
J. APIC. SCI.  Vol. 64 No. 2 2020J. APIC. SCI.  Vol. 64 No. 2 2020

229

SUCCESS OF SELECTION IN TERMS OF HYGIENIC BEHAVIOR IN 

STRUGGLE AGAINST DWV AND VARROA
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A b s t r a c t
Many studies have reported sudden and large-scale losses in honey bee colonies. There 
is no precise explanation for this happening, but it may be caused by the interaction of 
pathogenic viruses and ectoparasite Varroa destructor. Deformed-wing virus (DWV) is 
common in Apis mellifera L. and has been implicated in worldwide Varroa-associated colony 
losses. Hygienic behavior may be one of the ways that limit V. destructor infestation level 
and DWV load. The purpose of this research was to determine whether the selection of 
higher hygienic behavior is effective against V. destructor and DWV. Workers and pupae 
of A. m. anatoliaca were collected from colonies showing four generations of hygienic 
behaviodr, and non-hygienics were used as a control. Loads of DWV were investigated 
by one-step RT-qPCR, and the bottom-board method was used to allow mites count. 
The prevalence of DWV in pupae were higher in hygienic colonies (69.0%, average viral 
load 234.38) than control colonies (60.8% average viral load 937.70). However, the 
prevalence of worker bees infected with DWV was lower in hygienic colonies (41.3%, 
average viral load 181627.69) than in control’s (66.0%, average viral load 241982.35). 
Although the averages of the Varroa counts were significantly different for both hygienic 
(28.92) and control colonies (108.90), we could not find any correlation between DWV 
loads of both workers and pupae in this study. When all these results are evaluated, the 
selection performed in terms of hygienic behavior can said to have been said successful 
against DWV.
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INTRODUCTION

The Honey bee (Apis mellifera L.) is the most 
important pollinator for the scientific world 
because of its role in pollination (Ryabov et al., 
2014; McMenamin & Genersch, 2015; Tantillo 
et al., 2015) and they produce such economi-
cally important products as honey, wax, pollen, 
propolis, royal jelly and bee venom (Popovska 
et al., 2018; Sforcin, Bankova, & Kuropatnicki, 
2017).
Hygienic behavior is a potential struggle 
mechanisms against V. destructor (Boecking, 
Bienefeld, & Drescher, 2000; Ibrahim & Spivak, 
2006), a resistance mechanism against viruses 

or mites and a natural response of workers’ 
(Harbo & Harris, 2001; Cheruiyot et al., 2018), and 
is also a heritable trait, not a learned behavior 
(Al Toufailia et al., 2018). Resistant honey bees 
remove mites from the brood before bees are 
infected with the diseases (Gramacho & Spivak, 
2003; Al Toufailia et al., 2018), and over the 
last five decades this trait has been exten-
sively studied and improved in several research 
and breeding programs (Spivak 1996; Harbo & 
Harris, 2001). Breeding programs have shown 
that selection for a specific trait might also 
impact other traits. For example, Ibrahim et al. 
(2007) found fewer mites in hybrid honey bee 
colonies (hygienic “HYG” X suppression of mite 
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reproduction “SMR”) compared to HYG colonies 
but no difference in the fertility and number of 
viable female offspring among the lines. These 
results suggest that breeding for SMR may 
improve multiple traits rather than just hygienic 
behavior. On the other hand, it was reported 
that bees raised for SMR show hygienic behavior 
and adult bees selectively remove infected 
pupae (Ibrahim & Spivak, 2006).  However, the 
benefits of improving hygienic behavior have 
yet to be clarified along with whether there are 
any costs associated with the trait at the colony 
level (Leclercq et al., 2017). This is also a source 
of concern primarily for honey-trading countries 
including Turkey. For over ten years, there have 
been numerous reports of significant losses of 
honey bee colonies in  twenty-four worldwide 
(Neumann & Carreck, 2010; Spleen et al., 2013; 
Steinhauer et al., 2014; McMenamin & Genersch, 
2015) including Turkey (Giray et al., 2007; van 
der Zee et al., 2012; Desai, Kumar, & Currie, 
2016), and the latest and  unresolved crisis 
has been associated with bee viruses, including 
DWV (Organtini et al., 2017), reported up to (de 
Miranda, Cordoni, & Budge, 2010; Remnant et 
al., 2017). Viruses considerably affect the health 
of honey bees and shorten their lifespan by 
infecting the different life stages including eggs, 
larvae, pupae and adults (Chen & Siede, 2007) 
and also can be transmitted  vertically or horizon-
tally  between colony members in a short time 
(Chen, Evans, & Feldlaufer, 2006). V. destructor 
is the most harmful parasite for A. mellifera 
(Solignac et al., 2005), although its natural host 
is Apis cerana (Le Conte, Ellis, & Ritter, 2010). Im-
portantly, honey bee viruses and V. destructor 
are often thought to be related to colony losses 
in recent years (Le Conte, Ellis, & Ritter, 2010). 
In the absence of V. destructor, many viruses of 
honey bee cause latent infections which have 
no clinical symptoms in infected bees or colonies 
(Gisder, Aumeier, & Genersch, 2009; de Miranda 
& Genersch, 2010) because of a viral vector. The 
presence of V. destructor is associated not only 
with the prevalence but also with the course of 
DWV infection (Francis, Nielsen, & Kryger, 2013), 
and in its absence the virus usually cause latent 
infection (Lanzi et al., 2006; Yue et al., 2007; 

