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Abstract
In this paper, a novel Runge–Kutta neural network (RK-NN)-based control mechanism is introduced for multi-input multi-
output (MIMO)nonlinear systems.Theoverall architecture embodies anonlineRunge–Kuttamodelwhich computes a forward
model of the system, an adaptive controller with tunable parameters and an adjustment mechanism realized by separate online
Runge–Kutta neural networks to identify the dynamics of each tunable controller parameter. Runge–Kutta identification
block has the competency to approximate the time-varying parameters of the model and unmeasurable states of the controlled
system. Thus, the strengths of radial basis function (RBF) neural network structure and Runge–Kutta integration method are
combined in this structure. Adaptive MIMO proportional–integral–derivative (PID) controller is deployed in the controller
block. The control performance of the proposed adaptive control method has been evaluated via simulations performed on a
nonlinear three-tank system and Van de Vusse benchmark system for different cases, and the obtained results reveal that the
RK-NN-based control mechanism and Runge–Kutta model attain good control and modelling performances.

Keywords Adaptive controller · MIMO PID-type RK-NN controller · Runge–Kutta EKF · Runge–Kutta identification ·
Runge–Kutta neural network · Runge–Kutta parameter estimator

1 Introduction

The vital physical or behavioural characteristic which pro-
vides living organisms to be prosperous in a particular
circumstance is called as adaptation. Adaptation skill is one
of the most crucial milestones (keystone) of the evolutionary
process for living organisms.Without the adaptation skill, the
vitality could have come to an end. Hence, although most of
the species have come from similar genetic origins, they have
acquired various abilities and exhibit various differenceswith
respect to the ecological system they are in, due to their adap-
tation skills. When examined psychologically, individuals
with adaptation skills are more successful in social life than
strict thoughters. Therefore, in a very broad sense, adapta-
tion can be considered as the most basic inevitable element
of success in life.
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Similarly, when examined in terms of control system the-
ory, adaptive control systems generally exhibit better perfor-
mancewith respect to their fixed-parameter counterparts. The
control of nonlinear systems, especially multi-input multi-
output (MIMO)nonlinear systems, is a challenging task since
the controlled dynamics of the system interact, and fixed con-
troller structures cannot follow and approximate alternations
on dynamics behaviour of system, which ensnarl to force the
system dynamics to desired reference signals. The complex-
ity of nonlinear systems necessitates the utilization of flexible
controller structures. Therefore, considering the impact of the
adaptation in success, it is required to interfuse adaptation
ability to the controller structures particularly designed for
nonlinear systems, which enhance the control performance
and dynamics of the controller parameters in response to
unpredictable changes in system dynamics. By introducing
adaptation to a conventional controller, it is possible to deploy
it to cope with strong nonlinearities, time delays and time-
varying dynamics of systems (Uçak and Günel 2017).

The parameter adaptive control can be roughly exam-
ined under three main headings in a common framework
according to Aström (1983): gain scheduling, model refer-
ence adaptive control and self-adaptive controllers.
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Gain scheduling can be thought of as a mapping between
the current state of the system and the appropriate controller
parameters for this state (Uçak and Günel 2017; Aström and
Wittenmark 2008). In gain scheduling, firstly, the wide oper-
ating range in which the system is controlled is partitioned
into small uncertain subregions via a priori information, then
robust and optimal controllers are designed for each small
range (Uçak andGünel 2017).Decision trees or lookup tables
are deployed in order to constitute a model of the relation-
ship between predefined system operating conditions and
designed controller parameters. Thus, the appropriate con-
troller parameters to the current situation of the controlled
system can be deployed when system is running. Since gain
scheduling is designed by taking into account the previously
defined scenarios, the control performance deteriorates and
even the controllability of the system is rarifiedwhen the sys-
tem exhibits unpredictable behaviour or encounters an unpre-
dictable situation. Another drawback is that it is an open-loop
compensation since there is no feedback structure which
compensates for an incorrect schedule (Aström1983). There-
fore, gain scheduling can be considered as a feedback control
method where controller parameters are adjusted by feed-
forward compensation. The other trouble of gain scheduling
is the time-consuming computations carried out to determine
the appropriate controller parameters for many operating
conditions and extensive simulations utilized to check the
control performance (Aström 1983; Aström andWittenmark
2008). In spite of the mentioned drawbacks, the controller
parameters can be changed very quickly in response to the
alternations on system behaviour since most of the chores in
controller design steps are completed before control process.

Model reference adaptive control (MRAC) structures con-
sist of two loops. The inner loop includes a controller with
adjustable parameters and the system to be controlled. The
outer loop embodies the update rules for the controller, refer-
ence model to be followed and systemmodel to approximate
future behaviours of system dynamics. In MRAC, the aim
is that the closed-loop system exhibits the same behaviour
as a reference model. Therefore, the transient and steady-
state specifications of the closed-loop system are defined on
a reference model in which closed-loop system is compelled
to track. The adjustment rules for the control algorithm are
derived, in such away that the error between referencemodel
and closed-loop system output is minimized.

Self-adaptive controllers (SAC) are one of the most effec-
tive adaptive control structures for nonlinear systems (Uçak
and Günel 2017). Notwithstanding differences in their ori-
gin, MRAC and SAC have similar properties with regard to
the number of the feedback loops in adjustment mechanism
(Aström 1983). Both adaptive control methods consist of two
feedback loops: inner and outer feedback loops. The inner
loop consists of the system to be controlled and a controller
with adjustable parameters, and the controller parameters are

adjusted via outer loop. Nevertheless, the methods to design
the inner loop and the techniques used to adjust the param-
eters in the outer loop may be different (Aström 1983). For
SAC, controller design alternatives can be enriched since
a variety of controllers and parameter estimators can be
deployed in controller and estimator blocks, by combining
the powerful features of these components. For instance,
by combining the nonlinear function approximation ability
of artificial neural networks (ANN) and robustness of PID
controllers, PID-type ANN controllers can be designed to
effectively control nonlinear systems (Akhyar and Omatu
1993; Wang et al. 2001).

In technical literature, various effective adaptive control
structures based on soft computing methods have been pro-
posed for nonlinear systems (Uçak and Günel 2017; Akhyar
and Omatu 1993; Wang et al. 2001; Flynn et al. 1997; Pham
and Karaboga 1999; Sharkawy 2010; Bouallégue et al. 2012;
Bishr et al. 2000; Zhao et al. 2016a, b). However, the main
drawback is the computational load of the system identi-
fication procedure. In model-based control structures, the
accuracy of the system model and computational load of
system identification are significant issues in the implemen-
tation of the control algorithm. Whereas the accuracy of the
controller parameters is directly affected by system model,
computational load of the identification step restricts the
implementation of the algorithm for various kinds of sys-
tems. In order to overcome these drawbacks, a novel system
identification technique based on Runge–Kutta (RK) model
has been proposed by Iplikci (2013) for nonlinear MIMO
systems to be deployed in a nonlinear model predictive con-
trol (NMPC) structure. The method requires the differential
equations of the system to be derivable. Since this is possible
for many kinds of dynamical systems, the controller struc-
tures based on RK model can be successfully deployed for
wide ranges of nonlinear systems.

There exist various controller structures based on RK-
system identification technique, in technical literature. The
precessor form of the RK-based identification technique has
been proposed by Iplikci (2013) to be deployed in the NMPC
framework. NMPC structures require the future behaviour
of the controlled system in response to the candidate control
signals to optimize a finite-horizon open-loop optimal con-
trol problem during each sampling period. Using the Taylor
expansion of the objective function, the adjustment rules for
control signal vector can be derived. In order to approximate
the sensitivity of the controlled system outputs with respect
to control signals (system Jacobian), the dynamics of the
system is identified via RK model. The Runge–Kutta (RK)
identification block comprises raw RK system model, RK-
based model parameter estimator block and RK-based EKF
block. RK model of the system is utilized for control, state
estimation and model parameter adjustment (Iplikci 2013;
Beyhan 2013). In order to approximate future behaviours
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of the states, the current states of the system estimated via
RK-based EKF are required. The identification block sub-
sumes RK model parameter estimator block to estimate the
model parameters which cannot be determined accurately.
In auto-tuning PID mechanism proposed in Cetin and Iplikci
(2015), the adjustment mechanism based on support vector
regression (SVR) for SISO nonlinear systems proposed in
Iplikci (2010a) has been expanded and adapted for nonlin-
ear MIMO systems by using Runge–Kutta (RK) model in
place of SVR identification technique. The proposed auto-
tuning PID mechanism incorporates the robustness of PID
structure, fast convergence from the MPC framework and
gradient-based adaptation ability (Cetin and Iplikci 2015).
RKmodel of the system is deployed to estimate K-step ahead
future system behaviour and Jacobian of the system utilized
in Levenberg–Marquardt adjustment algorithm. In the non-
linear observer introduced in Beyhan (2013), the states are
adjusted using Levenberg–Marquardt algorithm where the
proposed RK-based identification method in Iplikci (2013)
is deployed to approximate the sensitivity of the system out-
puts with respect to system states.

In this paper, a novel Runge–Kutta neural network-based
control mechanism has been proposed for multi-input multi-
output (MIMO) nonlinear systems. The adjustment mecha-
nism is composed of Runge–Kutta neural network to approx-
imate the optimal parameter values of an adaptive controller
and Runge–Kutta model to acquire the system Jacobian
information. Neural networks such as multilayer perceptrons
(MLP) which are constructed by considering input–output
system states cannot catch the long-term behaviour of the
identified systems well, and long-term prediction accuracy
is usually not good since the network learns the system
states, instead of the changing rates of system states (Wang
and Lin 1998), which motivates us to deploy Runge–Kutta
neural network to approximate the changing rates of the con-
troller parameters. Therefore, Runge–Kutta neural network,
which subsumes the strong sides of the Runge–Kutta inte-
gration method and artificial neural networks, is preferred in
the controller parameter estimator block. In order to identify
the dynamics of the controlled nonlinear system, RK-based
identification method proposed by Iplikci (2013) is deployed
owing to its low computational load and high identification
accuracy. The adjustment mechanism can be deployed to any
controller with adjustable parameters.

The main contribution of this paper is to propose a strong
nonlinear adaptive controller adjustment mechanism which
embodies the strong sides of the Runge–Kutta integration
method and artificial neural networks to approximate the
optimal parameter values of any controller with adjustable
parameters. The proposed mechanism is utilized to opti-
mize the parameters of a MIMO PID controller. In existing
literature, MIMO PID controller parameters are obtained
incrementally and therefore they can not be attained math-

ematically. This study differentiates from the studies in the
literature in terms of mathematically and physically obtain-
ing nonlinear MIMO controller parameters. Thus, the main
novelty of this paper is that the parameters of the nonlinear
MIMO controller can be identified as mathematical expres-
sions for nonlinear MIMO systems. The performance of the
proposed control method has been assessed on nonlinear
three-tank system and Van de Vusse benchmark system. The
obtained results indicate that the proposed Runge–Kutta neu-
ral network-based control method and Runge–Kutta model
achieve good identification and closed-loop control perfor-
mances.

The rest of the paper is organized as follows: Sect. 2
overviews the proposed Runge–Kutta neural network-based
adaptive controller. The basic principles of Runge–Kutta
model utilized in system identification block proposed by
Iplikci (2013) is described in Sect. 3. Construction of the
optimization problem and adjustment rules to utilize Runge–
Kutta neural network directly as an adaptive controller
parameter estimator and the proposed adjustment mecha-
nism are explained in detail in Sect. 4. In Sect. 5, the control
performance evaluation of the proposed method on a nonlin-
ear three-tank system and Van de Vusse benchmark system
is presented. Also, a comparison with Runge–Kutta model-
based PID is provided. The paper is concluded with a brief
conclusion part in Sect. 6.

2 The proposed Runge–Kutta neural
network-based adaptive control structure

In adaptive control, it is aimed to interfuse flexibility to the
controller parameters to attune to the alterations occurring in
system dynamics. Therefore, it is required to adjust the con-
troller parameters in accordance with the change in system
dynamics. This concord depends on accurate approximation
of the system dynamics and adjustmentmechanism deployed
to obtain controller parameters. Adaptive control structures
with controller parameter estimator are frequently deployed
as an adaptive control method since they intend to fit a non-
linear function to the controller parameters. Therefore, in this
section, firstly, the mechanism and requirements of SACs are
overviewed in Sect. 2.1. Then, the proposed nonlinear control
method based on Runge–Kutta model is outlined in Sect. 2.2.

