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Stochastic and fractional differentiation have been developed independently to depicting processes following
randomness and power, a declining memory and passage from one process to another respectively. Very recently,
fractional stochastic differential equations were suggested with the aim to capture processes following at the
same time randomness and memory nonlocality. In this paper to further explore the applicability of this type of
differential equations, a SIR model was considered and analyzed analytically and numerically. Some numerical

Existence and uniqueness
Numerical approximations

simulations are presented for different values of fractional orders and densities of randomness.

Introduction

In the last decades few mathematical tools and concepts have been
utilized to predict real world problems, for example classical differential
and integral operators, fractional differential and integrals operators
and stochastic-differential equations. They have been used for many
different purposes. For example classical differentiation and integration
have been used for modelling classical mechanical problems were
memory is not captured. Indeed with these two mathematical operators
many real world have been modelled with some limitations. Stochastic
differential equations, have been used to modelling complex real world
problems following randomness. Fractional calculus was introduced as
extension of classical derivative, they have been introduced to replicate
complex problems following power law processes, a declining memory
and a passage from one process to another steady and non-steady states.
In particular, these concepts have been applied to model epidemiolog-
ical problems. The spread of many infectious diseases have been
modelled and simulated, in some case the mathematical models have
been compared with experimental data [1-4,9-11]. In some situation,
the mathematical models were in good agreement with experimental
data, clear indication that mathematical models were able to replicate
accurately. However in many situation, modellers observed a clear
disagreement between the observed data and the mathematical equa-
tions. In these cases two questions could be asked the first question is to
know if the collected data were done accurately, and the second one will
be is the mathematical model suitable to model this situation? Now if the
answer of the first question is yes, meaning the experimental data were
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collected accurately, then clearly the mathematical models should be
questioned. Indeed the spread of infectious diseases among humans is a
serious worry and have reduced human population through death in the
last past years. We can list few including Spanish flu that left many
millions of death, HIV, syphilis, Ebola, malaria, dengue fever, Lassa
fever, and covid-19 and its variants [19-25]. One main way to control
their spread is perhaps to suggest a mathematical model that will be able
to accurately replicate the spread such that its future can be predicted. Is
the predictions are accurate, one could take decisions on how to control
the spread. Very recently, Atangana and Seda suggested the use of
fractional stochastic differential and integral equations [18]. This
approach is very effective for modelling spread of infectious disease that
follows processes with non-locality and randomness. In this paper, we
analyse a mathematical model display the spread of some infectious
diseases with fractional stochastic approach.

Fractional differentiation

In this section, we remember some important definitions for frac-
tional derivative with local and non-local kernels [5-8,13].

Definition 1. Caputo fractional derivative of order a > 0 of a function
f:(0, o0)>R, according to Caputo, the fractional derivative of a
continuous and differentiable function f is given as:

Cna — 1 ' _ ﬂli
D,f(t) _—F(lfa)/o (t—x) dxf<x>dx,o<a<1.1 @
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Definition 2. The Riemann-Liouville fractional integral of order a > 0
of a function f : (0, 0)—R, according to Riemann-Liouville, the frac-
tional integral that is considered as anti-fractional derivative of a func-
tion f is:

1;’f<r> = ﬁ/o (t—x)""'f (x> dx,x > a2 2

Definition 3. Let f € H'(a,b),b > a,0 < a < 1 then, the new Caputo
derivative of fractional derivative is defined as:

CFDef(t) = ! tf’ <x> exp{ —a (=) } dx.3 3

T l-al, 1—a

and also if the function does not belongs to H! (a,b) then, the derivative
can be reformulated as

DS (r) = %/at (f<l> —f<x))exp[— a(lt :Z)}dx_zl 4)

Theorem 1:Let 0 < a < 1 then the following time fractional ordi-
nary differential equation

oD (1) = u(t),5 5)

has a unique solution with taking the inverse Laplace transform and
using the convolution theorem below:

()3l 2 oo o

Definition 4. Let f € H'(a,b),b > a,a € (0,1) then, the definition of
the new fractional derivative is given as:

SDf(r) = IB Sal / f <x> E, { G _j‘;a } dx,7 @

where 4B€D¢ s fractional operator with Mittag-Leffler kernel in the
Caputo sense with order awith respect to t and

B(a) —l-a+ 8 ®)

a
[(a)’
is a normalization function.