McMenamin et al., 2018) due to its synergy with 
V. destructor (Chen & Siede, 2007; Simeunovic 
et al., 2014; Ryobov et al., 2014; Khongphinit-
bunjong et al., 2015; Di prisco et al., 2016; Nazzi 
& Pennacchio, 2018; Evans & Cook, 2018). 
Although several diagnostic techniques have 
been used to detect honeybee viruses, it is 
very difficult or impossible to differentiate 
and quantify virus infections through field 
symptoms (Desai, Kumar, & Currie, 2016). 
Reverse transcriptase-quantitative PCR 
(RT-qPCR), which is 1000 times more sensitive 
than ELISA and 100 times more sensitive than 
conventional non-nested RT-PCR (de Miranda, 
Cordoni, & Budge, 2010), can be rapidly imple-
mented in independent laboratories after the 
preparation of primary protocol and primer 
sequences (Simeunović et al., 2014). RT-qPCR 
has been preferred more recently with TaqMan 
(Cirkovic et al., 2018) due to highly reliable, 
fast and accurate results (Chantawannakul et 
al., 2006) even if a little bit expensive. In the 
present study, we investigated the success of 
the selection in terms of hygienic behavior in 
the struggle against DWV and Varroa in colonies 
which are under breeding programmes for 
hygienic behavior.

MATERIAL AND METHODS

Sample collection 
Sampling was carried out during April 2017 in 
Muğla-Fethiye-İncirköy which is located at 601 
meters above sea level in the south-western 
region of Turkey. This area was isolated for 
breeding Muğla honey bees to study hygienic 
behavior. The hygienic bee breeding programe 
has been carried out using the pin test (Newton 
& Ostasiewski, 1986) and artificial insemination 
according to Laidlaw & Page (1997) since 2013 
by the Muğla Beekeping Association. Samples 
were provided from fifty hygienic colonies 
(Oskay et al., 2019), and fifty non-hygienic 
colonies, which were used as the control, and 
is Muğla honey bees ecotype (A. m. anatoliaca) 
from this isolated area. The colonies were  
crowded with  both forager and nursing bees, as 
there was intense nectar and pollen flow due to 
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spring season, and they did not have symtoms 
of any disease.  Ten worker bees and ten sealed 
pupa samples as a representative for colonies 
were taken for numbered sterile tubes from 
each colony. All samples were stored at -80°C 
until further analysis.

Quantifying hygienic behavior
For the first three years starting in 2012, the 
hygenic bee breeding program was conducted 
as a project supported by by Republic of Turkey 
Ministry of Agriculture and Forestry General 
Directorate of Agricultural Research and 
Policies (Oskay et al., 2019). After the project 
was completed, the breeding program was 
carried out by Muğla Beekeeping Association 
(MAYBIR). Colonies were evaluated twice for 
hygienic behavior in April each year. Because 
cold nitrogen was not easily found in land 
conditions far from the city center, the pin-killed 
brood (PKB) assay was preferred to determine 
the hygienic feature levels of all the colonies 
in this program. The breeding program started 
with two-hundred colonies in an area closed to 
other bekeepers far away from the city center 
in order (Oskay et al., 2019). During the tests, 
11- to 15-day-old individuals in the pupae period 
in 100 eyes in the hatching frames were killed 
by Pin and kept in hives for twenty-four hours. 
At the end of this period, colonies where worker 
bees cleaned 95% or more of the dead pupae 
from the eyes were determined. Hygienic 
behavior increased in the population from 43% 
in 2012; 63% in 2013; 91.7% in 2014 to 96.8% 
in 2015 (Oskay et al., 2019). The samples were 
collected in 2017, and MAYBIR announced the 
hygenic behavior ratio as 97% from. Anti-varroa 
treatment by Rulamit VA (seven doses of smoke 
were pressed from the flight hole of each hive) 
was applied in early or mid February according 
to seasons in the Hygenic breeding programme 
and repeated three times with a three-day 
interval in November and February.