2.1 An overview of self-adaptive control

A self-adaptive controller (SAC) comprises system model,
parameter estimator and controller blocks as depicted in
Fig. 1 where β and C in represent the controller parameters
and input of the controller, respectively. Accurate adjustment
of the controller parameters depends on the preciseness with
which the future behaviour of the system dynamics can be
foreseen. Therefore, system model block is crucial to esti-
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Fig. 1 Self-adaptive controller
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mate the dynamics of the system. In controller parameter
estimator block, the dynamics of the new controller parame-
ters which obtrude the output of the system to the reference
trajectory are identified by taking into account the history of
the system dynamics and the future behaviour of the system
via the obtained systemmodel. By using the appropriate con-
troller parameters in the controller block, the control signal
which forces the system dynamics to the reference signal can
be accurately attained. As can be seen from Fig. 1, different
adaptive controller structures can be proposed by combining
different controller, system model and parameter estimator
types. Any controller with adjustable parameters can be exe-
cuted in the controller block given in Fig. 1 (Uçak and Günel
2017). In this work, MIMO PID controller is implemented in
the proposed control structure. Similarly, depending on the
controlled systems and design techniques, numerous adap-
tive architectures are possible in the parameter estimation
block (Aström et al. 1977). As for the systemmodel part, var-
ious intelligent modelling techniques such as artificial neural
networks (ANN) (Efe and Kaynak 2000; Hagan et al. 2002;
Efe and Kaynak 1999; Efe 2011), adaptive neuro fuzzy infer-
ence system (ANFIS) (Denai et al. 2004; Jang 1993) and
SVR (Iplikci 2010a, b, 2006) have been utilized to identify
the system dynamics.

In the proposed controller structure, the dynamics of
the controlled system is identified via Runge–Kutta sys-
tem model. Subsequently, Runge–Kutta neural network is
employed as a parameter estimator to approximate controller
parameters.

2.2 Runge–Kutta neural network-based adjustment
mechanism

The adjustment mechanism of the proposed control archi-
tecture based on Runge–Kutta model is illustrated in Fig. 2,

where R is the dimension of the input signal and Q represents
the dimension of the controlled output. There are two main
structures to be carefully examined in the proposed mech-
anism: Runge–Kutta neural network controller parameter
estimator to identify the controller parameters and Runge–
Kutta system model to approximate the future behaviour
of the controlled system. For simplicity, Runge–Kutta neu-
ral network controller parameter estimator is abbreviated as
RK-NNestimator and Runge–Kutta system model is RKmodel.
RK-NNestimator and RKmodel are both utilized online to
perform learning, prediction and control consecutively. In
the proposed mechanism, firstly, the controller parame-
ters (β) are estimated using the current weights (Θold =
[αold

1 · · · αold
M ]T ) of the RK-NNestimator, and then the control

signal is attained as follows:

u
[
n
] = fc(β̂,C in) (1)

where β̂ represents the approximated controller parame-
ters and C in is the input signal of the control law. The
obtained control signal (u[n]) is repeatedly applied to the
RKmodel K-times in order to approximateK-step ahead future
behaviour of the controlled system. For this purpose, in
order to attain K-step ahead future behaviour, firstly, it is
required to obtain the current states of the controlled sys-
tem. Therefore, in Runge–Kutta model-based EKF block,
using the previous control inputs and system outputs, the
current states of the system ([x̃1[n] · · · x̃N [n]] ) are attained.
Then, by taking into consideration the possibility that the
system parameters may change, using the obtained current
states of the system ([x̃1[n] · · · x̃N [n]]) and control signals,
optimal model parameters (θ) for Runge–Kutta model can
be approximated via Runge–Kutta-based model parameter
estimation block. Consequently, using the current values of
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Fig. 2 Proposed Runge–Kutta neural network-based control structure

model parameters (θ), system states ([x̃1[n] · · · x̃N [n]]) and
control signals ([u�

1[n] · · · u�
R[n]]) in Runge–Kuttamodel, K-

step ahead future behaviour of the controlled system can be
computed. After the future behaviour of the system dynamics
is acquired via RKmodel, it is required to optimize the weights
of the RK-NNestimator so as to obtain the feasible controller
parameters that force the system output to track the reference
signal. For this purpose, the objective function in (2) is min-
imized where K is the prediction horizon, Q is number of
the controlled outputs, R is the number of the control signals
and λs are penalty terms utilized to restrict the deviation of
the control signals.

F
(
u
[
n
]
, êq

) =
Q∑

q=1

K∑

k=1

[
rq
[
n + k

] − ŷq
[
n + k

]]2

+
R∑

r=1

λr

[
ur

[
n
] − ur

[
n − 1

]]2

=
Q∑

q=1

[
êq
[
n + k

]]2

+
R∑

r=1

λr

[
ur

[
n
] − ur

[
n − 1

]]2

(2)

With the network parameters of RK-NNestimator expressed as
Θold = [αold

1 · · · αold
M ]T , the weights of the RK-NNestimator

can be optimized using Levenberg–Marquardt optimization
rule as follows:

Θnew = Θold + ΔΘ

ΔΘ = −(
JT J + μI

)−1 JT ê
(3)

where J is a (QK +R)xM dimension Jacobianmatrix given
as

J =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

∂ ê1
[
n+1

]

∂αold
1

· · · ∂ ê1
[
n+1

]

∂αold
M

...
. . .

...

∂ êQ
[
n+K

]

∂αold
1

· · · ∂ êQ
[
n+K

]

∂αold
M√

λ1
∂Δu1

[
n
]

∂αold
1

· · · √
λ1

∂Δu1
[
n
]

∂αold
M

...
. . .

...

√
λR

∂ΔuR
[
n
]

∂αold
1

· · · √
λR

∂ΔuR
[
n
]

∂αold
M

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦
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= −

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

∂ ŷ1
[
n+1

]

∂αold
1

· · · ∂ ŷ1
[
n+1

]

∂αold
M

...
. . .

...

∂ ŷQ
[
n+K

]

∂αold
1

· · · ∂ ŷQ
[
n+K

]

∂αold
M

−√
λ1

∂Δu1
[
n
]

∂αold
1

· · · −√
λ1

∂Δu1
[
n
]

∂αold
M

...
. . .

...

−√
λR

∂ΔuR
[
n
]

∂αold
1

· · · −√
λR

∂ΔuR
[
n
]

∂αold
M

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

[(QK+R)xM]

(4)

and ê is the vector of the prediction errors

ê =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

ê1
[
n + 1

]

...

ê1
[
n + K

]

ê2
[
n + 1

]

...

ê2
[
n + K

]

...

êQ
[
n + 1

]

...

êQ
[
n + K

]
√

λ1Δu1
[
n
]

...√
λRΔuR

[
n
]

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

ê
[
n + 1

]

...

ê
[
n + K

]

ê
[
n + K + 1

]

...

ê
[
n + 2K

]

...

ê
[
n + (Q − 1)K + 1

]

...

ê
[
n + QK

]
√

λ1Δu1
[
n
]

...√
λRΔuR

[
n
]

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢
⎣

r1
[
n + 1

] − ŷ1
[
n + 1

]

...

r1
[
n + K

] − ŷ1
[
n + K

]

r2
[
n + 1

] − ŷ2
[
n + 1

]

...

r2
[
n + K

] − ŷ2
[
n + K

]

...

rQ
[
n + 1

] − ŷQ
[
n + 1

]

...

rQ
[
n + K

] − ŷQ
[
n + K

]

√
λ1

[
u1

[
n
] − u1

[
n − 1

]]

...
√

λR

[
uR

[
n
] − uR

[
n − 1

]]

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥
⎦

[(QK+R)x1]

(5)

Since the objective function in (2) is nonconvex and opti-
mized via Levenberg–Marquardt algorithm, the weights of
the network which force the output of the system to track
the reference input can be obtained locally. Since obtain-
ing global solutions requires more computational load in

comparison with local counterparts, utilization of local solu-
tions in online control is more convenient and effective than
global ones. The term ∂ êQ [n+K ]

∂αold
M

in Jacobian matrix (4) can

be expanded via chain rule as follows:

∂ êQ
[
n + K

]

∂αold
M

= ∂ êQ
[
n + K

]

∂ yQ
[
n + K

]
[ R∑

r=1

∂ yQ
[
n + K

]

∂ur
[
n
]

∂ur
[
n
]

∂αold
M

]

= −
[ R∑

r=1

∂ yQ
[
n + K

]

∂ur
[
n
]

∂ur
[
n
]

∂αold
M

]
(6)

where ∂ yQ [n+K ]
∂ur [n] indicates the sensitivity of the system out-

puts with respect to control inputs and ∂ur [n]
∂αold

M
is the sensitivity

of the control signals with respect to RK-NNestimator parame-
ters. The term ∂ur [n]

∂αold
M

can be easily derived using the relation-

ship between control signals and RK-NNestimator; however,
∂ yQ [n+K ]

∂ur [n] is an unknown term which is difficult to attain.
Ideally, during the course of online working, it is expected
that ŷq [n + 1], q ∈ {1, . . . , Q} converges to yq [n + 1], q ∈
{1, . . . , Q} (Uçak andGünel 2017). Therefore, as can be seen
from this expansion, the RKmodel can be utilized to approx-
imate the K-step ahead future system Jacobian information
(in other words sensitivity of the system outputs with respect
to control signals ( ∂ yQ [n+K ]

∂ur [n] ) so as to construct the Jacobian
matrix for Levenberg–Marquardt algorithm.As a result of the
adjustment rule based on Levenberg–Marquardt algorithm
given in (3), RK-NNestimator parameters and also inherently
the controller parameters are anticipated to iteratively con-
verge to their optimal values in the long run (Iplikci 2010a).
However, especially because of modelling inaccuracies and
external disturbances, mostly in the transient state and to
some extent in the steady state, the control action u[n] may
not be adequate to force the systemoutput towards the desired
trajectory as a result of the non-optimal controller parameters
(Iplikci 2010a). In order to overcome this situation, a correc-
tion term δu[n] to be added to the control action is proposed
to enhance control performance (Iplikci 2010a). Thus, the
deteriorations in control performance can be reduced. The
suboptimal correction term δu[n] which aims to minimize
the objective function F with respect to δu[n] can be derived
using the second-order Taylor approximation of the objective
function F as follows (Iplikci 2010a):

F
(
u
[
n
] + δu

[
n
]) ∼=F

(
u
[
n
]) + ∂F

(
u
[
n
])

∂u
[
n
] δu

[
n
]

+ 1

2

∂2F
(
u
[
n
])

∂2u
[
n
]

(
δu

[
n
])2

(7)

Using the first-order optimality conditions, the derivative of
the approximate F with respect to δu[n] can be acquired as
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∂F
(
u
[
n
] + δu

[
n
])

∂δu
[
n
] ∼=∂F

(
u
[
n
])

∂u
[
n
]

+ ∂2F
(
u
[
n
])

∂2u
[
n
] δu

[
n
] = 0

(8)

Thus, δu[n] can be obtained as

δu
[
n
] = −

∂F
(
u
[
n
])

∂u
[
n
]

∂2F
(
u
[
n
])

∂2u
[
n
]

(9)

δu[n]dependsongradient ( ∂F
(
u[n]

)

∂u[n] ) andHessian (
∂2F

(
u[n]

)

∂2u[n] )
terms. The gradient vector can be easily derived using (2) as

∂F
(
u
[
n
])

∂u
[
n
] = 2JT

m ê (10)

where

Jm =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

− ∂ ŷ1
[
n+1

]

∂u1
[
n
] · · · − ∂ ŷ1

[
n+1

]

∂uR
[
n
]

...
. . .

...

− ∂ ŷQ
[
n+K

]

∂u1
[
n
] · · · − ∂ ŷQ

[
n+K

]

∂uR
[
n
]

√
λ1 · · · √

λ1
...

. . .
...√

λR · · · √
λR

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

[(QK+R)x1]

(11)

In order to reduce the computational load and complexity of

the Hessian (
∂2F

(
u[n]

)

∂2u[n] ) term, the Hessian can be approxi-
mated as

∂2F
(
u
[
n
])

∂2u
[
n
] = 2JT

m Jm (12)

Substituting (10) and (12) in (9), δu[n] can be computed as

δu
[
n
] = −(

JT
m Jm

)−1 JT
m ê (13)

By substituting the adjusted network parameters (Θnew =
[αnew

1 · · ·αnew
M ]T ) in RK-NNestimator, adjusted controller

parameters (βnew) and new control signal can be computed
via (1). By adding the correction term, the optimal control
signal which compels the system output to track reference
signal can be attained as u�[n] = u[n] + δu[n] and applied
to the real system. Up to this point, the outline of the adjust-
ment mechanism is extracted. The working principle of each
block in RKmodel and RK-NNestimator is detailed in Sects. 3
and 4, respectively. The detailed pseudocode of the proposed
adaptive control architecture is presented in Sect. 4.4.

3 System identification via Runge–Kutta
systemmodel

In this section, the RK-based nonlinear system identifica-
tion block proposed by Iplikci 2013 is presented. The idea
behind theRK-based identificationmethod is to discretize the
continuous-time MIMO system dynamics via fourth-order
Runge–Kutta integration method in order to attain an adap-
tive, data sampled identification technique. Therefore, firstly,
Runge–Kutta discretization method is given in Sect. 3.1.
Runge–Kutta discretization method approximates one-step
ahead future behaviour of the system in the case that the cur-
rent value of system states and system parameters utilized in
state functions are available. Therefore, the current states of
the system and model parameters are two significant compo-
nents of themethod to be determined. Since the identification
method is data sampled and correct approximation of system
states dramatically depends on the accuracy of the current
states, RK-model-based EKF method is utilized to estimate
current states of the system. Therefore, RK-model-based
EKF is detailed in Sect. 3.2. Because of themodelling inaccu-
racies in system parameters, it is required to deploy a system
parameter estimator to estimate system parameters. In order
to adjust the RK-model parameter when the dynamics of the
system are altered owing to internal or external factors such
as uncertainty or disturbance, the Runge–Kutta model-based
online model parameter estimation block is deployed as pre-
sented in Sect. 3.3. After all fundamental components of the
RK-based nonlinear system identification block proposed by
Iplikci 2013 are examined, in Sect. 3.4, the approximation of
the future system behaviour via RK-system model is inves-
tigated.