Definition 5. Let f € H'(a,b),b > a,a € (0,1) and not differentiable
then, the definition of the new fractional derivative is given as:

ABRDy£ () — f(_“i % / r (x) E, [ - a([;x)a}de ©

1—a

Definition 6. The fractional integral of order a € (0,1) of a new
fractional derivative is defined as:

) ) i ) o oo

When ais zero, initial function is obtained and when ais 1, the or-
dinary integral is obtained.
The following time fractional ordinary differential equation

SEDIf (1) = u(r), 11 @11)

has a unique solution with taking the inverse Laplace transform and
using the convolution theorem below:
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/ @ - 13@?”(’) + Far /<y> (1= dv12 12

Definition 7. Let f(t) be continuous, g(t) be a non-constant increasing
positive function. And also taking K(t) as kernel with singular or non-
singular versions. For 0 < a<l, a fractional global derivative of
Caputo sense is defined by

EDf(1) = Dof (1)K (z) 13 (13)
Also with Riemann-Liouville version, we have
0D (1) = Dy (F(1)*K (1) ), 14 a4

where * means the convolution operator.

We have to note that definitions above given with global idea are
obtained very early by Atangana. You can see detailed analysis for
global derivative in his paper referenced with [5]. Let us see some
versions of its below.

Global derivative with Caputo version is given by

ngjf(z> = ﬁ/{; Dgf<x) (t —x)%dx,0 < a<1.15 15)

Global derivative with Riemann-Liouville version is given by

1 "l
Rlpe =——D, —x) “dx, <1.1 1
0 J(z) ) g/of<x)(z x) %dx,0 < a<1.16 (16)
Global derivative with Caputo-Fabrizio version is given by
- 1 ! (t—x)
CFya _ _
o0 =1 | D,j(x) exp{ a— }dx.17 17

And finally global derivative with Atangana-Baleanu versions are
given by

SBCDYf (1) = % /0 I D,f (x) E, [ - a%} dx, 18 18)
APRDY (1) :%Dg /a’f(x)Ea{—a%}dx.w 19)

In numerical proofs integral versions of those derivatives below are
used, so integral operators with global derivative with Riemann-Liou-
ville version is given by

olof (z) = ﬁ A I g (x)f (x> (t—x)"""dx.20 (20)

Caputo-Fabrizio version is given by

ol ) [

Atangana-Baleanu version is given by

#5) 5 04 ) s £ OY o7

(22)

Model derivation of stochastic SIR epidemic model

Although deterministic differential equations have been used inten-
sively to replicate the spread of some infectious diseases, nevertheless, a
day by day collection of data showed that, their spread sometime follow
non-locality and randomness. A clear indication that neither fractional
differential equation nor stochastic differential equations cannot be used
to replicate such spread. Indeed if the spread follows randomness then
stochastic differential equations are suitable for modelling such prob-
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lems. Some published papers involving the use of stochastic differential
equations can be found in [1-4]. In general the differentiation with
randomness is given as below:

dx = fi(t,x,y)dt + f>(t,x,y)dw, 23 (23)
here w; = [wy,...,wy], fori=1,...,nis an independent Wiener process.

In the SIR model, s(t) is susceptible, /(t) is infective and r(t) is removed
individuals in the population and given below

s(t) = A —us(t) — Bs(t)«(2), 249
A) = B0 — (utr+ )00,
A0 = 7o(0) — r(s).

The above Eq. (24) is the transform into stochastic, by adding
invironment of noise.

ds(t) = [A— ps(t) — Ps(2)-(1))dt — wys(t)dB (1),
di(t) = [Ps(t)e(t) — (u +y + €)e(D)]dr + wri(1)dBs (1),
dr(t) = [y(t) — pr(r)]dt + wir(t)dBs (1)

where (w;),_; , 3 are densities of randomness and B;(t);_, , ;are inviron-
ment of noise. '

All parameters above are positive constants. Also Ais the birth rate,
uis the death rate, pis the average number of contacts per infective per
day, yis the recovery rate and «is the death rate of infectives caused by
disease.