Determination of Varroa Mites 
To determine the varroa loads of sampled 
colonies, the bottom board method was used 
(Dietemann et al., 2013).  After applying acaraside 

(rulamit-containing incense), mites dropped to 
white sheets of paper that laid on the bottom 
board in the hygienic and non-hygienic hives. 
The sheets were collected, sealed in plastic bags 
and brought to the laboratory. The mites were  
counted using a magnifying glass and saved in 
the laboratory.

Total RNA extraction
Total RNAs of each bee and pupae were 
extracted using high pure viral nucleic acid 
kit version 19 (Roche, Switzerland) according 
to the manufacturer’s protocol. Ten worker 
bees and ten pupae samples from each colony 
were extracted separately as a bulk. Each 
bulk sample was crushed by a hand drill and 
homogenized in a 5 ml microcentrifuge tube. 
Then the RNA was extracted, and the samples 
were measured using the BioDropDuo (BioDrop 
Ltd, UK) and checked using gel electrophoresis 
(Reliant Gel systems). The RNA samples found 
to be sufficient in terms of quality and quantity 
ranging from 239.20 ng/ul to 343.30 ng/ul from 
hygienic (worker=46 and pupa=42) and non-hy-
gienic (worker=50 and pupa=46) colonies were 
stored at -80°C until further use.

Reverse Transcriptase-qPCR
For reverse transcription, one-step RT-qPCR 
(reverse transcriptase quantitative polymerase 
chain reaction) assay was performed using the 
Real Time ready RNA virus master kit (Roche). 
TaqMan technology utilizing a fluorescent 
probe (FAM-TAMRA) was used to identify the 
amount of DWV, and the LightCycler® 96 (Roche) 
instrument was used for fluorescence detection.
The RT-qPCR reactions were performed in 20 
µl volumes containing 0.8 µl PP mix (0.1 µl 100 
pmol each of the gene-specific forward and the 
reverse primer, 0.15 µl 20 pmol each of the gene-
specific probe, and 1.65 µl PCR-grade H2O), 0.3µl 
enzyme blend (50x), 2.5 µl ready buffer (5x), 2 
µl RNA and 4.4 µl H2O. The thermocycling profile 
for this assay was as follows: 5 min at 50°C and 
5 min 58°C for cDNA synthesis, 1 min at 95°C 
for inactivation of the reverse transcriptase 
following 40 cycles of 10 sec at 95°C for dena-
turation and 30 sec at 60°C for annealing and 
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data collection. For assays, a six-fold dilution 
series (104-109 copies) of synthetic positive 
control of a known concentration was also run 
on each reaction plate to constitute a standard 
curve (Sup. Fig. 1). Calculating the R value as 
1 indicates that the 6-fold solution we use 
is sufficient. We used a null reaction mix as a 
negative control, and a for second time we 
checked out the DWV positive samples using 
RT-qPCR in order to confirm the quantitation. 
Also, DWV load per colony was determined by 
taking the average of the calculated values as a 
result of both RT-qPCR.

Statistical Analysis
RT-qPCR amplification results were taken into 
account of the standard curve of the samples 
designed as the synthetic positive control. Here, 
the number of amplified viruses in each sample 
was calculated according to the six-fold dilution 
of known values as 104-109 (Sup. Fig. 1). All quan-
titative data were subjected to the normal distri-
bution test (Kolmogorov-Smirnov). Indepentent 
t-test was performed for Cq (quantification 
cycle) and Varroa data set showed normal distri-
bution. However, when virus-free samples were 
taken at zero value, high standard deviations 
were calculated for the data set. For this reason 
the Mann Whitney U test with medians was used 
in SPSS (23v.) to compare the hygienic and non-
hygienic colonies according to DWV loads at a 
level of worker bees and pupae (Tab. 1). Pearson 

correlation test was used to determine if there 
was any relationship between the viral loads 
and mite loads of the colonies for both worker 
bees and pupae. Also, percentages of colonies 
infected with DWV were compared with the 
chi-square test according to both worker bees 
and pupae (Tab. 1).