3.1 An overview of MIMO systems and Runge–Kutta
systemmodel

Let us consider an N-dimensional continuous-time MIMO
system as depicted in Fig. 3a. The state equations of the
system are expressed as

ẋ1
(
t
) = f1

(
x1
(
t
)
, . . . , xN

(
t
)
, u1

(
t
)
, . . . , uR

(
t
)
, θ

)

...

ẋN
(
t
) = fN

(
x1
(
t
)
, . . . , xN

(
t
)
, u1

(
t
)
, . . . , uR

(
t
)
, θ

)
(14)

subject to state and input constraints of the form

x1
(
t
) ∈ X1, . . . , xN

(
t
) ∈ XN ,∀t ≥ 0

u1
(
t
) ∈ U1, . . . , uR

(
t
) ∈ UR,∀t ≥ 0

(15)

where Xi s and Ui s are box constraints for the states and
inputs as given below, respectively
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Fig. 3 a A continuous-time
multi-input multi-output
(MIMO) system and b its
Runge–Kutta model
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Xi ∈ {
xi ∈ � | ximin ≤ xi ≤ ximax

}
, f or i = 1, . . . , N

Ui ∈ {
ui ∈ � | uimin ≤ ui ≤ uimax

}
, f or i = 1, . . . , R

(16)
and the output equations are

y1
(
t
) = g1

(
x1
(
t
)
, . . . , xN

(
t
)
, u1

(
t
)
, . . . , uR

(
t
))

...

yQ
(
t
) = gQ

(
x1
(
t
)
, . . . , xN

(
t
)
, u1

(
t
)
, . . . , uR

(
t
))

(17)

where R denotes the number of inputs, N stands for the num-
ber of states, Q is the number of outputs and θ emblematizes
the parameters of the system (Iplikci 2013).The above system
equations for MIMO system can be given in a more compact
form as (Iplikci 2013)

ẋ = f
(
x, u, θ

)

y = g
(
x, u

)

x ∈ X , u ∈ U

(18)

where it is assumed that terms fi and gi are known and con-
tinuously differentiable with respect to their input variables,

the state variables and θ , and that the state and input con-
straint sets X and U are compact. The current states and
inputs of the system can be discretized as x1[n] · · · xN [n]
and u1[n] · · · uR[n]where n symbolizes the sampling instant
as t = nTs . One-step ahead system states and outputs, i.e.
xi [n + 1] and yi [n + 1], can be approximated via the fourth-
order Runge–Kutta integration algorithm as follows.

x̂1
[
n + 1

] = x̂1
[
n
] + 1

6
K1X1

[
n
] + 2

6
K2X1

[
n
] + 2

6
K3X1

[
n
] + 1

6
K4X1

[
n
]

.

.

.

x̂N
[
n + 1

] = x̂N
[
n
] + 1

6
K1XN

[
n
] + 2

6
K2XN

[
n
] + 2

6
K3XN

[
n
] + 1

6
K4XN

[
n
]

(19)

and

y1
[
n + 1

] = g1
(
x̂1
[
n + 1

]
, . . . , x̂N

[
n + 1

]
, u1

[
n
]
, . . . , uR

[
n
])

.

.

.

yQ
[
n + 1

] = gQ
(
x̂1
[
n + 1

]
, . . . , x̂N

[
n + 1

]
, u1

[
n
]
, . . . , uR

[
n
])

(20)

where

K1X1

[
n
] = Ts f1

(
x̂1
[
n
]
, . . . , x̂N

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

...

K1XN

[
n
] = Ts fN

(
x̂1
[
n
]
, . . . , x̂N

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)
(21)

K2X1

[
n
] = Ts f1

(
x̂1
[
n
] + 1

2
K1X1

[
n
]
, . . . , x̂N

[
n
] + 1

2
K1XN

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

...

K2XN

[
n
] = Ts fN

(
x̂1
[
n
] + 1

2
K1X1

[
n
]
, . . . , x̂N

[
n
] + 1

2
K1XN

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)
(22)

K3X1

[
n
] = Ts f1

(
x̂1
[
n
] + 1

2
K2X1

[
n
]
, . . . , x̂N

[
n
] + 1

2
K2XN

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

...

K3XN

[
n
] = Ts fN

(
x̂1
[
n
] + 1

2
K2X1

[
n
]
, . . . , x̂N

[
n
] + 1

2
K2XN

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)
(23)

K4X1

[
n
] = Ts f1

(
x̂1
[
n
] + K3X1

[
n
]
, . . . , x̂N

[
n
] + K3XN

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

...

K4XN

[
n
] = Ts fN

(
x̂1
[
n
] + K3X1

[
n
]
, . . . , x̂N

[
n
] + K3XN

[
n
]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)
(24)
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The Runge–Kutta integration method in (19) and (20) can be
expressed in a more compact form as

x̂
[
n + 1

] = f̂
(
x̂
[
n
]
, u

[
n
]
, θ

)

ŷ
[
n + 1

] = g
(
x̂
[
n
]
, u

[
n
]) (25)

Thus, for the given values of current state variables x1[n] · · ·
xN [n] and input signals u1[n] · · · uR[n] at the sampling
instants t = nTs , one-step ahead system states and outputs
can be estimated via (25). In a nutshell, applying the obtained
states iteratively to (25), K-step ahead approximate future
behaviour of the system and also system Jacobian (sensitiv-
ity of the system outputs with respect to control signal) which
is a very significant part of themodel-based control structures
can be acquired. As can be seen from the compact form in
(25), determination of the current states of the system (x̂[n])
and systemmodel parameters (θ) are crucial to obtain K-step
ahead future predictions. Therefore, in the following section
(Sect. 3.2), firstly, in order to estimate the current system
states, Runge–Kutta model-based EKF is proposed. Then,
in order to approximate the unknown system parameters(θ ),
Runge–Kutta model-based online system model parameter
estimator is examined in Sect. 3.3.

3.2 Runge–Kutta model-based EKF

In Runge–Kutta identification block, the correct estimation
of the current system states x̂1[n] · · · x̂N [n] at any time during
the control period is required to attain future behaviour of the
system states. Therefore, Runge–Kutta model-based EKF is
deployed to approximate current states. For this reason, it is
crucial to bethink EKF. The EKF has become just about the
most popular tool for state estimation owing to its simplicity
and its computational efficiency (Thrun et al. 2005). Let us
consider a nonlinear discrete MIMO system as follows:

x
[
n + 1

] = h
(
x
[
n
]
, u

[
n
]) + w

[
n
]

y
[
n + 1

] = g
(
x
[
n
]
, u

[
n
]) + v

[
n
] (26)

where x represents the N -dimensional state vector to be
approximated, u ∈ �R denotes the input vector and y ∈ �Q

is the output vector, w is the vector of system noise with
covariance matrix Q and v denotes the vector of measure-
ment noise with covariance matrix R. In EKF, estimation
of the system states consists of two main steps: prediction
and correction. In prediction step, the states and covariance
matrix of the states are computed as follows:

x̃−[n
] = h

(
x̃
[
n − 1

]
, u

[
n − 1

])

P−[n
] = A

[
n
]
P
[
n − 1

]
AT [n

] + Q
(27)

where x̃−[n] and P−[n] denote the predicted state and
covariance matrix at time n, x̃[n − 1] and P[n − 1] stand
for the corrected state and covariance matrix at time n − 1
and A[n] is the state transition matrix of linearized system
(Iplikci 2013; Thrun et al. 2005). In correction step, using
the measurements from system, the predicted states x̃−[n]
and covariance matrix of the states P−[n] are corrected as
follows:

K
[
n
] = P−[n

]
HT [n

](
H
[
n
]
P−[n

]
HT [n

] + R
)−1

x̃
[
n
] = x̃−[n

] + K
[
n
](

y
[
n
] − g

(
x̃−[n

]
, u

[
n − 1

]))

P
[
n
] =

(
I − K

[
n
]
H
[
n
])

P−[n
]

(28)

where K [n] is the Kalman gain of filter, x̃[n] and P[n] are
corrected and estimated system state vector and correspond-
ing covariance matrix. Jacobian A[n] and H[n] for EKF can
be acquired as follows:

A
[
n
] = ∂h

∂x

∣∣∣
∣[x = x̃

[
n − 1

]

u = u
[
n − 1

]
]

H
[
n
] = ∂ g

∂x

∣∣∣∣[x = x̃
[
n − 1

]

u = u
[
n − 1

]
]

(29)

In this study, since the systems under investigation are con-
tinuous and EKF is convenient for systems in discrete form,
Runge–Kutta discretization method given in (25) can be uti-
lized as discrete model of the controlled system. Thus, the
Jacobian A[n] and H[n] matrices can be obtained as fol-
lows:

A
[
n
] = ∂ f̂

∂x

∣∣∣∣[x = x̃
[
n − 1

]

u = u
[
n − 1

]
]

H
[
n
] = ∂ g

∂x

∣∣∣∣[x = x̃
[
n − 1

]

u = u
[
n − 1

]
]

(30)

where

∂ f̂
∂x

∣
∣∣∣
⎡

⎣x = x̃
[
n − 1

]

u = u
[
n − 1

]
⎤

⎦
=

[
∂ fi

(
x̃
[
n − 1

]
, u

[
n − 1

])

∂ x̃ j
[
n − 1

]
]

=
[

∂ x̃i
[
n
]

∂ x̃ j
[
n − 1

]
]

for i = 1, . . . , N and j = 1, . . . , N

(31)
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and

∂ x̃i
[
n
]

∂ x̃ j
[
n − 1

] = δi, j + 1

6

∂K1Xi

[
n − 1

]

∂ x̃ j
[
n − 1

] + 2

6

∂K2Xi

[
n − 1

]

∂ x̃ j
[
n − 1

] + 2

6

∂K3Xi

[
n − 1

]

∂ x̃ j
[
n − 1

] + 1

6

∂K4Xi

[
n − 1

]

∂ x̃ j
[
n − 1

] (32)

∂K1Xi

[
n − 1

]

∂ x̃ j
[
n − 1

] = Ts
∂ fi

(
x̃1
[
n − 1

]
, . . . , x̃N

[
n − 1

]
, u1

[
n − 1

]
, . . . , uR

[
n − 1

])

∂ x̃ j
[
n − 1

] = T s
∂ fi
∂x j

∣∣∣∣[x = x̃
[
n − 1

]

u = u
[
n − 1

]
] (33)

∂K2Xi

[
n − 1

]

∂ x̃ j
[
n − 1

] = Ts

⎛

⎝
N∑

p=1

∂ fi
∂xp

(
δp, j + 1

2

∂K1X p

[
n − 1

]

∂ x̃ j
[
n − 1

]
)
⎞

⎠
∣∣∣∣⎡
⎢
⎢
⎢⎢
⎢
⎢
⎣

x1 = x̃1
[
n − 1

] + 1
2K1X1

[
n − 1

]

...

xN = x̃N
[
n − 1

] + 1
2K1XN

[
n − 1

]

u = u
[
n − 1

]

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

(34)

∂K3Xi

[
n − 1

]

∂ x̃ j
[
n − 1

] = Ts

⎛

⎝
N∑

p=1

∂ fi
∂xp

(
δp, j + 1

2

∂K2X p

[
n − 1

]

∂ x̃ j
[
n − 1

]
)⎞

⎠
∣∣
∣∣⎡
⎢⎢
⎢
⎢
⎢⎢
⎣

x1 = x̃1
[
n − 1

] + 1
2K2X1

[
n − 1

]

...

xN = x̃N
[
n − 1

] + 1
2K2XN

[
n − 1

]

u = u
[
n − 1

]

⎤

⎥⎥
⎥
⎥
⎥⎥
⎦

(35)

∂K4Xi

[
n − 1

]

∂ x̃ j
[
n − 1

] = Ts

⎛

⎝
N∑

p=1

∂ fi
∂xp

(
δp, j + ∂K3X p

[
n − 1

]

∂ x̃ j
[
n − 1

]
)
⎞

⎠
∣∣∣∣
⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

x1 = x̃1
[
n − 1

] + K3X1

[
n − 1

]

...

xN = x̃N
[
n − 1

] + K3XN

[
n − 1

]

u = u
[
n − 1

]

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

(36)

where

δi, j =
{
1, i = j
0, i 	= j

Consequently, the current states of the system can be approx-
imated by its Runge–Kutta model utilized in the EKF
algorithm via (27–36) (Iplikci 2013).