0.1. Equilibrium point and stability analysis SIR epidemic model

In this subsection we can analyze the dynamics of the stochastic
models with the help of the stability analysis of the deterministic
equations. In fact, the solution to the deterministic model corresponds to
the mean of the stochastic model. In this subsection, firstly we study on
deterministic SIR model to obtain equilibrium points and also we
analyze sufficient conditions under which the equilibrium points are
locally stable. Let us consider model below:

dii(t[) =A—us (t) —ps (t) ; (t) , (25)

PO pu(e)e )~ (w7 + <)t
PO i) - et

Here if n(t) show total population size in dynamic, we calculate n(t) with

following calculation.

dn(t) _ds(r) de(r)  dr(r)
dr — dt dt dt

26 (26)

So we have

dr;(tt) =A—ps (z) —m‘(z) —e+ (t) —W<l> : (27)

< A= ps(t) — pe(t) — ur(n),
< A—un(t).

Then we will write

dn(t)
. +un (t) <A.28 (28)

Let us calculate inequality above with considering equality as

dn(r) .
O 1 <t) —A29 29)

It’s a linear differential equation above so we have to find Lagrange
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multiplier first. The multiplier is calculated as

2= el — g 30 (30)

If we do necessary calculations then we have
A
n(r) =+ ceral (31)
i
If we consider n(0) = 0, we will have
A
n(t)=—>0-¢")32 (32)
(1) 4 )
For Vt=0, we have that

n (z) <%.33 (33)

{ (s(t), (1), 7(2)) € RS+ 5(£)20, (1) 20, r(2) 20,
14 A }
nlt)=st)+t)+r(t)<—
() =5() + () + ()<,
region is positive invaryant for the system. Also for t—oo
100 A
limsupn (l) <Z.34 (34)
So all the solutions of system is uniformly bounded in y.
1. Equilibrium points

In this section, we derive the equilibrium points for both disease-free
and endemic The disease-free equilibrium is given as Ey = (%,0,0), for
+ = 0. The endemic equilibrium is obtained by solving the following

system.

A—ps" —ps's =0, (35)

Bs'i —(u+y+e) =0
yo —prt = 0.

Then we have

golutrte) o PA—plptyte) o rBA—plutr+e)) o

yl

B (h+7+e) —pluty+e)
(36)
So endemic equilibrium point
ofr oo (mtv+e) BPA—plu+y+e) pPA—plu+y+e)
E ‘ = ) .
(s’ ’r) ( B (n+7v+e) (n+7v+e) )
1.0.1. Local and global stability of the endemic equilibrium
First we consider Sir model as below
ds(t) _ )
i =f <Sm">7 37)
di)
7 - fZ(S«, 4y r)7
dr(t) _ .
dt - f}(S,l,")-
Here
fils,o,r) = A—ps(t) — Ps(t)e(1), (38)

fZ(‘Y»"» i”) = ﬁs(t)"(t) - (:“ +r+ e)/([)7
fi(s,0,r) = ye(t) — pr(t).

We compute first the Jacobian matrix of the SIR model for endemic
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equilibrium
—u—p —ps” 0
JIE | = pe ps"—(u+y+e) 0|39 (39)
0 7 —H
We now construct a characteristic equation associated to SIR model
k= det[J(E") — M] = 0.40 (40)

From the above, we obtain the following characteristic polynomial

k(2) =2+l + kol + ks, 41 (41)
where
ki=3u+y+e+p —ps, (42)

ky= @2 =2ups +ups + (uty+e)Qut ),
ks= (u+y+e) @’ +up’) —pps.

Theorem: At the endemic equilibrium point E*(s",/",r") is locally
asymptotic stable if all the eigenvalues 1;, 1, and /5 satisfy the following
condition

|arg1,-|)%fori =1,2,343 (43)

Proof: If all the coefficients in the characteristic equation are posi-
tive (4; > 0 for i = 1,2, 3) then the system is asymptotically stable. The
matrix H is Hurwitz matrix, that is, all the real parts of the eigen values
are in the left half plane so the above condition can be satisfied by
Routh-Hurwitz criteria [14-17].The Hurwitz matrix for the character-
istic polynomial k(1) is written as

ki ks O
0 ki ks
Then we have

H =k >0,H, =kik, —k; > 0.45 (45)

So the proof is completed.

1.0.2. Global stability of the endemic equilibrium point

We present the global stability of the system
s(1) = A —pus(t) — Ps(t)(1), (46)
(z) = Bs(6)/(t) — (u+7+€)l0),

) = yole) = pr(s).

We define in the classical case

L Bs(0)e(t) — Le(r)
O (47)

B (),

Then we write

L) = (% _ 1)(1) “8)

= (Ry — l)z’(t),Ro :ﬁ%

Therefore, for all three cases

L(t) = 0ifRy = 1, (49)

Results in Physics 24 (2021) 104124

L(t) < 0ifRy < 1,
L(t) > OifRy > 1.