RESULTS

To determine whether the selection in terms of 
hygienic behavior is effective on V. destructor 
and DWV, A. m. anatoliaca honey bee workers and 
pupae samples were collected from the Mugla 
region showing four generations of hygienic 
and unhygienic behavior of the colony in Turkey. 
DWV was detected in most of the studied 
samples, and the DWV loads and Cq values in 
RT-qPCR for both worker bees and pupae in the 
control and hygienic colonies were summarized 
graphically in the Fig. 1a, 1b. Fig. 1a shows that 
the DWV loads in the worker bees and pupae 
taken from the control group are a little higher 
than in the hygienic colonies. Moreover, as seen 
clearly in Fig. 1b both the worker bees and 
the pupae taken from the control group gave 
signals earlier in terms of DWV in RT-qPCR than 
the samples taken from the hygienic group. As 
seen from Tab. 1, DWV loads (p<0.01) and Cq 
values (p<0.05) in worker bees are significant-
ly different between the hygienic and control 
groups. Interestingly, the prevalence of DWV in 

Fig. 1. DWV loads (a) and the number of quantification cycles (b) of worker bees and pupae from control and 
hygienic colonies regarding qPCR. By black lines and circles, respectively represent worker bees and pupae.
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pupae (69.0%) taken from the hygienic colonies 
is higher than the pupae taken from control 
colonies (60.8%). However, the number of 
worker bees (66.0%) infected with DWV from 
the control colonies was higher than that from 
the hygienic colonies (41.3%), and these differ-
ences with regard to virus prevalence between 
hygienic and control colonies were calculated to 
be significant by using Chi-square test (p<0.01). 
According to t-test results, the averages of 
Varroa counts for the hygienic colonies (28.92) 
was significantly (p<0.01) lower than that of the 
control colonies (108.90). However, we could 
not find any correlation between Varroa loads 
and DWV loads of both worker and pupae in this 
study.

DISCUSSION

In recent decades in Turkey, Gülmez, Bursalı, 
& Tekin (2009) and Tozkar et al. (2015) have 
studied Deformed Wing Virus, and Muz & Muz 
(2009, 2017) studied how both DWV and 
V. destructor interaction caused colony collapse 
in Hatay and Tekirdağ regions. There have 
been more studies about the coexistence of 
DWV and Varroa world-wide (Martin 2001; 
Berényi et al., 2006; Yue et al., 2007; Nielsen, 
Nicolaisen, & Kryger, 2008; Gisder, Aumeier, & 
Genersch, 2009; Locke, Forsgren, & de Miranda, 
2014).  DWV has been shown to have different 
concentrations in healthy colonies in the highest 
percentage of pooled samples of worker bees 
and at high levels in unhealthy colonies (Desai, 
Kumar, & Currie, 2016). DWV was the most 

prevalent virus in Austria, present in 91% of 
samples (Berényi et al., 2006), and Nielsen et 
al., (2008) reported that hives with a high rate 
of winter mortality had 57% DWV infection. 
Baker & Schroeder (2008) informed of a 97% 
prevalence of DWV in the A. mellifera L. colonies 
without any indication of infection. RT-qPCR has 
been preferred in many studies due to its being 
reliable, specific, and sensitive to determining 
honey bee viruses (Cirkovic et al., 2018; Nazzi, 
& Pennacchio, 2018).  Simeunovıć et al. (2014) 
obtained a high frequency of DWV (76.4%) using 
TaqMan-based real-time RT-PCR technique in 
asymptomatic colonies. Although, there was no 
sign of any disease in the colonies examined 
in our study, the number  and prevalence of 
colonies infected with DWV were calculated 
to be considerably high using TaqMan-based 
real-time RT-PCR (Tab. 1).
A comparison of colonies showed that DWV 
prevalence was higher in pupae (69.0%) but 
in contrast lower in worker bees (41.3%) from 
hygienic colonies (Tab. 1). This supports a 
previous study by Gauthier et al. (2007) who 
suggested that pupae were more susceptible to 
DWV replication and found differences between 
DWV loads in adults and pupae, which might 
result from the fact that diseased adults have 
much shorter lifespans. Moreover, depending 
on the higher hygienic behavior of hygienic 
colonies, bees could remove the infected pupae 
from colonies, and by doing so, the number of 
healthy adults might be higher which would 
contribute to a lowering of virus concentration in 
hygienic colonies Gauthier et al. (2007). We also 