3.3 The Runge–Kutta model-based online
parameter estimation

In case any system model parameter deviates from its actual
value, the identificationperformanceofRKmodel deteriorates.
Therefore, online estimation of system parameters is a vital
step to enhance identification performance of RKmodel. If the
Runge–Kuttamodel of the system is utilized, the current state
of the system to its previous state (x1[n], . . . , xN [n]), inputs
(u1[n], . . . , uR[n]) and parameters (θ) can be easily related
by (19, 21–24). The parameter vector of the system can be
adjusted as

θ
[
n + 1

] = θ
[
n
] − JT

θ e

JT
θ Jθ

(37)

where

Jθ =
[

∂e1
[
n+1

]

∂θ
[
n
] . . .

∂eN
[
n+1

]

∂θ
[
n
]

]T

= −
[

∂ x̂1
[
n+1

]

∂θ
[
n
] . . .

∂ x̂N
[
n+1

]

∂θ
[
n
]

]T (38)

and

e =
⎡

⎢
⎣

e1
[
n + 1

]

...

eN
[
n + 1

]

⎤

⎥
⎦ =

⎡

⎢
⎣

x1
[
n + 1

] − x̂1
[
n + 1

]

...

xN
[
n + 1

] − x̂N
[
n + 1

]

⎤

⎥
⎦ (39)
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by assuming that previous state x
[
n
]
and current state x[n+

1] of a nonlinear system (14) are given directly (or estimated
by EKF) at time

(
n+1

)
Ts and that the previous control input

u[n] is known (Iplikci 2013). The term ∂ x̂i [n+1]
∂θ [n] required for

the construction of Jacobian in (38) can be acquired as

∂ x̂i
[
n + 1

]

∂θ
[
n
] = ∂ x̂i

[
n
]

∂θ
[
n
] + 1

6

∂K1Xi

[
n
]

∂θ
[
n
] + 2

6

∂K2Xi

[
n
]

∂θ
[
n
]

+2

6

∂K3Xi

[
n
]

∂θ
[
n
] + 1

6

∂K4Xi

[
n
]

∂θ
[
n
] (40)

where

∂K1Xi

[
n
]

∂θ
[
n
] = Ts

∂ fi
(
x̃1
[
n
]
, . . . , x̃N

[
n
]
, u1

[
n
]
, . . . , uR

[
n
])

, θ
[
n
]

∂θ
[
n
]

= T s
∂ fi
∂θ

∣∣∣∣
⎡

⎢⎢
⎣

x = x̃
[
n
]

u = u
[
n
]

θ = θ
[
n
]

⎤

⎥⎥
⎦

(41)

∂K2Xi

[
n
]

∂θ
[
n
] = Ts

(
∂ fi
∂θ

+ 1

2

N∑

j=1

∂ fi
∂x j

∂K1X j

[
n
]

∂θ

)∣∣∣∣⎡
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎣

x1 = x̂1
[
n
] + 1

2 K1X1

[
n
]

.

.

.

xN = x̂N
[
n
] + 1

2 K1XN

[
n
]

u = u
[
n
]

θ = θ
[
n
]

⎤

⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎦

(42)

∂K3Xi

[
n
]

∂θ
[
n
] = Ts

(
∂ fi
∂θ

+ 1

2

N∑

j=1

∂ fi
∂x j

∂K2X j

[
n
]

∂θ

)∣∣
∣∣⎡
⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

x1 = x̂1
[
n
] + 1

2 K2X1

[
n
]

.

.

.

xN = x̂N
[
n
] + 1

2 K2XN

[
n
]

u = u
[
n
]

θ = θ
[
n
]

⎤

⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

(43)

∂K4Xi

[
n
]

∂θ
[
n
] = Ts

⎛

⎝ ∂ fi
∂θ

+
N∑

j=1

∂ fi
∂x j

∂K3X j

[
n
]

∂θ

⎞

⎠
∣∣∣∣⎡
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎣

x1 = x̂1
[
n
] + K3X1

[
n
]

.

.

.

xN = x̂N
[
n
] + K3XN

[
n
]

u = u
[
n
]

θ = θ
[
n
]

⎤

⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎦

(44)

Thus, the derivatives for Runge–Kutta-based model param-
eter estimator can be attained.

3.4 K-step ahead future system behaviour
predictions and Jacobian computations

The K-step ahead future behaviour of the system can be
approximated by feeding back the obtained values of states
to RK model given in (25), and by assuming that the control

signal vector u[n] remains unchanged during the prediction
process between time instants [t + Ts t + KTs]:

x̂
[
n + k

] = f̂
(
x̂
[
n + k − 1

]
, u

[
n
]
, θ

)

ŷ
[
n + k

] = g
(
x̂
[
n + k − 1

]
, u

[
n
])

for k = 1, . . . , K
(45)

Thus, a series of future predictions is obtained for each output
as (Iplikci 2013)

[
ŷq
[
n + 1

] · · · ŷq
[
n + K

]]
for q = 1, . . . , Q (46)

In order to attain the system Jacobian which is the most
significant part of the model-based adaptive mechanism,
firstly, (19)–(24) can be expressed in an iterative way as fol-
lows:

x̂i
[
n + k

] = x̂i
[
n + k − 1

] + 1

6
K1Xi

[
n + k − 1

] + 2

6
K2Xi

[
n + k − 1

]

+2

6
K3Xi

[
n + k − 1

] + 1

6
K4Xi

[
n + k − 1

]
(47)

for i = 1, . . . , N and

ŷq
[
n + k

] = gq
(
x̂1
[
n + k − 1

]
, . . . , x̂N

[
n + k − 1

]
,

u1
[
n
]
, . . . , uR

[
n
])

(48)

for q = 1, . . . , Q where

K1Xi

[
n + k − 1

] = Ts fi
(
x̂1
[
n + k − 1

]
, . . . , x̂N

[
n + k − 1

]
,

u1
[
n
]
, . . . , uR

[
n
]
, θ

)

K2Xi

[
n + k − 1

] = Ts fi
(
x̂1
[
n + k − 1

]

+ 1

2
K1X1

[
n + k − 1

]
, . . . , x̂N

[
n + k − 1

]

+ 1

2
K1XN

[
n + k − 1

]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

K3Xi

[
n + k − 1

] = Ts fi
(
x̂1
[
n + k − 1

]

+ 1

2
K2X1

[
n + k − 1

]
, . . . , x̂N

[
n + k − 1

]

+ 1

2
K2XN

[
n + k − 1

]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

K4Xi

[
n + k − 1

] = Ts fi
(
x̂1
[
n + k − 1

]

+ K3X1

[
n + k − 1

]
, . . . , x̂N

[
n + k − 1

]

+ K3XN

[
n + k − 1

]
, u1

[
n
]
, . . . , uR

[
n
]
, θ

)

(49)

Thus,
∂ ŷq

[
n+k

]

∂ur [n] term can be derived as follows:
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∂ ŷq
[
n + k

]

∂ur
[
n
] =

(
∂gq
∂ur

+
N∑

i=1

∂gq
∂xi

∂ x̂i
[
n + k

]

∂ur
[
n
]

) ∣∣∣∣⎡
⎢
⎢⎢
⎢
⎢
⎢⎢
⎢
⎣

x1 = x̂1
[
n + k

]

...

xN = x̂N
[
n + k

]

gq = gq
(
x̂1
[
n + k

]
, . . . , x̂N

[
n + k

]
, u1

[
n
]
, . . . , uR

[
n
])

ur = ur
[
n
]

⎤

⎥
⎥⎥
⎥
⎥
⎥⎥
⎥
⎦

(50)

∂ x̂i
[
n+k

]

∂ur
[
n
] can be computed as follows:

x̂i
[
n + k

]

∂ur
[
n
] = x̂i

[
n + k − 1

]

∂ur
[
n
] + 1

6

K1Xi

[
n + k − 1

]

∂ur
[
n
] + 2

6

K2Xi

[
n + k − 1

]

∂ur
[
n
]

+ 2

6

K3Xi

[
n + k − 1

]

∂ur
[
n
] + 1

6

K4Xi

[
n + k − 1

]

∂ur
[
n
]

(51)

where

∂K1Xi

[
n
]

∂ur
[
n
] =Ts

∂ fi
(
x̃1
[
n
]
, . . . , x̃N

[
n
]
, u1

[
n
]
, . . . , uR

[
n
])

, θ
[
n
]

∂ur
[
n
]

= Ts

⎛

⎝ ∂ fi
∂ur

+
N∑

j=1

∂ fi
∂x j

∂ x̂ j
[
n + k − 1

]

∂ur
[
n
]

⎞

⎠
∣
∣∣∣⎡
⎢
⎢⎢
⎢
⎣

x1 = x̂1
[
n + k − 1

]

.

.

.

xN = x̂N
[
n + k − 1

]

⎤

⎥
⎥⎥
⎥
⎦

(52)

and

∂K2Xi

[
n
]

∂ur
[
n
] = Ts

⎛

⎝ ∂ fi
∂ur

+
N∑

j=1

∂ fi
∂x j

(
∂ x̂ j

[
n + k − 1

]

∂ur
[
n
] + 1

2

∂K1X j

[
n + k − 1

]

∂ur
[
n
]

)⎞

⎠
∣∣∣∣⎡
⎢⎢
⎢
⎣

x1 = x̂1
[
n
] + 1

2K1X1

[
n
]

...

xN = x̂N
[
n
] + 1

2K1XN

[
n
]

⎤

⎥⎥
⎥
⎦

(53)

∂K3Xi

[
n
]

∂ur
[
n
] = Ts

⎛

⎝ ∂ fi
∂ur

+
N∑

j=1

∂ fi
∂x j

(
∂ x̂ j

[
n + k − 1

]

∂ur
[
n
] + 1

2

∂K2X j

[
n + k − 1

]

∂ur
[
n
]

)⎞

⎠
∣∣∣∣⎡
⎢
⎢
⎢
⎣

x1 = x̂1
[
n
] + 1

2K2X1

[
n
]

...

xN = x̂N
[
n
] + 1

2K2XN

[
n
]

⎤

⎥
⎥
⎥
⎦

(54)

∂K4Xi

[
n
]

∂ur
[
n
] = Ts

⎛

⎝ ∂ fi
∂ur

+
N∑

j=1

∂ fi
∂x j

(
∂ x̂ j

[
n + k − 1

]

∂ur
[
n
] + ∂K3X j

[
n + k − 1

]

∂ur
[
n
]

)⎞

⎠
∣
∣∣∣⎡
⎢
⎢
⎢
⎣

x1 = x̂1
[
n
] + K3X1

[
n
]

...

xN = x̂N
[
n
] + K3XN

[
n
]

⎤

⎥
⎥
⎥
⎦

(55)

As a result, all derivations needed to constitute system Jaco-
bian information can be obtained.

4 Runge–Kutta neural network-based
adaptive control structure

4.1 An overview of Runge–Kutta neural network

Let us consider a nonlinear system characterized by the fol-
lowing ODE

ẋ
(
t
) = f

(
x
(
t
))

(56)

with the initial condition x
(
0
) = x0. In the case that f is

known, using fourth-order Runge–Kutta integration formu-
las, one-step ahead behaviour of the system dynamics can be
computed as follows:

x
[
n + 1

] = x
[
n
] + 1

6
h
[
K1x

[
n
] + 2K2x

[
n
] + 2K3x

[
n
] + K4x

[
n
]]

(57)

where h stands for Runge–Kutta integration step size (Efe
and Kaynak 1999), K1x

[
n
]
, K2x

[
n
]
, K3x

[
n
]
and K4x

[
n
]
are

the slopes utilized to obtain the changing rates of the system
states and are given as (Iplikci 2013; Wang and Lin 1998;
Efe and Kaynak 1999)
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K1x
[
n
] = f

(
xc

[
n
])
∣∣
∣∣
xc
[
n
]
=x

[
n
]

K2x
[
n
] = f

(
xc

[
n
])
∣∣
∣∣
xc
[
n
]
=x

[
n
]
+ 1

2 hK1x

[
n
]

K3x
[
n
] = f

(
xc

[
n
])
∣∣
∣∣
xc
[
n
]
=x

[
n
]
+ 1

2 hK2x

[
n
]

K4x
[
n
] = f

(
xc

[
n
])
∣∣
∣∣
xc
[
n
]
=x

[
n
]
+hK3x

[
n
]

(58)

If function f is unknown, a neural network (NN) structure
can be constructed to precisely identify f so as to approxi-
mate these four slopes such that NN can successfully perform
long-term prediction of the state trajectory x

(
t
)
of the sys-

tem described in (56). Thus, the powerful integration feature
of Runge–Kutta method and powerful approximation and
generalization abilities of NN structure can be combined in
RK-NN network structure. The input and output relationship
of the fourth-order RK-NN can be expressed as

x
[
n + 1

] = x
[
n
] + 1

6
h
[
K1x

[
n
] + 2K2x

[
n
] + 2K3x

[
n
] + K4x

[
n
]]

(59)

where

K1x
[
n
] = N f

(
xc

[
n
]
,Θ

)
∣∣∣∣
xc
[
n
]
=x

[
n
]

K2x
[
n
] = N f

(
xc

[
n
]
,Θ

)
∣∣∣∣
xc
[
n
]
=x

[
n
]
+ 1

2 hK1x

[
n
]

K3x
[
n
] = N f

(
xc

[
n
]
,Θ

)
∣
∣∣∣
xc
[
n
]
=x

[
n
]
+ 1

2 hK2x

[
n
]