Theorem: If R,>1, the endemic point E'(s",/",r") is globally
asymptotically stable.

Proof:We prove this using the idea of a fractional Lyapunov function.
We start by defining the Lyapunov function associated the system as
below:

L(s*,/*, r*) = (s -5+ flog%) + (/ -+ /*loglf> + (r -

+r'log r_) ,50 (50)
r

L) = (° _SS*.).H ( > ) o+ (- _rr)r (51)

() A psto) — (et

+C"ymm407w+y+am»

;

(=) ) = )

Then we write
. st . P
L(0) = N+ i+ st <,u +r+ e) urt oy (52)

N
yer
r

S* *
—<A?+MS + pse + <ﬂ+7+ e)z‘+/}’si +ur+

= II, — I,
where
I, = A+ps +[J’Si?+ﬁs/+ (ﬂ+y+€)/ +ur +ye, (53)

I, = A%+us+ﬂsi+ (ﬂ+y+€)/+ﬁs;+/1r+4.

Therefore if

M, —T1, > Othen.L(t) > 0, (54)

I, T, = Othen.L(r) =0,
I, —II, < Othen.L(r) < 0.

2. Analysis of SIR stochastic model

In this section, we consider a general SIR stochastic model where the
classical time derivative is convertal to global derivative. Noting a global
derivative of a differentiable function f with respect to an increasing
non-negativecontinuous function g is defined

) —f(0)
(1) ==ty

Indeed if g is differentiable then
r(@

Df(t) =12,
i) =5

Let us consider following stochastic SIR model,

ds(t) = [A— pus(t) — ps(t)/(r)|dt — wys(2)dB, (1), (55)

d/'(l) =
dr(t) =

Bs()7(t) = (u+ vy + €)i(t)]dt + was(£)dBs (1),
[ye(t) — pr(e)ldt + wsr(t)dB;(t)

With this model above we can easily determine the extinction and
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persistence of the disease. s(t) and /(t) and r(t) are positive solutions for
20 of system above for any given initial value (s(0),/(0),r(0)) € R3. Also

s(z) +/(t> + r(l) <%, 56 (56)

for t=0.
But now we consider system of stochastic differential equations with
global derivative first

Dgs(t) = [/\ — Us (t) —ps (t)/(t” —os (t) /(t), (57)

Dgi(l
Dgr(t =

[Bs(0)7() = (4 + 7 + €)(1)] + o5(1)e (1),
[}/“(I) - ﬂr([)]7

s(0) = s0,7(0) = 7o and r(t) = ro.
Since g is differentiable, then we can write

ds(t) = [A—us(t) — ps(t)2(1)|g (1)dt — wys(1)g (£)dB, (1), (58)

d/(t) =
dr(t) =

Bs(1)/(0) = (u + 7+ <)(0)]g (Dt + war(1)g (1)dBs (1),
[yo(0) — ur(D)lg ()t + war(t)g (1)dBa 1)

Its worth noting that if the environmental noiser (w;),_; ,; = 0 then

the model is simple shetor ministic.
Applying the integral on both sides, we have

s(z> = s(0> + /O ' g <1) (A — ps(t) — ps(t)o(z))dz (59)
- [4(5) @

)+ [ & (7) 0s10) = a1+ <)o

+[¢(5) s
r(t) = r(O) + /o[ g (T) (ye(z) — pr(r))dr +ws /0[ g (1) r(r) dB; (r)

Now with the idea of Brownian motion, we have

(1) =s(0) + [ () 0= pste) - s(ortoa (60)
- [¢(5)estontonases

)+ [ & (7) s10) = a1+ <)o

+ [[¢ (5 sornas),
r(t) = r(O) + /o[ g (T> (ys(7) — pr(z))dz +ws /0[ g (1) r(r) dB; (r)

Thus, with classical global derivative we have the following
nonlinear stochastic equation. Let us present now the condition under
which the nonlinear case has unique solution which is taking advantage
of Atangana’s paper referenced by [5,6].