Table 1.
Statistical comparison of control and hygienic colonies in terms of DWV loads, Cq values, 

prevalence of DWV, and Varroa loads

N
Mean±St.E
RT-qPCR

N
Mean±St.E

Cq
%

Prevelances
Varroa
Counts

H
Worker 46 181627.69±64074.74** 19 20.10±1.15* 41.3

28.92±5.41**

Pupa 42 234.38±112.34 29 26.36±0.55 69.0

C
Worker 50 241982.35±65972.63** 33 17.13±0.59* 66.0

108.90±9.80**

Pupa 46 937.70±578.55 28 25.56±0.66 60.8

H: Hygienic, C: Control
*, **: Means with different superscripts are significantly different in terms of p<0.05 p<and 0.01, respectively.
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found the amount of DWV of hygienic colonies 
to be lower than the control (Tab. 1). Yañez et 
al., (2015) and Li et al., (2012) drew attention 
to the higher prevalence of DWV in A. mellifera 
compared to A. cerana, which Chanpanitkitcho-
te et al. (2018) interpreted as a strong ability 
of A. cerana to resist both viruses and mites. 
Rsistance, similar to that of A. cerana against 
DWV and Varroa, can also be demonstrated by 
A. mellifera, which has been developed in terms 
of hygienic behavior.
Spivak & Reuter (1998) compared hygienically 
selected and unselected A. m. ligustica colonies 
and showed that hygienically behaving bees 
had been successfully removed from frozen 
slaughtered pupae and parasites and that brood 
diseases were at very low levels or not at all. 
It has been reported that honey bee colonies 
can be easily selected for hygienic behavior as 
a result of hygienic behavior tests conducted 
by land experiments (Spivak & Gilliam, 1998) or 
direct pathogen (Gilliam et al., 1988) and mite 
(Boecking & Drescher, 1990) practices. However, 
all the effects of hygienic behavior have not yet 
been fully explained.
The virus prevalence was unexpectedly higher 
at the pupae phase in the hygienic colonies in 
the present study. While hygienic colonies have 
fewer viruses in their worker bees and pupae, it 
is not known why the virus prevalence is higher 
in terms of pupae in hygienic colonies than the 
control (Tab. 1). While there are a few possible 
responses to explain this situation,  the sperm 
pool may be used in artificial insemination to 
obtain hygienic colonies. Namely, when sperm 
is collected, the somatic cells of virus-infected 
drones might also be collected. Even if there is 
no virus in the sperm, somatic cells can carry 
the infection to the pool. If there is an infection 
even in a single drone, the sperm pool used to 
fertilize the queens may be contaminated. More 
populations may have been infected with viruses 
due to fertilized queens using the sperm pool in 
the hygienic colonies. Results that support this 
have been pointed out in previous studies that 
viruses can translate horizontally through indi-
viduals in the same generation and can be trans-
ferred from one generation to another vertically 

through their queens (Chen, Evans, & Feldlaufer, 
2006; Yue et al., 2007; Tantillo et al., 2015). The 
venereal passing of DWV through artificial in-
semination with infected semen in DWV-free 
virgin queens has been already testified fully 
by de Miranda & Fries (2008). The key result 
of the present study may be an indication that 
hygienic colonies remove the infected pupae 
from the hive and thereby reduce the spread of 
the virus in adult bees, and if so, this is a success 
of hygienic colony breeding.
Like all other bee viruses, DWV is  harmful  for 
beekeeping and is considered the most serious 
secondary pathogen associated with varroosis 
(Yue & Genersch, 2005), although many  studies 
have concluded that the Varroa mite is a vector 
for honeybee viruses including DWV (Tentcheva 
et al., 2006; Gauthier et al., 2007; Carreck, Ball, & 
Martin, 2010; Simeunovic et al., 2014). Because 
we could not reveal the exact number of mites 
in the colonies using the bottom-board method, 
we could not find any correlation between 
Varroa loads and DWV loads of both workers 
and pupae in this study. The selected colonies 
were shown to be better in terms of virus 
and Varroa due to increased hygienic behavior 
in this study, and as a result the selection for 
hygienic behavior is effective on viruses and 
mite loads. On the other hand, in this project, 
the surveyed region is an important beekeeping 
center, because Turkey is one of the world’s 
largest honey producers (Can et al., 2015) and 
also because 90% of the world’s pine honey is 
produced in the  Muğla region (Miguel, Pukkala, 
& Yesil, 2014; Özkök et al., 2017). In addition, 
the distribution and relative concentration of 
viruses within bee colonies in Muğla are still   
poorly understood. For these reasons, these 
findings may be important for researchers and 
be evaluated as an indicator for practices.
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Supplementary Figure 1. A sample of reverse transcriptase-qPCR amplification Windows belong to 
DWV determined in this study. a) Amplification curves of DWV positive samples and folds. b) The 
standard curve is an indication of the reliability of the results. c) Heat map: Gray colored boxes show 
positive samples. d) Cq bars indicate quantification of DWV positive samples, negative control, and 
synthetic standard definite folds, respectively, from left to right. 
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