K4x
[
n
] = N f

(
xc

[
n
]
,Θ

)
∣
∣∣∣
xc
[
n
]
=x

[
n
]
+hK3x

[
n
] (60)

N f
(
x[n],Θ)

with x[n] and weights Θ can be selected to be
a multilayer perceptron network (MLP) as given in Fig. 4 or
radial basis function network given in Fig. 6 or any nonlinear
regression network. The network topology of the RK-NN is
illustrated in Fig. 5. It is significant to note that the four
N f

(
x[n],Θ)

subnetworks in Fig. 5 are identical, meaning
that they have the same network structure and utilize the same
corresponding weights (Wang and Lin 1998). As can be seen
fromFig. 5 and (60), in order to obtain slopes K1x[n], K2x[n],
K3x[n] and K4x[n], the output of the constituent subnetwork
is consecutively applied to itself. The fact that n subnetworks
of ann−order RK-NNare identical facilitates the realization
of the RK-NN in both software or hardware implementations
(Wang and Lin 1998). That is, the real network size of an n-
orderRK-NN is the same as that of its constituent subnetwork
(Wang and Lin 1998). As a constituent network, MLP or
RBFneural network structures can be used. The input–output
relationship of the MLP-NN model is described by

Kmx
[
n
] =

S∑

j=1

wo
1, jΦ

(
d j

[
n
]) + bo1 , m ∈ {1, 2, 3, 4} (61)

Fig. 4 MLP neural network
structure
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Fig. 5 Runge–Kutta neural network structure
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Fig. 6 RBF neural network
structure
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where Φ
(
,
)
is the activation function, S is the number of the

neurons in hidden layer, and

d j
[
n
] =

N∑

i=1

wh
j,i xm,i + bhj (62)

N denotes the entry number of the MLP-NN. The regression
function of RBF NN model can be attained as

Kmx
[
n
] =

S∑

i=1

wiΨ
(
xm

[
n
]
, ρi

[
n
]
, σi

[
n
])

, m ∈ {1, 2, 3, 4}

(63)

where S denotes number of the neurons,ρi [n] andσi [n] stand
for centre vector and the bandwidth of neurons, respectively,
and

Ψ
(
xm

[
n
]
, ρi

[
n
]
, σi

[
n
]) = exp

(−‖xm
[
n
] − ρi

[
n
]‖2

σ 2
i

[
n
]

)

(64)

The tuning rules for the weights of the RK-NN structure
used for estimation of the controller parameters are detailed
in the following subsections.

4.2 Identification of controller parameters via
Runge–Kutta neural network

Consider that the control law performed by the generalized
controller is given as

u
[
n
] = f c

(
β[n],C in

) =
⎡

⎢
⎣

u1
[
n
]

...

uR
[
n
]

⎤

⎥
⎦ = f c

⎛

⎜
⎝

⎡

⎢
⎣

β1
...

βZ

⎤

⎥
⎦ ,

⎡

⎢
⎣

c1
...

cI

⎤

⎥
⎦

⎞

⎟
⎠

(65)

where R indicates the number of control inputs, Z denotes
the number of adjustable controller parameters and I rep-
resents the number of controller inputs. In order to force
the output of the controlled system to the desired refer-
ence signal, the dynamics of the controller parameters are
identified by adjusting the weights of the RK-NN structure
using Levenberg–Marquardt algorithm-based update rules
given in (3–5, 11, 13). Thus, the dynamic behaviour of the
controller parameters can be identified using RK-NN sub-
networks illustrated in Fig. 5 as follows:

β
[
n
] = β

[
n − 1

] + 1

6
h

[
K1β

[
n − 1

] + 2K2β
[
n − 1

]

+2K3β
[
n − 1

] + K4β
[
n − 1

]]
(66)

where

K1β
[
n − 1

] = N f
(
xc

[
n − 1

]
,Θ

)
∣∣∣∣
xc
[
n−1

]
=β

[
n−1

]

K2β
[
n − 1

] = N f
(
xc

[
n − 1

]
,Θ

)
∣∣∣∣
xc
[
n−1

]
=β

[
n−1

]
+ 1

2 hK1β

[
n−1

]

K3β
[
n − 1

] = N f
(
xc

[
n − 1

]
,Θ

)
∣∣∣∣
xc
[
n−1

]
=β

[
n−1

]
+ 1

2 hK2β

[
n−1

]

K4β
[
n − 1

] = N f
(
xc

[
n − 1

]
,Θ

)
∣∣∣∣
xc
[
n−1

]
=β

[
n−1

]
+hK3β

[
n−1

]

Since RK-NNestimator with RBF has multi-input single-
output (MISO) structure, a separate RK-NNestimator is
deployed for each approximated controller parameter. There-
fore, the number of the RK-NNestimator structures to be used
in parameter estimator block depends on the number of
adjustable parameters in the controller. For instance, three
RK-NNestimator structures are employed for a SISO PID con-
troller to forecast Kp, Ki and Kd parameters. If it is assumed
that RBF network is employed in constituent subnetwork, the
network parameters of the zth estimator to be adjusted are
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given as follows:

Θ z = [
w1 · · ·ws ρ11 · · · ρ1N · · · · · · ρS1 · · · ρSN σ1 · · · σS

]T

(67)

Using Levenberg–Marquardt rule in (3), the weights of the
constituent subnetwork of zth parameter estimator can be
optimized as

Θnew
z = Θold

z + ΔΘ z

ΔΘ z = −(
JT
z J z + μI

)−1 JT
z ê

(68)

where J z is a
(
QK + R

)
x
(
N
(
S + 2

))
dimension Jacobian

matrix given as

J z =

⎡

⎢⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢⎢
⎢
⎣

∂ ê1
[
n+1

]

∂w1
· · · ∂ ê1

[
n+1

]

∂wS

∂ ê1
[
n+1

]

∂ρ11
· · · ∂ ê1

[
n+1

]

∂ρSN

∂ ê1
[
n+1

]

∂σ1
· · · ∂ ê1

[
n+1

]

∂σS
...

. . .
...

...
. . .

...
...

. . .
...

∂ êQ
[
n+K

]

∂w1
· · · ∂ êQ

[
n+K

]

∂wS

∂ êQ
[
n+K

]

∂ρ11
· · · ∂ êQ

[
n+K

]

∂ρSN

∂ êQ
[
n+K

]

∂σ1
· · · ∂ êQ

[
n+K

]

∂σS√
λ1

∂Δu1
[
n
]

∂w1
· · · √

λ1
∂Δu1

[
n
]

∂wS

√
λ1

∂Δu1
[
n
]

∂ρ11
· · · √

λ1
∂Δu1

[
n
]

∂ρSN

√
λ1

∂Δu1
[
n
]

∂σ1
· · · √

λ1
∂Δu1

[
n
]

∂σS
...

. . .
...

...
. . .

...
...

. . .
...

√
λR

∂ΔuR
[
n
]

∂w1
· · · √

λR
∂ΔuR

[
n
]

∂wS

√
λR

∂ΔuR
[
n
]

∂ρ11
· · · √

λR
∂ΔuR

[
n
]

∂ρSN

√
λR

∂ΔuR
[
n
]

∂σ1
· · · √

λR
∂ΔuR

[
n
]

∂σS

⎤

⎥⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥⎥
⎥
⎦

[(QK+R)x(Nx(S+2))]

(69)

and ê is the vector of the prediction errors

ê =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

ê1
[
n + 1

]

.

.

.

ê1
[
n + K

]

ê2
[
n + 1

]

.

.

.

ê2
[
n + K

]

.

.

.

êQ
[
n + 1

]

.

.

.

êQ
[
n + K

]
√

λ1Δu1
[
n
]

.

.

.√
λRΔuR

[
n
]

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

ê
[
n + 1

]

.

.

.

ê
[
n + K

]

ê
[
n + K + 1

]

.

.

.

ê
[
n + 2K

]

.

.

.

ê
[
n + (Q − 1)K + 1

]

.

.

.

ê
[
n + QK

]
√

λ1Δu1
[
n
]

.

.

.√
λRΔuR

[
n
]

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

r1
[
n + 1

] − ŷ1
[
n + 1

]

.

.

.

r1
[
n + K

] − ŷ1
[
n + K

]

r2
[
n + 1

] − ŷ2
[
n + 1

]

.

.

.

r2
[
n + K

] − ŷ2
[
n + K

]

.

.

.

rQ
[
n + 1

] − ŷQ
[
n + 1

]

.

.

.

rQ
[
n + K

] − ŷQ
[
n + K

]

√
λ1

[
u1

[
n
] − u1

[
n − 1

]]

.

.

.
√

λR

[
uR

[
n
] − uR

[
n − 1

]]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

[(QK+R)x1]

(70)

In order to construct the Jacobian given in (70), it is required

to derive the
∂ êQ

[
n+K

]

∂wS
,

∂ êQ
[
n+K

]

∂ρSN
,

∂ êQ
[
n+K

]

∂σS
,

∂ΔuR
[
n
]

∂wS
,

∂ΔuR
[
n
]

∂ρSN
and

∂ΔuR
[
n
]

∂σS
terms. By using chain rule, the men-

tioned terms can be attained as follows:

∂ êQ
[
n + K

]

∂wS
= ∂ êQ

[
n + K

]

∂ yQ
[
n + K

]

[
R∑

r=1

∂ yQ
[
n + K

]

∂ur
[
n
]

∂ur
[
n
]

∂βZ
[
n
]

]
∂βZ

[
n
]

∂wS

∂ êQ
[
n + K

]

∂ρSN
= ∂ êQ

[
n + K

]

∂ yQ
[
n + K

]

[
R∑

r=1

∂ yQ
[
n + K

]

∂ur
[
n
]

∂ur
[
n
]

∂βZ
[
n
]

]
∂βZ

[
n
]

∂ρSN

∂ êQ
[
n + K

]

∂σS
= ∂ êQ

[
n + K

]

∂ yQ
[
n + K

]

[
R∑

r=1

∂ yQ
[
n + K

]

∂ur
[
n
]

∂ur
[
n
]

∂βZ
[
n
]

]
∂βZ

[
n
]

∂σS

∂ΔuR
[
n
]

∂wS
= ∂uR

[
n
]

∂βZ
[
n
]

∂βZ
[
n
]

∂wS

∂ΔuR
[
n
]

∂ρSN
= ∂uR

[
n
]

∂βZ
[
n
]

∂βZ
[
n
]

∂ρSN

∂ΔuR
[
n
]

∂σS
= ∂uR

[
n
]

∂βZ
[
n
]

∂βZ
[
n
]

∂σS
(71)
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where

∂βZ
[
n
]

∂wS
= 1

6
h

[
∂K1βZ

[
n − 1

]

∂wS
+ 2

∂K2βZ

[
n − 1

]

∂wS

+2
∂K3βZ

[
n − 1

]

∂wS
+ ∂K4βZ

[
n − 1

]

∂wS

]

∂βZ
[
n
]

∂ρSN
= 1

6
h

[
∂K1βZ

[
n − 1

]

∂ρSN
+ 2

∂K2βZ

[
n − 1

]

∂ρSN

+2
∂K3βZ

[
n − 1

]

∂ρSN
+ ∂K4βZ

[
n − 1

]

∂ρSN

]

∂βZ
[
n
]

∂σS
= 1

6
h

[
∂K1βZ

[
n − 1

]

∂σS
+ 2

∂K2βZ

[
n − 1

]

∂σS

+2
∂K3βZ

[
n − 1

]

∂σS
+ ∂K4βZ

[
n − 1

]

∂σS

]
(72)

∂KmβZ

[
n−1

]

∂wS
,

∂KmβZ

[
n−1

]

∂ρSN
and

∂KmβZ

[
n−1

]

∂σS
terms can be

derived as given in (73–75):

∂K1βZ

[
n − 1

]

∂wS
=

[
∂N f

(
xZ

[
n − 1

]
,Θ

)

∂wS

]∣∣∣∣
xZ
[
n−1

]
=βZ

[
n−1

]

∂K2βZ

[
n − 1

]

∂wS
=

[
∂N f

(
xZ

[
n − 1

]
,Θ

)

∂wS
+ ∂N f

(
xZ

[
n − 1

]
,Θ

)

∂xZ
[
n − 1

]

× ∂xZ
[
n − 1

]

∂K1βZ

[
n − 1

]
∂K1βZ

[
n − 1

]

∂wS

]∣∣∣∣
xZ
[
n−1

]
=βZ

[
n−1

]
+ 1

2 hK1βZ

[
n−1

]

∂K3βZ

[
n − 1

]

∂wS
=

[
∂N f

(
xZ

[
n − 1

]
,Θ

)

∂wS
+ ∂N f

(
xZ

[
n − 1

]
,Θ

)

∂xZ
[
n − 1

]

× ∂xZ
[
n − 1

]

∂K2βZ

[
n − 1

]
∂K2βZ

[
n − 1

]

∂wS

]∣∣∣∣
xZ
[
n−1

]
=βZ

[
n−1

]
+ 1

2 hK2βZ

[
n−1

]

∂K4βZ

[
n − 1

]

