), we consider

two different the nonparametric functions f1 (ti ) = √
ti (1 − ti ) sin

(
2.1π

ti+0.05

)
and

f2 (ti ) = 0.5 sin (4π ti ) to generate response yi .
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Table 1 RMSEs for n = 50,
p1 = 5, p2 = 10 and ρ = 0.25 Δ∗ CN ̂β1

̂β
SM
1

̂β
PT
1

̂β
S
1

̂β
PS
1

0.00 0.924 1.442 1.350 1.216 1.340

0.25 0.869 1.369 1.212 1.165 1.296

0.50 0.920 1.223 0.989 1.263 1.271

0.75 0.903 1.040 0.928 1.176 1.176

1.00 33.807 0.957 0.887 1.000 1.154 1.154

1.25 0.875 0.618 1.000 1.097 1.097

1.50 0.866 0.506 1.000 1.060 1.060

2.00 0.851 0.329 1.000 1.032 1.032

4.00 0.935 0.128 1.000 1.007 1.007

In literature, there are a number of studies about bandwidth selection for a PLRM.
Some recent studies are: Li et al. (2011) provide a theoretical justification for the
earlier empirical observations of an optimal zone of bandwidths. Further, Li and Palta
(2009) introduced a bandwidth selection for semi-parametric varying-coefficient. In
our study, we use generalized cross-validation (GCV) to select the optimal λ value for
given k. By Wahba (1990), the GCV score function can be procured by

GCV (λ, k) = n ‖y − ŷ‖2
{tr (In − Hλ)}2

.

For further information about selection of the optimal ridge parameter and the
optimal bandwidth, we refer to Amini and Roozbeh (2015) and Roozbeh (2015).

Each realization was repeated 5000 times. We define Δ∗ = ∥∥β − β0

∥∥ , where
β0 = (

β1, 0
)
, and ‖·‖ is the Euclidean norm. In order to investigate of the behaviour

of the estimators for Δ∗ > 0, further datasets were generated from those distributions
under local alternative hypothesis.

The performance of an estimatorwas evaluated by usingmean squared error (MSE).
In order to easy comparison, we also calculate the relative mean squared efficiency

(RMSE) of the β�
1 to the β̂

FM
1 is given by

RMSE
(
β̂
FM
1 : β�

1

)
=

MSE
(
β̂
FM
1

)

MSE
(
β�
1

) ,

where β�
1 is one of the suggested estimators. If the RMSE of an estimator is larger than

one, it is superior to the full model estimator. Results are reported briefly in Table 1,
and plotted to easier comparison in Figs. 1 and 2.

We summary the results as follows:

(i) When Δ∗ = 0, SM outperforms all the other estimators. On the other hand, after

the small interval near Δ∗ = 0, the RMSE of β̂
SM
1 decreases and goes to zero.
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Fig. 1 Relative efficiency of the estimators as a function of Δ∗ for n = 50

(ii) The ordinary least squares (OLS) estimator β̂1 performs much worse than ridge-
type suggested estimators when ρ is large.

(iii) For large p2, the CN increases, whereas the RMSE of ̂β
FM
1 decreases, the RMSE

of β̂
SM
1 increases.

(iv) The PT outperforms shrinkage ridge regression estimators at Δ∗ = 0 when p1
and p2 close to each other. But, for large p2 values, β̂

PS
1 has biggest RMSE. As

Δ∗ increases, the RMSE of β̂
PT
1 decreases, and it remains on below 1, and then

it increases and approaches one.

(v) It is seen that the RMSE of β̂
S
1 is smaller than the RMSE of β̂

PS
1 for allΔ∗ values.

(vi) Overall, our results are consistentwith the studies ofAhmedet al. (2007);Raheem
et al. (2012).