Theorem: Assume that there are four positive constants o
,01,0z,02,a3 and By, B, fs, Pa, B3 such that.

i)

[fi(t,s) = filt, s)<auls — 51, (61)

/(I) =

/(I) =

[a(t,s) — fo(t, 1) <@ [s — s,
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and also

< @l —al,
<

ii)
A< A1+ 1sP),
L@s)P< B(1+1s]),
g1 (z, /')‘2< gz(l + Mz),
le2(t,)P< B (14|17,
also

hi (e, r)P<ps (1+ "),

Proof of Lipschitz condition for equations of SIR model: In this
part we reconsider stochastic model as below

ds(t) = fi(t, s(t))dt + f(t, 5(¢))dB(¢), (62)
de(t) = gi(t,/(1))dt + ga(t,/(1))dB(1),

dr(t) = hy(t,r(2))dt + ho(2,r(2))dB(t).

Here

Si(t,5()) = A= ps(e) — ps(1)/ (), (63)
fz(l‘,S(l‘)): _US(I)"(I)v

g1(t.(0)) = Bs(O)(r) = (u+ v + <)),

8a(t,7(1) = os(1)e(2),

b, r(6)) = ye(t) — pr(p)

Now we define the following norm

0,7
19]l., = Sup |8,

then we have Vs,s; € R> and t € [0, T]

it,s) = filt,s0) = [(=u = pe@)(s = s1) (64
< {2+ 2810 s — i [,

< {2+ 2 Sl Hs - 5P,

< {2+ 2821012, Hs — s P, <ails — 1]

where a1 = {242 + 2/?||(t)|%}. And

1(t,5) — faltss)P = 1= 0o0)(s — 1) [,
{10 Ys = si
{Sup (o) JIs = siF,

{GZH/(I)Hi s — i P <als —si [,

NN

N

where @; = {UZH/(t)Hi }.Also we show that V/,,1 € R? and t € [0, T]
then

lg1(:2) = 16,20 = [(Bs(0) = (a7 + ) = ) Py (65)
< {2POF +20+r+ ) Je - al

< {2 IO + 20+ 7+ Jr -l

< PIOILA20+ 7+ He =l <l — P,

where @y = {2ﬁ2|\s(t)||§o+2(,u ry+e)? }
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lg2(t,) — oty )P = [(os() (e — ) Py
< {Ps@)P Y- al
< S s - al,
< AGISOIR e = 4P <@l — aF,

where @, = {02Hs(t)\|fo }

Finally we show that Vr,r; € R? and ¢ € [0, T] then

ha(2,7) = b (1, 71) < |*ﬂ(’*2r1)\za
= ”2‘r7r1| ) N
< {M2+e}‘r_rl‘7
< alr—nl,
where a3 = {y® +<}.

So condition (i) is satisfied. Now we will verify the second condition
below:

Proof of linear growth condition for equations of SIR mod-
el:v(t,s) € R% x|[to, T] then we will show that

(e, s)1* = A = (u+ pe(0)s(@), (66)
< 2P+ (B0 s,

1€[0,7]
< 2AAP(1+2( + b P sl ),

< 2A|2<1 - <|A|2 + 2l >s<r>2>,<ﬂl(1 +s(OF).

N 2
under condition (,\2 + 2/12|/,\(§)m> <1.

Also
A9 = = ase (O, ©7)
< (@1P)Isor,
< (ASLOP)(1+10P),
< @ IAI) 1+ 1s0)P), <P (1

= (P2).

lg1 (2,21 = 1Bs(0)e(t) = (u + 7 + €)(D)F, (68)

+Is@)*).

where 5,

@A PIADP +20u + 7 + L)),
@ISO + 20+ 7+ ) A0,

2(F" B P + -+ 7+ 20 ) (1+ (O,
2B I+ 7+ ) (14 A1), B,

N INN

N

(1+10P),
where f, = (P[s(Ol1%+( +7+<)* ).
1820, = los(0) (1), (69)
< (@O0,
1€[0,7] ) )
< (GQSupls(t)\ )(1 +1A0P),
< (@Is@IZ) (1 A0 ). <Bs (1 + 1)),
where 3, = (2 ls(¢)|2 ) and finally

I (8,0 = lpe(t) = ur(1) (70)
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<2710+ 26 K0,

1€[0,7]
<277 sup (o) +26° | r(0)

<2202l ()|2,<272|z(z>|;<1+%r(r)|2>,<ﬂ3<1+r(z)|2),
7l

such that (2—2”2 > <1. Both two condition are verified. So according

to the above theorem, the s;r system has a unique solution.
Extinction

In this section, we present the extinction of speces classes. To do this,
we defined