∂wS
=

[
∂N f

(
xZ

[
n − 1

]
,Θ

)

∂wS
+ ∂N f

(
xZ

[
n − 1

]
,Θ

)

∂xZ
[
n − 1

]

∂xZ
[
n − 1

]

∂K3βZ

[
n − 1

]
∂K3βZ

[
n − 1

]

∂wS

]∣∣∣∣
xZ
[
n−1

]
=βZ

[
n−1

]
+hK3βZ

[
n−1

] (73)

∂K1βZ

[
n − 1

]

∂ρSN
=

[
∂N f

(
xZ

[
n − 1

]
,Θ

)

∂ρSN

]∣∣∣∣
xZ
[
n−1

]
=βZ

[
n−1

]

∂K2βZ

[
n − 1

]

∂ρSN
=

[
∂N f

(
xZ

[
n − 1

]
,Θ

)

∂ρSN
+ ∂N f

(
xZ

[
n − 1

]
,Θ

)

∂xZ
[
n − 1

]

× ∂xZ
[
n − 1

]

∂K1βZ

[
n − 1

]
∂K1βZ

[
n − 1

]

∂ρSN

]∣∣∣∣
xZ
[
n−1

]
=βZ

[
n−1

]
+ 1

2 hK1βZ

[
n−1

]

∂K3βZ

[
n − 1

]

∂ρSN
=

[
∂N f

(
xZ

[
n − 1

]
,Θ

)

∂ρSN
+ ∂N f

(
xZ

[
n − 1

]
,Θ

)

∂xZ
[
n − 1

]

× ∂xZ
[
n − 1

]

∂K2βZ

[
n − 1

]
∂K2βZ

[
n − 1

]

∂ρSN

]∣∣∣∣
xZ
[
n−1

]
=βZ

[
n−1

]
+ 1

2 hK2βZ

[
n−1

]

∂K4βZ

[
n − 1

]

∂ρSN
=

[
∂N f

(
xZ

[
n − 1

]
,Θ

)

∂ρSN
+ ∂N f

(
xZ

[
n − 1

]
,Θ

)

∂xZ
[
n − 1

]

× ∂xZ
[
n − 1

]

∂K3βZ

[
n − 1

]
∂K3βZ

[
n − 1

]

∂ρSN

]∣∣∣∣
xZ
[
n−1

]
=βZ

[
n−1

]
+hK3βZ

[
n−1

] (74)

∂K1βZ

[
n − 1

]

∂σS
=

[
∂N f

(
xZ

[
n − 1

]
,Θ

)

∂σS

]∣∣∣
∣
xZ
[
n−1

]
=βZ

[
n−1

]

∂K2βZ

[
n − 1

]

∂σS
=

[
∂N f

(
xZ

[
n − 1

]
,Θ

)

∂σS
+ ∂N f

(
xZ

[
n − 1

]
,Θ

)

∂xZ
[
n − 1

]

× ∂xZ
[
n − 1

]

∂K1βZ

[
n − 1

]
∂K1βZ

[
n − 1

]

∂σS

]∣∣
∣∣
xZ
[
n−1

]
=βZ

[
n−1

]
+ 1

2 hK1βZ

[
n−1

]

∂K3βZ

[
n − 1

]

∂σS
=

[
∂N f

(
xZ

[
n − 1

]
,Θ

)

∂σS
+ ∂N f

(
xZ

[
n − 1

]
,Θ

)

∂xZ
[
n − 1

]

× ∂xZ
[
n − 1

]

∂K2βZ

[
n − 1

]
∂K2βZ

[
n − 1

]

∂σS

]∣∣∣
∣
xZ
[
n−1

]
=βZ

[
n−1

]
+ 1

2 hK2βZ

[
n−1

]

∂K4βZ

[
n − 1

]

∂σS
=

[
∂N f

(
xZ

[
n − 1

]
,Θ

)

∂σS
+ ∂N f

(
xZ

[
n − 1

]
,Θ

)

∂xZ
[
n − 1

]

× ∂xZ
[
n − 1

]

∂K3βZ

[
n − 1

]
∂K3βZ

[
n − 1

]

∂σS

]∣∣
∣∣
xZ
[
n−1

]
=βZ

[
n−1

]
+hK3βZ

[
n−1

]

(75)

In order to obtain the above derivations, it is required to

derive
∂N f

(
xZ
[
n−1

]
,Θ

)

∂wS
,

∂N f

(
xZ
[
n−1

]
,Θ

)

∂ρSN
,

∂N f

(
xZ
[
n−1

]
,Θ

)

∂σS

and
∂N f

(
xZ
[
n−1

]
,Θ

)

∂xZ
[
n−1

] terms via the regression function of con-

stituent RBF subnetwork. Using the regression function of
RBF network in (63–64), the above terms can be computed as

∂N f
(
xZ

[
n − 1

]
,Θ

)

∂w j
= Ψ

(
xz

[
n − 1

]
, ρ j

[
n − 1

]
, σ j

[
n − 1

])

= exp

(−‖xZ
[
n − 1

] − ρ j

[
n − 1

]‖2
σ 2
j

[
n − 1

]
)

∂N f
(
xZ

[
n − 1

]
,Θ

)

∂ρ j i
= 2 w j Ψ

(
xz

[
n − 1

]
, ρ j

[
n − 1

]
, σ j

[
n − 1

])

×
(
xi
[
n − 1

] − ρ j i
[
n − 1

]

σ 2
j

[
n − 1

]
)

∂N f
(
xZ

[
n − 1

]
,Θ

)

∂σ j
= 2 w j Ψ

(
xz

[
n − 1

]
, ρ j

[
n − 1

]
, σ j

[
n − 1

])

×
( ‖xZ

[
n − 1

] − ρ j

[
n − 1

]‖2
σ 3
j

[
n − 1

]
)

∂N f
(
xZ

[
n − 1

]
,Θ

)

∂xi
[
n − 1

] = −
S∑

j=1

∂N f
(
xZ

[
n − 1

]
,Θ

)

∂ρ j i

= −2
S∑

j=1

w j Ψ
(
xz

[
n − 1

]
, ρ j

[
n − 1

]
, σ j

[
n − 1

])
(
xi
[
n−1

]−ρ j i
[
n−1

]

σ 2
j

[
n−1

]
)

(76)

In a nutshell, derivations except for ∂ΔuR [n]
∂wS

, ∂ΔuR [n]
∂ρSN

and
∂ΔuR [n]

∂σS
terms can be successfully carried out since the ∂uR [n]

∂βZ [n]
term depends on the chosen controller structure. In the next
subsection, ∂uR [n]

∂βZ [n] term is derived for MIMO PID controller
structure.

4.3 PID-type Runge–Kutta neural network controller

PID controller has supplanted most of the controller struc-
tures in industry owing to its robustness, effectiveness
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for wide range of operating conditions and its functional
simplicity (Akhyar and Omatu 1993; Sung et al. 2009).
Implementation simplicity, good control performance and
excellent robustness to uncertainties are the main reasons for
preference of PID controllers in industry (Cetin and Iplikci
2015; Iplikci 2010a; Sung et al. 2009). The classical incre-
mental MIMO PID controller produces a control signal as
follows (Cetin and Iplikci 2015; Sung et al. 2009; Bobal et al.
2005;Wanfeng et al. 2008;Aström andHagglund 1995;Visi-
oli 2006):

u
[
n
] = f c

(
β̂[n],C in

) =
⎡

⎢
⎣

u1
[
n
]

.

.

.

uR
[
n
]

⎤

⎥
⎦

Rx1

=
⎡

⎢
⎣

u1
[
n − 1

]

.

.

.

uR
[
n − 1

]

⎤

⎥
⎦

Rx1

+ [
KP I D

]
Rx3Q

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎣

e1
[
n
] − e1

[
n − 1

]

e1
[
n
]

e1
[
n
] − 2e1

[
n − 1

] + e1
[
n − 1

]

.

.

.

eQ
[
n
] − eQ

[
n − 1

]

eQ
[
n
]

eQ
[
n
] − 2eQ

[
n − 1

] + eQ
[
n − 2

]

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎦

3Qx1

(77)

where

[
KP I D

]
Rx3Q

=

⎡

⎢⎢
⎢
⎣

KP11 KI11 KD11 KP12 KI12 KD12 · · · KP1Q KI1Q KD1Q
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. · · ·
.
.
.

.

.

.

.

.

.

KPR1 KIR1 KDR1 KPR2 KIR2 KDR2 · · · KPRQ
KIRQ

KDRQ

⎤

⎥⎥
⎥
⎦

Rx3Q

(78)

and KPrq , KIrq , KDrq , r ∈ {1 · · · R}, q ∈ {1 · · · Q} denote
the parameters of proportional, integral and derivative parts
of the controller to be tuned, respectively. In an adaptive con-
trol scheme, the initially assigned values of the controller
parameters will generally not be optimal (Iplikci 2010a);
hence, it is required to adjust the parameters via optimiza-
tion methods (Iplikci 2010a; Luenberger and Ye 2008). The
controller parameters KPrq , KIrq , and KDrq , r ∈ {1 · · · R},
q ∈ {1 · · · Q} are computed via RK-NNestimator. For this
purpose, an online RK-NN has been deployed for each con-
troller parameter since RBF network in Fig. 6 hasmulti-input
single-output structure, so parameter estimator is composed
of Rx3Q separate RK-NN identifiers. The zth parameter
of the PID controller parameters can be estimated via RK-
NNestimator as:

βZ
[
n
] = βZ

[
n − 1

] + 1

6
h

[
K1βZ

[
n − 1

] + 2K2βZ

[
n − 1

]

+ 2K3βZ

[
n − 1

] + K4βZ

[
n − 1

]] (79)

where

KmβZ

[
n − 1

] =
S∑

i=1

wiΨ
(
xZm

[
n − 1

]
, ρi

[
n − 1

]
, σi

[
n − 1

])
,

m ∈ {1, 2, 3, 4}
Ψ
(
xZm

[
n − 1

]
, ρi

[
n − 1

]
, σi

[
n − 1

])

= exp

(−‖xZm
[
n − 1

] − ρi

[
n − 1

]‖2
σ 2
i

[
n − 1

]
)

(80)

Since the parameters of the controller are estimated via RK-
NN, it is named as PID-type Runge–Kutta neural network
controller. This structure inherits both the robustness of PID
controllers and the nonlinear generalization performance of
RK-NNmethod. In MIMO PID controller, controller param-
eters and controller inputs are multiplied. Therefore, the
∂uR [n]
∂βZ [n] term is equal to the corresponding controller input
affecting the Rth control signal.

4.4 Pseudocode for proposed adjustment
mechanism

The pseudocode of the proposed adjustment mechanism
algorithm is given step by step as follows. In the control
procedure given below, u−[n] stands for the control signal
predicted with controller parameters obtained at the previ-
ous step and u+[n] denotes the control signal estimated with
trained controller parameters at the current step.

Step 1: Initialization.
-Initialize RK-NNestimator, RKEKF and RKmodel parame-
ters.
Step 2: Prediction step for parameter estimator ( Θ−)
-Set time step n.
- Calculate the approximated controller parameters β̂ by
RK-NNestimator (Θ−) trained at previous step (n− 1) via
(66).
Step 3: Computation of control signal (u[n]−)
-Calculate the control signal u[n]− via (65).
Step 4: Runge–Kutta model-based EKF (Prediction
Phase)
-Apply candidate control signal (u−[n]) once to Runge–
Kutta model-based EKF to obtain current states via (27–
36) ˜x[n] = [

x̃1[n] · · · x̃N [n]]
Step 5: Runge–Kutta model-based Parameter Estimation
(Prediction Phase)
-Deploy model parameters obtained at current step (n)
θn .
Step 6: Runge–Kutta Model of the system (Prediction
Phase)
-Apply candidate control signal (u−[n]) K-times to
Runge–Kutta model using estimated states (x̃[n]) and
estimated model parameters (θn) so as to;
6.1 Obtain K-step ahead future behaviour of the system
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Fig. 7 Three-tank system
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DC DC
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dynamics and prediction errors vector via (45–49, 70)
6.2 Compute objective function given by (2)
If F

(
u[n], êtq

)
> εclosed−loop

Jump to next substep 6.3.
else
Continue with RK-NNestimator parameter trained at pre-
vious step and jump to step 10
end
6.3 Obtain K-step ahead Jacobian of the system via (50–
55) which is required to construct Jacobian matrix for
RK-NNestimator

6.4 Construct Jm via (11) and compute the correction
term δu[n] for control action via (13)
Step 7: Construction of Jacobian matrix for zth RK-
NNestimator

-Constitute the Jacobian matrix in (69) for zth RK-
NNestimator via (71–76) and K- step ahead Jacobian of
the system via (50–55) which is attained at step 6.
-Perform the above operation for all RK-NNestimator’s.
Step 8: Training phase for RK-NNestimator’s (Θ)
(Levenberg–Marquardt Algorithm)
-Adjust the networkparameters of the allRK-NNestimators
via (68)
Step 9: Prediction step for parameter estimator (Θ)
- Calculate the approximated controller parameters β̂ by
RK-NNestimator trained at step 8 (Θ) via (66).
Step 10: Computation of control signal (u+[n]) using
trained controller parameter
-Calculate the control signal u[n] via (65)
Step 11: Control of Real System
- Apply the control action (u+[n] + δu[n]) to the real
system and obtain real system states and system outputs
Step 12: Runge–Kutta model-based Parameter Estima-
tion (Training Phase)

-Obtain Jθ via (38, 40–44) and e via (39)
-Update system model parameters via Runge–Kutta
model-based Parameter Estimation block as θ[n + 1] =
θ [n] − JT

θ
e

JT
θ
Jθ

given in (37).