InTable 2,we show the results the comparison the suggested estimatorswith penalty
estimators. From the simulation results, the SM outperforms all other estimators. We
observe that ridge pretest and ridge shrinkage estimators perform better than penalty
estimators when both ρ and p2 are large. Especially, when ρ is large, performance
of penalty estimators decrease, whereas the performance of ridge pretest and ridge
shrinkage estimators increase. Therefore, the OLS performs much worse than ridge-
type suggested estimators, since covariates are designed to be correlated.
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(a)  ρ = 0.25,  p2 = 10

Δ*

R
M

S
E

SM
PT
S
PS

(b)  ρ = 0.25,  p2 = 15

Δ*

R
M

S
E

(c)  ρ = 0.25,  p2 = 20

Δ*

R
M

S
E

(d)  ρ = 0.5,  p2 = 10

Δ*

R
M

S
E

(e)  ρ = 0.5,  p2 = 15

Δ*

R
M

S
E

(f)  ρ = 0.5,  p2 = 20

Δ*

R
M

S
E

(g)  ρ = 0.75,  p2 = 10

Δ*

R
M

S
E

(h)  ρ = 0.75,  p2 = 15

Δ*

R
M

S
E

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5

2.
0

0.
0

0.
5

1.
0

1.
5

0.
0

0.
5

1.
0

1.
5 2.

0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(i)  ρ = 0.75,  p2 = 20

Δ*

R
M

S
E

Fig. 2 Relative efficiency of the estimators as a function of Δ∗ for n = 100

In Fig. 3, we plotted estimations of the nonparametric functions f1 and f2. The
curves estimated by smoothing spline denoted a similar behaviours to real functions
especially for larger sample size.

6 Application

We implement proposed strategies to the Baseball data which is analyzed by Friendly
(2002). The data contains 322 rows and 22 variables. We also omit missing values and
four covariates which are not scaler. Hence, we have 263 sample and 17 covariates, and
Table 3 lists the detailed descriptions of both the dependent variable and covariates.

We calculated the CN value is 5830 which implies the existence ofmulticollinearity
in the data set.

The chosen variables via BIC and AIC are shown in Table 4, and AIC selects a
model with more variables than BIC. So, in Table 5, the full- and sub- models are
given. As it can be seen in Table 5, we omit the intercept term in this analysis since
this term was very close to zero in calculations.

In Table 5, as stated previously, f denotes a smooth function. To select the covariate
which can be modelled non-parametrically, we used White Neural Network test (see
tseries package in R) for nonlinearity of each of the covariates. According to the results
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Fig. 3 Estimation of non-parametric functions for p1 = 5 and p2 = 10

Table 3 List of Variable

Variable Description

Dependent Variable

lnSal The logarithm of annual salary (in thousands) on opening day 1987

Covariates

Atbat Number of times at bat in 1986

Hits Number of hits in 1986

Homer Number of home runs in 1986

Runs Number of runs in 1986

RBI Batted in during 1986

Walks Number of walks in 1986

Years Number of years in the major leagues

Atbatc Number of times at bat in his career

Hitsc Number of hits in career

Homerc Number of home runs in career

Runsc Number of runs in career

RBIc Number of Runs Batted In in career

Walksc Number of walks in career

Putouts Number of putouts in 1986

Assists Number of assists in 1986

Errors Number of errors in 1986

Table 4 Candidate sub-models

Methods Chosen variables

AIC Atbat, Runs, Walks, Years, Atbatc, Hitsc, Homerc, Assists, Errors

BIC Atbat, Years, Atbatc, Hitsc, Homerc, Assists, Errors
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Table 5 Fitting models

Models Formula

Full model lnSal = β1Atbat + β2Hits + β3Homer + β4Runs + β5RBI + β6Walks +
β7Atbatc + β8Hitsc + β9Homerc + β10Runsc + β11RBIc +
β12Walksc + β13Putouts + β14Assists + β15Errors + f (Years)

Sub-model(AIC) lnSal = β1Atbat + β2Runs + β3Walks + β4Atbatc + β5Hitsc +
β6Homerc + β7Assists + β8Errors + f (Years)

Sub-model(BIC) lnSal = β1Atbat + β2Atbatc + β3Hitsc + β4Homerc + β5Assists +
β6Errors + f (Years)

Table 6 Relative prediction errors

Estimators AIC BIC Lasso aLasso SCAD

SM PT S PS SM PT S PS

RPE 1.501 1.405 1.411 1.443 1.475 1.377 1.450 1.452 1.407 1.388 1.356

of this test, we have found that the Years has a significant nonlinear relationship with
the response lnSal.