Step 13: Incrementation of time step
-Increment n = n + 1 and back to step 2.

5 Simulation results

The performance of the proposed Runge–Kutta neural
network-based adjustment mechanism with adaptive PID is
examined on nonlinear three-tank system (TTS) and Van de
Vusse System. Nonetheless, a diverse range of nonlinear sys-
tems can be controlled and fundamental control problems
that frequently appear in practice such as nonlinearity and
instability can be solved via the proposed adjustment mech-
anism.

5.1 Three-tank system

The three-tank system (TTS) is frequently employed in tech-
nical literature as a MIMO nonlinear system so as to peruse
and compare the performances of proposed control method-
ologies for MIMO systems (Iplikci 2013; Cetin and Iplikci
2015; Iplikci 2010b). A three-tank system is a tank system in
which three ideal cylindrical tanks are serially interconnected
to each other. The schematic diagram of the TTS is illustrated
in Fig. 7. The system is composed of three interconnected
cylindrical tanks, two pumps, valves between tanks andwater
reservoir in the bottom. The water at the bottom of the reser-
voir is pumped to tank 1 and tank 2 via pump 1 and pump
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Table 1 System parameters for
three-tank system

Parameter description Value

az13: outflow coefficient between tank 1 and tank 3 0.52

az32: outflow coefficient between tank 3 and tank 2 0.55

az10: outflow coefficient from tank 1 to reservoir 0.26

az20: outflow coefficient from tank 2 to reservoir 0.28

az30: outflow coefficient from tank 3 to reservoir 0.45

A: cross section of the cylinders 0.15 (m2)

Sn : section of connection pipe n 5 × 10−5 (m2)

g: gravitation coefficient 9.81 (m/s2)

2, respectively. The differential equations describing the
dynamic behaviour of the system are expressed as follows:

ẏ1 = 1

A

[
u1

(
t
) − Q13

(
t
) − Q10

(
t
)]

ẏ2 = 1

A

[
u2

(
t
) + Q32

(
t
) − Q20

(
t
)
]

ẏ3 = 1

A

[
Q13

(
t
) − Q32

(
t
) − Q30

(
t
)]

(81)

where

Q13
(
t
) = az13 Sn sgn

(
y1
(
t
) − y3

(
t
))√

2g|y1
(
t
) − y3

(
t
)|

Q32
(
t
) = az32 Sn sgn

(
y3
(
t
) − y2

(
t
))√

2g|y3
(
t
) − y2

(
t
)|

Q10
(
t
) = az10 Sn

√
2g|y1

(
t
)|

Q20
(
t
) = az20 Sn

√
2g|y2

(
t
)|

Q30
(
t
) = az30 Sn

√
2g|y3

(
t
)| (82)

and ui
(
t
)
is the supply flow rate of the i th pump as the i th

input, yi
(
t
)
is the liquid level of the i th tank as the i th output

and Q ji
(
t
)
is the flow rate between tank j and i (Iplikci 2013;

Cetin and Iplikci 2015; AMIRA 2009). The descriptions of
the symbols and their numerical values in Fig. 7 and (81, 82)
are tabulated in Table 1. In the closed-loop TTS control prob-
lem, the aim is to independently keep the liquid levels of tank
1 and tank 2 at the desired levels by adjusting the flow rates
of pump 1 (u1

(
t
)
) and pump 2 (u2

(
t
)
) within allowed inter-

vals (Iplikci 2013; Cetin and Iplikci 2015; AMIRA 2009;
Theilliol et al. 2002). Therefore, y1

(
t
)
and y2

(
t
)
are the

controlled outputs of the system, while u1
(
t
)
and u2

(
t
)
are

control inputs. The third output of the system (y3
(
t
)
), in

the middle tank, is uncontrollable (Theilliol et al. 2002). In
the simulations, sampling time is chosen as Ts = 1sec and
the limitations for the magnitude of the control signal are
u1min = u2min = 0m3/s and u1max = u2max = 10−4m3/s
(Iplikci 2013). The continuation period of control signals is

kept constant at τ1min = τ2min = τ1max = τ2max = Ts = 1.0
sec. Since states of the system may not be available for
measurement, Runge–Kutta-basedEKF is utilized to approx-
imate the dynamic behaviour of the states (Iplikci 2013).
Simulations have been performed for three separate cases:

1) Nominal case with nomeasurement noise and parametric
uncertainty

2) Measurement noise is added to the controlled outputs of
the system

3) Parametric uncertainty is imposed on a systemparameter.

For all cases, the number of the neurons in RBF networks
(S) is chosen as 2 and input vectors are settled as X z =[
βz

[
n − 1

]
βz

[
n − 2

]]T for all controller parameters. The
prediction horizon is assigned as K = 5.

5.1.1 Nominal case with no noise and parametric
uncertainty

The tracking performance of the controller for the case when
no noise and parametric uncertainty is applied to the system
and all system parameters are fully known is illustrated in
Fig. 8a, d for staircase reference signals. The control sig-
nals produced by MIMO PID controller and the correction
terms are also given in Fig. 8b, c, e, f. It is seen that the
system outputs can be successfully derived to the desired
reference inputs. As can be explicitly seen from Fig. 8, the
control task can be carried off by only small transient and
steady-state error. In addition, while the second reference
(r2

(
t
)
) signal is fixed at 0.15 m, the first reference signal is

changed between 0-800 sec in a stepwise fashion. The fluc-
tuation in tank 1 interacts with tank 2 through tank 3. If the
behaviour of the system outputs and control signals between
0-800 sec are attentively examined, it can be explicitly seen
that the controller effectively overcomes and rejects the cou-
pling between the tank 1 and 2. The MIMO PID controller
parameters are depicted in Figs. 9 and 10. In order to exem-
plify the inner learning mechanism of the RK-NNestimator,
convergence of the weights of Kd11 controller parameter to
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(d)

(e)

(f)(c)

(b)

(a)

Fig. 8 System outputs (a, d), control signals (b, e) and correction terms(c, f) of three-tank system for the nominal case with no measurement noise
and parametric uncertainty (staircase reference inputs)

(d)

(e)

(f)(c)

(b)

(a)

Fig. 9 MIMO PID controller parameters for three-tank system

123



A Runge–Kutta neural network-based control method for nonlinear MIMO systems 7789

(d)

(e)

(f)(c)

(b)

(a)

Fig. 10 MIMO PID controller parameters for three-tank system

their optimal values depending on alternation on reference
signals is illustrated in Fig. 11. In Fig. 11, it is palpably seen
that the RK-NNestimator can adapt itself so as to learn the
required controller dynamics forcing the outputs of the sys-
tem to reference signals. The performance of the controller
for sinusoidal reference signals is depicted in Fig. 12. As
can be seen from Fig. 12, the controller tracks the sinusoidal
reference inputs accurately.

5.1.2 Measurement noise

In order to evaluate the performance and robustness of the
controller under the influence ofmeasurement noise, an addi-
tive zeromeanGaussian noiseswithσ

y1
(
t
) = σ

y2
(
t
) = 0.003

standard deviations are added to themeasured controlled out-
puts of the system(y1

(
t
)
, y2

(
t
)
). The tracking performance

and control inputs produced by the controller are depicted in
Fig. 13. As can be seen from Fig. 13, although there exists
measurement noise, the control task can be carried off by only
small transient and steady-state errors, and it is observed that
the controller accurately tracks the desired reference signals.

5.1.3 Uncertainty in system parameters

In RK model-based control, it is difficult to obtain RK
model parameters accurately, which directly affects the con-

trol performance of the model-based controller. Therefore,
it is crucial that the adjustment mechanism subsumes the
model parameter estimator. As can be seen from Fig. 2, the
controller structure has Runge–Kutta-based model parame-
ter estimation block. Finally, in this subsection, the model
parameter estimation performance and also tracking perfor-
mance of the proposed adjustment mechanism are examined.
For this purpose, the desired reference signals are assigned
as 0.25 and 0.2 m for tank 1 and tank 2, respectively,
and the outflow parameter az13 is selected as the uncer-
tain system parameter, which varies as az13 = 0.52 +
0.28sin

(
0.0133π t

)
. The tracking performance of the con-

troller structure for the uncertainty in system parameter case
is illustrated in Fig. 14. As can be seen from Fig. 14e, the pro-
posedRunge–Kutta-basedmodel parameter estimation block
accurately approximates the correct values of the uncertain
parameter in a timely manner and then maintains it in the
long run (Iplikci 2013).

5.2 Van deVusse chemical reaction

The second nonlinear benchmark system to query the effec-
tiveness of the proposed adaptive controller is Van de Vusse
chemical reaction. In nonlinear control theory, Van de Vusse
chemical reaction has ofttimes been deployed as a non-
linear benchmark problem to assess the performances of
developed adaptive control methodologies since the uncon-
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Fig. 11 Adaptation of RK-NNestimator parameters for Kd11 controller parameter (three-tank system)

trolled equations of this system are highly nonlinear, the
system is a non-isothermal process affected by thermal effect,
and the resulting system shows strictly non-minimum-phase
behaviour (Iplikci 2013). It is required to control the sys-
tem actively in order to hinder divergent behaviour since
the system involves severe nonlinearity with strong coupling
between its dynamics. The chemical reaction mechanism
attributed to Van de Vusse is described by the following reac-
tion scheme.

A
k1−→ B

k2−→ C

2A
k3−→ D

(83)

where A is the inlet reactant, B is the desired product, C
and D are unwanted by products and ki ’s denote the reac-
tion rates (Chen et al. 1995; Engell and Klatt 1993; Vojtesek
and Dostal 2010; Nørregard 2007; Kulikov and Kulikova
2014). The reaction considered in ( 83) is the production

of cyclopentenol (B) from cyclopentadiene (A) by acid-
catalyzed electrophilic addition of water in dilute solution
(Engell and Klatt 1993). As a result of the strong reactivity
of the cyclopentadiene (A) and the cyclopentenol (B), dicy-
clopentadiene (D) is produced by Diels–Alder reaction as
a side product, and cyclopentanediol (C) as a consecutive
product by addition of another water molecule (Engell and
Klatt 1993). The complete reaction scheme is

C5H6
Cyclopentadiene(A)

+H2O(k1)−→ C5H7OH
Cyclopentenol(B)

+H2O(k2)−→ C5H8
(
OH

)
2

Cyclopentanediol(C)

2C5H6
Cyclopentadiene(A)

k3−→ C10H12
Dicyclopentadiene(D)

(84)

The differential equations describing the mole balances for
species A and B, and the energy balance for the reactor given
to realize the chemical reaction scheme in (83–84) are given
as follows:
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Fig. 12 System outputs (a, d), control signals (b, e) and correction terms (c, f) of three-tank system for the nominal case with no measurement
noise and parametric uncertainty (sinusoidal reference inputs)

Fig. 13 System outputs (a, d), control signals (b, e) and correction terms (c, f) of three-tank system for case with measurement noise (staircase
reference inputs)
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Fig. 14 System outputs (a, c), control signals (b, d) and uncertain outflow parameter (az13
(
t
)
) (e) and its estimation for the case with parametric

uncertainty (Three-tank system)

ĊA
(
t
) = F

V

(
CA0 − CA

(
t
)
)

− k10e
−E1
T CA

(
t
) − k30e

−E3
T C2

A

(
t
)

ĊB
(
t
) = − F

V
CB

(
t
) + k10e

−E1
T CA

(
t
) − k20e

−E2
T CB

(
t
)

Ṫ
(
t
) = 1

ρCp

[
k10e

−E1
T CA

(
t
)( − ΔH1

) + k20e
−E2
T CB

(
t
)( − ΔH2

)

+k30e
−E3
T C2

A

(
t
)( − ΔH3

)
]

+ F

V

(
T0 − T

(
t
)) + Q

ρCp
(85)

where CA and CB are the molar concentrations of A and B,
T is the reactor temperature, F/V is the dilution rate and Q
is the rate of the heat added or removed per unit volume, Cp

and ρ are the heat capacity and density of the reacting mix-
ture, respectively, ΔHi are the heats of the reaction and E
are activation energies (Iplikci 2013; Vojtesek and Dostal
2010; Niemiec and Kravaris 2003; Kravaris et al. 1998).
The descriptions and values of the physical and chemical
parameters are given in Table 2 (Iplikci 2013; Chen et al.
1995; Niemiec and Kravaris 2003; Kravaris et al. 1998). In
the closed-loop system, it is aimed to independently control
the molar concentration of B (y1 = CB) and the tempera-
ture of the reactor (y2 = T ) by adjusting the dilution rate
(u1 = F/V ) and the rate of heat added or removed per unit
volume (u2 = Q) within allowed intervals (Iplikci 2013;
Niemiec and Kravaris 2003). In the simulations, sampling
time is assigned as Ts = 0.01h and the allowable limits

for the magnitude of the control signals are u1 = [0, 500]
h−1 and u2 = [−1000, 0] kJ/l h (Iplikci 2013). The con-
tinuation period of the control signals is kept constant at
τ1min = τ2min = τ1max = τ2max = Ts = 0.01 h. The per-
formance of the closed-loop system has been examined for
three separate cases:

1) Nominal case with nomeasurement noise and parametric
uncertainty

2) Measurement noise is added to the controlled output of
the systems

3) Parametric uncertainty is imposed on a systemparameter.