To evaluate the performance of each method, we obtain prediction errors by using
10-fold cross validation following 999 resampled bootstrap samples. Further, we also
calculate the Relative Prediction Error (RPE) of each method with respect to the full
model estimator. If the RPE of any estimator is larger than one, then this indicates
the superiority of that method over the full model estimator. The results are shown
in Table 6. According to these results, not surprisingly the SM has maximum RPE
since this estimator is computed based on the true model. Further, shrinkage methods
outperform penalty estimators although pretest method may less efficient. Finally, we
may suggest to use BIC method to construct suggested techniques.

In Table 7, we present the coefficients of parametric part of model. Moreover, the
curve estimated by smoothing spline which the smoothing parameter is selected by
GCV is shown in Fig. 4.

7 Conclusion

In this paper, we suggest pretest, shrinkage and penalty estimation for PLRMs. The
parametric components is estimated by using ridge regression approach, the non-
parametric component is estimated by using Speckman approach based on penalized
residual sum of squares method. The advantages of listed estimators are studied both
theoretically and numerically. Our results show that the sub-model estimator outper-
forms shrinkage and penalty estimators when the null hypothesis is true, i.e., Δ∗ = 0.
Moreover, the pretest and shrinkage estimators performs better than the full model
estimator. On the other hand, as the restriction moves away from Δ∗ = 0, i.e., the
assumption of null hypothesis is violated, the efficiency of sub-model estimator grad-
ually decreases even worse than full model estimator. Also, the pretest estimation may
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Fig. 4 Graph of the estimation
of nonparametric function
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2.
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3.
0
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ln
S

al
not perform well for little violations of null hypothesis while the performance of it
act like full model when the violations of null hypothesis is large. Finally, shrinkage
estimation outperforms the full model estimator in every case. We also compare listed
estimators with penalty estimators through Monte Carlo simulation. Our asymptotic
theory is well supported by numerical analysis. In summary, construction estimators
outshine penalty estimators when p2 is large, and these estimators much more consis-
tent than penalty estimators in the presence of multicollinearity.
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Appendix

We present the following two lemmas below, which will enable us to derive the results
of Theorems 1 and 3 in this paper

Lemma 1 If k/
√
n → λ0 ≥ 0 and Q̃ is non-singular, then

√
n
(
β̂
FM − β

)
d→ N

(
−λ0 Q̃

−1
β, σ 2 Q̃

−1
)

,

where “
d→” denotes convergence in distribution.

Proof Let define Vn(u) as follows:

n∑

i=1

[(
ε̃i − u′x̃i/

√
n
)2 − ε̃2i

]
+ k

p∑

j=1

[∣∣β j + u j/
√
n
∣∣2 − ∣∣β j

∣∣2
]
,

where u = (u1, . . . , u p)
′. Following Knight and Fu (2000), it can be shown that

n∑

i=1

[(
ε̃i − u′x̃i/

√
n
)2 − ε̃2i

]
d→ −2u′D + u′ Q̃u,
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whereD ∼ N (0, σ 2Ip),withfinite-dimensional convergenceholding trivially.Hence,

k
p∑

j=1

[∣∣β j + u j/
√
n
∣∣2 − ∣∣β j

∣∣2
]

d→ λ0

p∑

j=1

u j sgn(β j )|β j |.

Hence, Vn(u)
d→ V (u). Because Vn is convex and V has a unique minimum, by

following Geyer (1996), it yields

argmin(Vn) = √
n
(
β̂
FM − β

)
d→ argmin(V ).

Hence,

√
n
(
β̂
FM − β

)
d→ Q̃

−1
(D − λ0β)∼N

(
−λ0 Q̃

−1
β, σ 2 Q̃

−1
)

.

�

Lemma 2 Let X be q−dimensional normal vector distributed as N

(
μx ,Σq

)
, then,

for a measurable function of ϕ, we have

E
[
Xϕ

(
X′X

)] = μxE
[
ϕχ2

q+2 (Δ)
]

E
[
XX′ϕ

(
X′X

)] = ΣqE
[
ϕχ2

q+2 (Δ)
]

+ μxμ
′
xE

[
ϕχ2

q+4 (Δ)
]

where χ2
v (Δ) is a non-central chi-square distribution with v degrees of freedom and

non-centrality parameter Δ.