For all cases, the number of the neurons in RBF networks
(S) is chosen as 2 and input vectors are settled as X z =[
βz

[
n − 1

]
βz

[
n − 2

]]T for all controller parameters. The
prediction horizon is assigned as K = 5.

5.2.1 Nominal case with no noise and parametric
uncertainty

The control performance for the casewhen no noise and para-
metric uncertainty is applied to the system and all system
parameters are fully known is depictured in Fig. 15a, d for
staircase reference signals. The system tracks the reference
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Table 2 Physicochemical
parameters for Van de Vusse
(Iplikci 2013; Chen et al. 1995;
Kravaris et al. 1998)

Description of parameter Symbol Value of parameter

Collision factor for reaction k1 k10 1.287 × 1012 (h−1)

Collision factor for reaction k2 k20 1.287 × 1012 (h−1)

Collision factor for reaction k3 k30 9.043 × 109 (h−1l/mol)

Activation energy for reaction k1 E1 9758.3 (K)

Activation energy for reaction k2 E2 9758.3 (K)

Activation energy for reaction k3 E3 8560.0 (K)

Enthalpies of reaction k1 ΔH1 4.2 (kJ/mol)

Enthalpies of reaction k2 ΔH2 −11 (kJ/mol)

Enthalpies of reaction k3 ΔH3 −41.85 (kJ/mol)

The concentration of A in the feed stream CA0 5.0 (mol/l)

Feed temperature T0 403.15 (K)

Density ρ 0.9342 (kg/l)

Heat capacity Cp 3.01 (kJ/kgK)

Reactor volume V 10 (l)

Fig. 15 System outputs (a, d), control signals (b, e) and correction terms (c, f) of Van de Vusse system for the nominal case with no measurement
noise and parametric uncertainty (staircase reference inputs)

signalswith very small steady-state errors except for transient
states occurring as a result of the abrupt changes on reference
signals. The control signals and correction terms are shown
in Fig. 15b, c, e, f as well. As can be seen from control signals
produced especially between [10, 20] and [30, 40] h, the con-
troller successfully tolerates the strong coupling betweenCB

and reactor temperature (T ). The alternation of the MIMO

PID controller parameters are illustrated in Figs. 16 and 17.
The inner learningmechanismof theRK-NNestimator is exem-
plified in Fig. 18 for theweights of controller parameter Kd11 .
In order to appraise the performance of the controller for
sinusoidal reference signals, while the reactor temperature is
chosen as constant during control, CB is forced to change
sinusoidally as given in Fig. 19. As can be seen from Fig. 19,
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the controller tracks the sinusoidal reference inputs accu-
rately.

5.2.2 Meaurement noise

It is required to evaluate the performance of the controller
with respect to measurement noise since systems can gen-
erally be exposed to noise resulting from measurement
mechanisms. For this purpose, zero mean Gaussian noises
with σ

CB

(
t
) = σ

T
(
t
) = 0.0003 standard deviations for

CB and for T are added to the measured outputs of the
system(y1

(
t
)
, y2

(
t
)
). The tracking performance of the con-

troller for the noisy case is given in Fig. 20a, d. The control
signals and correction terms are illustrated in Fig. 20b, c, e, f.
It is observed that the controller accurately tracks the desired
reference signals as given in Fig. 20 for the case where mea-
surement noise is added.

5.2.3 Uncertainty in system parameters

In order to examine the adaptation ability of the proposed
mechanism for parametric uncertainty case, CA0

(
t
)
param-

eter, which varies as CA0
(
t
) = 5 + 0.5sin

(
0.2π t

)
, is

chosen as an uncertain time-varying parameter while the
desired reference signals are assigned as 0.95 and 407.25
for CB

(
t
)
and T , respectively. The model parameter esti-

mation performance and also tracking performance of the
proposed adjustment mechanism are depicted in Fig. 21.
As can be seen from Fig. 21e, the proposed Runge–
Kutta-based model parameter estimation block accurately
approximates the correct values of the uncertain parameter
in a timely manner and then maintains it in the long run
(Iplikci 2013).

5.3 Computation times

The applicability potential of the proposed mechanism in
real-time applications is as crucial as its closed-loop tracking
performance. Therefore, in order to evaluate the applicability
of the proposed RK-NNestimator in real-time systems, com-
putation times of each operation in the control algorithm
have been registered for each case during every sampling
period, and the maximum response times of the each oper-
ation have been tabulated in Table 3. Since the sampling
times for three-tank system and Van de Vusse systems are 1
sec and 0.01 hour, respectively, and the maximum response
times of the proposed controller for both systems are less
than 35 ms, it can be rendered that RK-NNestimator can be
conveniently deployed in real-time applications. Moreover,
computation time of RK-NNestimator can be minimized by
optimizing the control algorithm and implementing it utiliz-
ing effective hardwares such as FPGA. In simulations, a PC

with 2.2 GHz core i7 CPU and 8 GB RAM has been uti-
lized to implement the control algorithm and codes are not
optimized.

5.4 Comparison with Runge–Kutta model-based PID

The performance of the proposed controller has been com-
paredwithRunge–Kuttamodel-basedPIDproposed byCetin
and Iplikci (2015). The main difference between controller
structures is that the dynamics of the PID parameters can
be identified mathematically in the proposed RK-NN struc-
ture whereas the PID parameters in Cetin and Iplikci (2015)
are updated incrementally and can not be mathematically
obtained. The parameters of the controller in Cetin and
Iplikci (2015) are adjusted using Levenberg–Marquardt opti-
mization algorithm. K-step ahead future system Jacobian
information which is required to construct Jacobian Matrix
deployed in Levenberg–Marquardt algorithm is attained
usingRunge–Kutta systemmodel. The tracking performance
of the Runge–Kutta model-based PID controller for three-
tank system in all cases is illustrated in Figs. 22, 23 and 24.As
can be seen from Fig. 23b, e, if the control signals in Figs. 12
and 23 are compared, the control signals produced by the
proposed RK-NN-based PID are more realizable since RK
model-based PID has more chattering. The tracking perfor-
mance of the controller structure for the uncertainty in system
parameter case is shown in Fig. 24. The tracking performance
of the Runge–Kutta model-based PID controller for Van de
Vusse system in all cases is depictured in Figs. 25, 26 and
27. The model parameter estimation performance and track-
ing performance of the RKmodel-based PID mechanism are
illustrated in Fig. 27.

The performances of the controllers are compared using
the following performance index in Tables 4 and 5:

Pq =
t f∑

n=1

[
rq
[
n
] − yq

[
n
]]2

, q ∈ {1, 2} (86)

where t f is the final time index. As a consequence, it is
clearly seen that the tracking performance of the proposed
adjustmentmechanism (RK-NN-based PID) is generally bet-
ter than RK model-based PID proposed in Cetin and Iplikci
(2015).

6 Conclusion

In this paper, a novel adaptive control architecture is intro-
duced where Runge–Kutta integration method is deployed
both in the controller parameter estimator and the system
identification blocks. The main novelty of this paper is that
the parameters of the any nonlinear controller can be iden-
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(d)(a)

(b)

(c)

(e)

(f)

Fig. 16 MIMO PID controller parameters for Van de Vusse system

(a)

(b)

(c) (f)

(e)

(d)

Fig. 17 MIMO PID controller parameters for Van de Vusse system
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Fig. 18 Adaptation of RK-NNestimator parameters for Kd11 controller parameter for Van de Vusse system

Table 3 Computation times (ms) for proposed controller

Systems Three-tank system Van de Vusse

Operations Noiseless Noisy Uncertain Noiseless Noisy Uncertain

EKF state estimation 0.9083 1.0221 0.57008 0.75995 1.5073 1.3501

K-step prediction 1.7219 2.6969 1.3193 1.065 1.9113 2.1497

RK-NNestimator Training (LM) 14.5846 25.7949 14.7273 15.4252 27.0363 29.9557

Controller law 0.40633 1.8707 0.3107 0.48984 3.079 0.89944

RK-based model parameter

Estimator training – – 0.52389 – – 1.0399

Miscellaneous tasks 0.15721 0.21506 0.090503 0.26964 0.46185 0.26125

Total loop time 17.1056 29.3628 16.6937 16.8448 32.3247 34.5257
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(d)

(e)

(f)(c)

(b)

(a)

Fig. 19 System outputs (a, d), control signals (b, e) and correction terms (c, f) of Van de Vusse system for the nominal case with no measurement
noise and parametric uncertainty (sinusoidal reference input)

Fig. 20 System outputs (a, d), control signals (b, e) and correction terms (c, f) of Van de Vusse system for case with measurement noise (staircase
reference inputs)
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(a)

(b) (d)

(e)

(c)

Fig. 21 System outputs (a, c), control signals (b, d) and uncertain system parameter (CA0
(
t
)
) (e) and its estimation for the case with parametric

uncertainty (Van de Vusse system)

(a)

(b)

(c) (f)

(e)

(d)

Fig. 22 System outputs (a, d), control signals (b, e) and correction terms (c, f) of three-tank system for the nominal case with no measurement
noise and parametric uncertainty (staircase reference inputs) (RK model-based PID)
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(a)

(b)

(c) (f)

(e)

(d)

Fig. 23 System outputs (a, d), control signals (b, e) and correction terms (c, f) of three-tank system for the case with measurement noise (staircase
reference inputs) (RK model-based PID)

(a)

(b)

(e)

(d)

(c)

Fig. 24 System outputs (a, c), control signals (b, d) and uncertain outflow parameter (az13
(
t
)
) (e) and its estimation for the case with parametric

uncertainty (Three-tank system) (RK model based PID)
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(a)

(b)

(c) (f)

(e)

(d)

Fig. 25 System outputs (a, d), control signals (b, e) and correction terms (c, f) of Van de Vusse system for the nominal case with no measurement
noise and parametric uncertainty (staircase reference inputs) (RK model-based PID)

(d)

(e)

(f)(c)

(b)

(a)

Fig. 26 System outputs (a, d), control signals (b, e) and correction terms (c, f) of Van de Vusse system for the case with measurement noise
(staircase reference inputs) (RK model-based PID)
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(d)

(e)

(c)(a)

(b)

Fig. 27 System outputs (a, c), control signals (b, d) and uncertain system parameter (CA0
(
t
)
) (e) and its estimation for the case with parametric

uncertainty (Van de Vusse system) (RK model based PID)

Table 4 Tracking performance
comparison for P1 in (86)

Systems Three-tank system Van de Vusse

Controllers Noiseless Noisy Uncertain Noiseless Noisy Uncertain

RK-NN-based PID 0.1253 0.1584 1.4157 1.3338 2.7958 0.9562

RK model-based PID 0.2152 0.2358 1.4118 3.3539 15.0886 8.7319

Table 5 Tracking performance
comparison for P2 in (86)

Systems Three-tank system Van de Vusse

Controllers Noiseless Noisy Uncertain Noiseless Noisy Uncertain

RK-NN-based PID 0.2915 0.3026 0.6411 20.3835 9.2205 17.8882

RK model-based PID 0.2952 0.3032 0.6304 11.1640 49.7886 11.1324

tified as mathematical expressions for nonlinear systems.
The adjustment mechanism is composed of two main blocks
based on Runge–Kutta method: RK-NNestimator to identify
and compute the controller parameters and RKmodel to reveal
the K-step ahead future dynamical behaviour of the con-
trolled system. RK-NNestimator inherits the powerful features
of RBF neural network structure and Runge–Kutta integra-
tion method. Levenberg–Marquardt update rule is deployed
to adjust the network parameters of RK-NNestimator. RKmodel

embodies three subblocks: RK raw system model deployed
to extract gradient information required for Jacobian calcu-

lation; RK-based model parameter estimator employed for
online estimation of time-varying parameters of the system
and RK-based EKF utilized to approximate the unmeasur-
able states of the controlled system.

The performance evaluation of the proposed control
method (or architecture) is carriedout onnonlinear three-tank
system and Van de Vusse benchmark system. The robustness
of the controllers has also been examined for the noise-
less, measurement noise and parametric uncertainty cases.
Additionally, the performance of the controller has been
compared with Runge–Kutta model-based PID controller.
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The results indicate that the proposed adaptation mecha-
nism for nonlinear MIMO systems accomplishes successful
tracking performance as well as good noise rejection and
high toleration to parametric uncertainties. In future works,
it is planned to extend Runge–Kutta numerical integration
method to develop new Runge–Kutta-type adaptive con-
troller design methods for nonlinear MIMO systems.
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