Proof It can be found in Judge and Bock (1978) �

We further consider the following proposition for proving theorems.

Proposition 1 Under local alternative {Kn} as n → ∞, we have

(
ϑ1
ϑ3

)
∼ N

[(−η11.2
δ

)
,

(
σ 2 Q̃

−1
11.2 Φ∗

Φ∗ Φ∗

)]

,

(
ϑ3
ϑ2

)
∼ N

[(
δ

−ξ

)
,

(
Φ∗ 0

0 σ 2 Q̃
−1
11

)]

,

where ϑ1 = √
n
(
β̂
FM
1 − β1

)
, ϑ2 = √

n
(
β̂
SM
1 − β1

)
and ϑ3 = ϑ1 − ϑ2.

Proof Under the light of Lemmas 1 and 2, it can easily be obtained

ϑ1
d→ N

(
−η11.2, σ

2 Q̃
−1
11.2

)
.
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Define y∗ = ỹ − X̃2β̂
FM
2 , and

β̂
FM
1 = argmin

β1

{∥∥∥y∗ − X̃1β1

∥∥∥ + k
∥∥β1

∥∥2
}

=
(
X̃′
1X̃1 + kIp1

)−1
X̃′
1y

∗

=
(
X̃′
1X̃1 + kIp1

)−1
X̃′
1ỹ −

(
X̃′
1X̃1 + kIp1

)−1
X̃′
1X̃2β̂

FM
2

= β̂
SM
1 −

(
X̃′
1X̃1 + kIp1

)−1
X̃′
1X̃2β̂

FM
2 . (11)

By using Eq. (11),

E
{
lim
n→∞

√
n
(
̂β
SM
1 − β1

)}
= E

{
lim
n→∞

√
n
(
̂β
FM
1 + Q̃

−1
11 Q̃12

̂β
FM
2 − β1

)}

= E
{
lim
n→∞

√
n
(
̂β
FM
1 − β1

)}

+E
{
lim
n→∞

√
n
(
Q̃

−1
11 Q̃12

̂β
FM
2

)}

by Lemma 2,

= −η11.2 + Q̃
−1
11 Q̃12ω

= − (
η11.2 − δ

)

= −ξ .

Hence, ϑ2
d→ N

(
−ξ , σ 2 Q̃

−1
11

)
.

Using the Eq. (11), we can obtain Φ∗ as follows:

Φ∗ = Cov
(
̂β
FM
1 − β̂

SM
1

)

= E

[(
β̂
FM
1 − β̂

SM
1

) (
β̂
FM
1 − β̂

SM
1

)′]

= E

[(
Q̃

−1
11 Q̃12

̂β
FM
2

) (
Q̃

−1
11 Q̃12

̂β
FM
2

)′]

= Q̃
−1
11 Q̃12E

[
̂β
FM
2

(
̂β
FM
2

)′]
Q̃21 Q̃

−1
11

= σ 2 Q̃
−1
11 Q̃12 Q̃

−1
22.1 Q̃21 Q̃

−1
11 .

We also know that

Φ∗ = σ 2 Q̃
−1
11 Q̃12 Q̃

−1
22.1 Q̃21 Q̃

−1
11 = σ 2

(
Q̃

−1
11.2 − Q̃

−1
11

)
.

Hence, it is obtained ϑ3
d→ N (δ,Φ∗) . �
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Proof (Theorem 1) ADB
(
̂β
FM
1

)
and ADB

(
̂β
SM
1

)
are directly obtained from Propo-

sition 1. Also, the ADBs of PT, S and PS are obtained as follows:

ADB
(
̂β
PT
1

)
= E

{
lim
n→∞

√
n
(
̂β
PT
1 − β1

)}

= E
{
lim
n→∞

√
n
(
̂β
FM
1 −

(
̂β
FM
1 − ̂β

SM
1

)
I
(
Tn ≤ cn,α

) − β1

)}

= E
{
lim
n→∞

√
n
(
̂β
FM
1 − β1

)}

−E
{
lim
n→∞

√
n
((

̂β
FM
1 − ̂β

SM
1

)
I
(
Tn ≤ cn,α

))}

= −η11.2 − δHp2+2

(
χ2
p2,α;Δ

)
.

ADB
(
̂β
S
1

)
= E

{
lim
n→∞

√
n
(
̂β
S
1 − β1

)}

= E
{
lim
n→∞

√
n
(
̂β
FM
1 −

(
̂β
FM
1 − ̂β

SM
1

)
(p2 − 2) T −1

n − β1

)}

= E
{
lim
n→∞

√
n
(
̂β
FM
1 − β1

)}

−E
{
lim
n→∞

√
n
((

̂β
FM
1 − ̂β

SM
1

)
(p2 − 2) T −1

n

)}

= −η11.2 − (p2 − 2) δE
(
χ−2
p2+2 (Δ)

)
.

ADB
(
̂β
PS
1

)
= E

{
lim
n→∞

√
n
(
̂β
PS
1 − β1

)}

= E
{
lim
n→∞

√
n
(
̂β
SM
1 +

(
̂β
FM
1 − ̂β

SM
1

)

×
(
1 − (p2 − 2) T−1

n

)
I (Tn > p2 − 2) − β1

)}

= E
{
lim
n→∞

√
n
[
̂β
SM
1 +

(
̂β
FM
1 − ̂β

SM
1

)
(1 − I (Tn ≤ p2 − 2))

−
(
̂β
FM
1 − ̂β

SM
1

)
(p2 − 2) T −1

n I (Tn > p2 − 2) − β1

]}

= E
{
lim
n→∞

√
n
(
̂β
FM
1 − β1

)}

−E
{
lim
n→∞

√
n
(
̂β
FM
1 − ̂β

SM
1

)
I (Tn ≤ p2 − 2)

}

−E
{
lim
n→∞

√
n
(
̂β
FM
1 − ̂β

SM
1

)
(p2 − 2) T −1

n I (Tn > p2 − 2)
}

= −η11.2 − δHp2+2 (p2 − 2; (Δ))

− δ (p2 − 2)E
{
χ−2
p2+2 (Δ) I

(
χ2
p2+2

(Δ) > p2 − 2
)}

.

�

The asymptotic covariance of an estimator β∗

1 is defined as follows:

Cov
(
β∗
1

) = E
{
lim
n→∞n

(
β∗
1 − β1

) (
β∗
1 − β1

)′} .
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Proof (Theorem 2) Firstly, the asymptotic covariance of ̂β
FM
1 is given by

Cov
(
̂β
FM
1

)
= E

{
lim
n→∞

√
n
(
̂β
FM
1 − β1

)√
n
(
̂β
FM
1 − β1

)′}

= E
(
ϑ1ϑ

′
1

)

= Cov
(
ϑ1ϑ

′
1

) + E (ϑ1)E
(
ϑ ′
1

)

= σ 2 Q̃
−1
11.2 + η11.2η

′
11.2.

The asymptotic covariance of ̂β
SM
1 is given by

Cov
(
̂β
SM
1

)
= E

{
lim
n→∞

√
n
(
̂β
SM
1 − β1

)√
n
(
̂β
SM
1 − β1

)′}

= E
(
ϑ2ϑ

′
2

)

= Cov
(
ϑ2ϑ

′
2

) + E (ϑ2)E
(
ϑ ′
2

)

= σ 2 Q̃
−1
11 + ξξ ′,

The asymptotic covariance of ̂β
PT
1 is given by

Cov
(
̂β
PT
1

)
= E

{
lim
n→∞

√
n
(
̂β
PT
1 − β1

)√
n
(
̂β
PT
1 − β1

)′}

= E
{
lim
n→∞n

[(
̂β
FM
1 − β1

)
−
(
̂β
FM
1 − ̂β

SM
1

)
I
(
Tn ≤ cn,α

)]

[(
̂β
FM
1 − β1

)
−
(
̂β
FM
1 − ̂β

SM
1

)
I
(
Tn ≤ cn,α

)]′}

= E
{[

ϑ1 − ϑ3I
(
Tn ≤ cn,α

)] [
ϑ1 − ϑ3I

(
Tn ≤ cn,α

)]′}

= E
{
ϑ1ϑ

′
1 − 2ϑ3ϑ

′
1I
(
Tn ≤ cn,α

) + ϑ3ϑ
′
3I
(
Tn ≤ cn,α

)}
.

Now, by using Lemma 2 and the formula for a conditional mean of a bivariate
normal, we have

E
{
ϑ3ϑ

′
1I
(
Tn ≤ cn,α

)} = E
{
E
(
ϑ3ϑ

′
1I
(
Tn ≤ cn,α

) |ϑ3
)}

= E
{
ϑ3E

(
ϑ ′
1I
(
Tn ≤ cn,α

) |ϑ3
)}

= E
{
ϑ3 [−η11.2 + (ϑ3 − δ)]′ I

(
Tn ≤ cn,α

)}

= −E
{
ϑ3η

′
11.2I

(
Tn ≤ cn,α

)} +
E
{
ϑ3 (ϑ3 − δ)′ I

(
Tn ≤ cn,α

)}

= −η′
11.2E

{
ϑ3I

(
Tn ≤ cn,α

)}

+E
{
ϑ3ϑ

′
3I
(
Tn ≤ cn,α

)}

−E
{
ϑ3δ

′I
(
Tn ≤ cn,α

)}

= −η′
11.2δHp2+2

(
χ2
p2,α;Δ

)
+
{
Cov(ϑ3ϑ

′
3)Hp2+2

(
χ2
p2,α;Δ

)
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+E (ϑ3)E
(
ϑ ′
3

)
Hp2+4

(
χ2
p2,α;Δ

)
− δδ′Hp2+2

(
χ2
p2,α;Δ

)}

= −η′
11.2δHp2+2

(
χ2
p2,α;Δ

)
+ Φ∗Hp2+2

(
χ2
p2,α;Δ

)

+ δδ′Hp2+4

(
χ2
p2,α;Δ

)
− δδ′Hp2+2

(
χ2
p2,α;Δ

)
,

then,

Cov
(
̂β
PT
1

)
= η11.2η

′
11.2 + 2η′

11.2δHp2+2

(
χ2
p2,α;Δ

)

σ 2 Q̃
−1
11.2 − Φ∗Hp2+2

(
χ2
p2,α; (Δ)

)
− δδ′Hp2+4

(
χ2
p2,α;Δ

)

+ 2δδ′Hp2+2

(
χ2
p2,α;Δ

)

= σ 2 Q̃
−1
11.2 + η11.2η

′
11.2 + 2η′

11.2δHp2+2

(
χ2
p2,α;Δ

)

+ σ 2
(
Q̃

−1
11.2 − Q̃

−1
11

)
Hp2+2

(
χ2
p2,α;Δ

)

+ δδ′ [2Hp2+2

(
χ2
p2,α;Δ

)
− Hp2+4

(
χ2
p2,α;Δ

)]
.

The asymptotic covariance of β̂
S
1 is given by

Cov
(
β̂
S
1

)
= E

{
lim
n→∞

√
n
(
̂β
S
1 − β1

)√
n
(
β̂
S
1 − β1

)′}

= E
{
lim
n→∞n

[(
̂β
FM
1 − β1

)
−
(
β̂
FM
1 − ̂β

SM
1

)
(p2 − 2) T −1

n

]

[(
β̂
FM
1 − β1

)
−
(
̂β
FM
1 − ̂β

SM
1

)
(p2 − 2) T −1

n

]′}

= E
{
ϑ1ϑ

′
1 − 2 (p2 − 2) ϑ3ϑ

′
1T −1

n + (p2 − 2)2 ϑ3ϑ
′
3T −2

n

}
.

Note that, by using Lemma 2 and the formula for a conditional mean of a bivariate
normal, we have

E
{
ϑ3ϑ

′
1T −1

n

}
= E

{
E
(
ϑ3ϑ

′
1T −1

n |ϑ3

)}

= E
{
ϑ3E

(
ϑ ′
1T −1

n |ϑ3

)}

= E
{
ϑ3

[−η11.2 + (ϑ3 − δ)
]′ T −1

n

}

= −E
{
ϑ3η

′
11.2T −1

n

}
+ E

{
ϑ3 (ϑ3 − δ)′ T −1

n

}

= −η′
11.2E

{
ϑ3T

−1
n

}
+ E

{
ϑ3ϑ

′
3T −1

n

}

−E
{
ϑ3δ

′T −1
n

}

= −η′
11.2δE

(
χ−2
p2+2 (Δ)

)
+
{
Cov(ϑ3ϑ

′
3)E

(
χ−2
p2+2 (Δ)

)
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+E (ϑ3)E
(
ϑ ′
3

)
E
(
χ−2
p2+4 (Δ)

)
− δδ′Hp2+2

(
χ2
p2,α;Δ

)}

= −η′
11.2δE

(
χ−2
p2+2 (Δ)

)
+ Φ∗E

(
χ−2
p2+2 (Δ)

)

+δδ′E
(
χ−2
p2+4 (Δ)

)
− δδ′E

(
χ−2
p2+2 (Δ)

)
,

Cov
(
̂β
S
1

)
= σ 2 Q̃

−1
11.2 + η11.2η

′
11.2 + 2 (p2 − 2) η′

11.2δE
(
χ−2
p2+2,α

(Δ)
)

− (p2 − 2)Φ∗
{
2E

(
χ−2
p2+2 (Δ)

)
− (p2 − 2)E

(
χ−4
p2+2

(Δ)
)}

+ (p2 − 2) δδ′ {−2E
(
χ−2
p2+4

(Δ)
)

+ 2E
(
χ−2
p2+2 (Δ)

)

+ (p2 − 2)E
(
χ−4
p2+4

(Δ)
)}

.

Finally, the asymptotic covariance matrix of positive shrinkage ridge regression
estimator is derived as follows:

Cov
(
̂β
PS
1

)
= E

{
lim
n→∞n

(
̂β
PS
1 − β1

) (
̂β
PS
1 − β1

)′}

= Cov
(
̂β
S
1

)
− 2E

{
lim
n→∞

√
n

[(
̂β
FM
1 − ̂β

SM
1

) (
̂β
S
1 − β1

)′

×
{
1 − (p2 − 2) T−1

n

}
I (Tn ≤ p2 − 2)

]}

+E

{
lim
n→∞

√
n

[(
̂β
FM
1 − ̂β

SM
1

) (
̂β
FM
1 − ̂β

SM
1

)′

×
{
1 − (p2 − 2) T−1

n

}2
I (Tn ≤ p2 − 2)

]}

= Cov
(
̂β
S
1

)
− 2E

{
ϑ3ϑ

′
1

{
1 − (p2 − 2) T −1

n

}
I (Tn ≤ p2 − 2)

}

+ 2E
{
ϑ3ϑ

′
3 (p2 − 2) T −1

n I (Tn ≤ p2 − 2)
}

− 2E
{
ϑ3ϑ

′
3 (p2 − 2)2 T −2

n I (Tn ≤ p2 − 2)
}

+E
{
ϑ3ϑ

′
3I (Tn ≤ p2 − 2)

}

− 2E
{
ϑ3ϑ

′
3 (p2 − 2) T −1

n I (Tn ≤ p2 − 2)
}

+E
{
ϑ3ϑ

′
3 (p2 − 2)2 T −2

n I (Tn ≤ p2 − 2)
}

= Cov
(
̂β
S
1

)
− 2E

{
ϑ3ϑ

′
1

{
1 − (p2 − 2) T −1

n

}
I (Tn ≤ p2 − 2)

}

−E
{
ϑ3ϑ

′
3 (p2 − 2)2 T −2

n I (Tn ≤ p2 − 2)
}

+E
{
ϑ3ϑ

′
3I (Tn ≤ p2 − 2)

}
.
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Based on Lemma 2 and the formula for a conditional mean of a bivariate normal, we
have

E
{
ϑ3ϑ

′
1

{
1 − (p2 − 2) T −1

n

}
I (Tn ≤ p2 − 2)

}

= E
{
E
(
ϑ3ϑ

′
1

{
1 − (p2 − 2) T −1

n

}
I (Tn ≤ p2 − 2) |ϑ3

)}

= E
{
ϑ3E

(
ϑ ′
1

{
1 − (p2 − 2) T −1

n

}
I (Tn ≤ p2 − 2) |ϑ3

)}

= E
{
ϑ3

[−η11.2 + (ϑ3 − δ)
]′ {1 − (p2 − 2) T −1

n

}
I (Tn ≤ p2 − 2)

}

= −η11.2E
(
ϑ3

{
1 − (p2 − 2) T −1

n

}
I (Tn ≤ p2 − 2)

)

+E
(
ϑ3ϑ

′
3

{
1 − (p2 − 2) T −1

n

}
I (Tn ≤ p2 − 2)

)

−E
(
ϑ3δ

′ {1 − (p2 − 2) T −1
n

}
I (Tn ≤ p2 − 2)

)

= −δη′
11.2E

({
1 − (p2 − 2) χ−2

p2+2 (Δ)
}
I
(
χ2
p2+2 (Δ) ≤ p2 − 2

))

+Φ∗E
({

1 − (p2 − 2) χ−2
p2+2 (Δ)

}
I
(
χ2
p2+2 (Δ) ≤ p2 − 2

))

+ δδ′E
({

1 − (p2 − 2) χ−2
p2+4

(Δ)
}
I
(
χ2
p2+4

(Δ) ≤ p2 − 2
))

− δδ′E
({

1 − (p2 − 2) χ−2
p2+2 (Δ)

}
I
(
χ2
p2+2 (Δ) ≤ p2 − 2

))
,

Cov
(
̂β
PS
1

)
= Cov

(
̂β
S
1

)
+ 2δη′

11.2E
({

1 − (p2 − 2) χ−2
p2+2 (Δ)

}
I
(
χ2
p2+2 (Δ) ≤ p2 − 2

))

− 2Φ∗E
({

1 − (p2 − 2) χ−2
p2+2 (Δ)

}
I
(
χ−2
p2+2 (Δ) ≤ p2 − 2

))

− 2δδ′E
({

1 − (p2 − 2) χ−2
p2+4 (Δ)

}
I
(
χ2
p2+4 (Δ) ≤ p2 − 2

))

+ 2δδ′E
({

1 − (p2 − 2) χ−2
p2+2 (Δ)

}
I
(
χ2
p2+2 (Δ) ≤ p2 − 2

))

− (p2 − 2)2 Φ∗E
(
χ−4
p2+2,α (Δ) I

(
χ2
p2+2,α (Δ) ≤ p2 − 2

))

− (p2 − 2)2 δδ′E
(
χ−4
p2+4 (Δ) I

(
χ2
p2+2 (Δ) ≤ p2 − 2

))

+ Φ∗Hp2+2 (p2 − 2;Δ) + δδ′Hp2+4 (p2 − 2;Δ)

= Cov
(
̂β
S
1

)
+ 2δη′

11.2E
({

1 − (p2 − 2) χ−2
p2+2 (Δ)

}
I
(
χ2
p2+2 (Δ) ≤ p2 − 2

))

+ (p2 − 2) σ 2 Q̃
−1
11 Q̃12 Q̃

−1
22.1 Q̃21 Q̃

−1
11

×
[
2E

(
χ−2
p2+2 (Δ) I

(
χ2
p2+2 (Δ) ≤ p2 − 2

))

− (p2 − 2)E
(
χ−4
p2+2 (Δ) I

(
χ2
p2+2 (Δ) ≤ p2 − 2

))]

− σ 2 Q̃
−1
11 Q̃12 Q̃

−1
22.1 Q̃21 Q̃

−1
11 Hp2+2 (p2 − 2;Δ)

+ δδ′ [2Hp2+2 (p2 − 2;Δ) − Hp2+4 (p2 − 2; Δ)
]

− (p2 − 2) δδ′ [2E
(
χ−2
p2+2 (Δ) I

(
χ2
p2+2 (Δ) ≤ p2 − 2

))
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−2E
(
χ−2
p2+4 (Δ) I

(
χ2
p2+4 (Δ) ≤ p2 − 2

))

+ (p2 − 2)E
(
χ−4
p2+2 (Δ) I

(
χ2
p2+2 (Δ) ≤ p2 − 2

))]
.

�

Proof (Theorem 3) The asymptotic risks of the estimators can be derived by following
the definition of ADR

ADR
(
β∗
1

) = nE
[(

β∗
1 − β1

)′ W
(
β∗
1 − β1

)]

= ntr
[
WE

(
β∗
1 − β1

) (
β∗
1 − β1

)′]

= tr
(
WCov

(
β∗
1

))
.

�
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