(x()) = Tim % /0 Y (:) dr71 71)

We start with the class s(t). Applying the integral on both sides of .s(t)
yields

s<t> 7s(0> - /0 A = s(r) ~ ps(0eleldr /0 rs<z)d}91 @72 72)

Dividing on both sides by t gives

020 Frat O [0 (o )

5 ()

Then we have

)

lim(s(¢)) = %.75 (75)

With the class /(t), we have

-1 LC) O e [

o [ () (). "
Then
1) ; (0) = Bis(1)e(1)) <ﬂ+}/+g>< (1)) +%/Ot, (1)d32<1>,77
(77)
. - (s(t)e(2))
i) =m0 +if$% / ' (r) dB, (r) LA =A0) - ("
' 78)
So we have
lim(i(r)) = 0.79 79)

For class r(t), we have
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MOyt o+ [ () ()0 (80)

Finally we have

1>

lim(r(¢)) = 0.81 (81)

Atangana Toufik scheme for stochastic equations with global
derivative

Let us consider stochastic equation with global derivative with
following;

oDgx <z> =1 (z, x<t>) +f <t7 x(l) ) , (82)

x(19) = xo.
If g is positively increasing function differentiable then we can write
oDx(t) = g (O)fi (1, x(1)) + g (1) (1, x(7) )83 (83)
Now we convert equation above to stochastic version as following:
ot 4
X (t) =x (0) + / g (r)fl (r,x <‘L’) )dr+ / g <T)f2 (r,x <r) )dB(‘r).84
0 0
84)
Now we assume that B(t) is differentiable so we can write
4 4
X <t> =x (O) +/ g (1)]‘] (T,x (1) ) dr+/ g (r)fz (17)5 (T) )B’ (7)dr.85
0 0
(85)
We have at the point t,.; = (n+ 1)At,

) OLAD
+ /0 Ty <r) 5 (r, x(r) > B (1)dr.86

And at the point t, = nAt,

. (z) x (0) - /0 "y (r)fl (m (1) ) dr+ /0 "y (T)fz <‘t,x <1> ) B (r)d;:

Now, taking the difference of equations above we have following
equation

) o) [ SR

(88)
+ / g/ <T>f2 (T,x(r))B’ (7)dr.88
Let us do some simplifications
g (0fi(7,x(1)) = @1(7,2()), (89)

g (0fs(7,x(1))B (1) = @2(7,x(7)).

So we write

() =x(n) = [0 (wx(e) e [T on(mia(5) Jamo0

(90)

Then consider the interpolation

T— Iy . T—1,

— @, (1, —o, (4,0 )01 91
pl<T) 1( x>tn_ln—l 1( ! )tn—tn,l on
3 | y
X\t | =X\ 1 | = Eq)] tn;.Xn Al—zq’] l‘”,hﬂ At (92)
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3 1
+ {Eq)z (t,,,)(’) At — 5<D2 <tn_1 ,x”") At}A

Replacing @ (t, x) and ®,(t, x) by their values, we have the following
scheme

o)) 4O
+ [ "y <T> 5 (r, x (T> ) B (¢)dr.93
Then,

x([n+1 ) - 'x(t") (94)

= {%g' (tn)fl (z,,,x")At - %g’ (zn,1>f1 (t,,,l,x"’])At}
+{%g, <tn>f2 (tny)al)B, ([n)At - %g, <tn—])fZ <[n717)(,71) B, (tn—l )At }

(93)

and
X(ta1) — x(2,) (95)
= 3600 = s (1) =5 600 (0 (11,7

2 (glt) — 8l ) (B(t) — Bt (zn,x")

N — N W

(8l 1) — gltn-2)) (Bltn1) — Bltn-2))f (r ,x"*‘).

Application of Atangana Toufik numerical scheme for fractional order SIR
stochastic model with global derivative

In this part, we show numerical scheme for solving for fractional
order SIR stochastic model with global derivative. In order to make a
more useful analysis, we will take kernels exponential decay, power-law
and the Mittag-Leffler rule. While putting numerical scheme we will use
Atangana Toufik numerical rules [12].

First of all let us write fractional order model (exponential kernel)
with global derivative

1) =1 15(0) #5(05(3)

D5 (1) = 1(0.e0) + (e (0),

UDgr(z> = (t,r() + ha(t, r(1)),

s(to) = so0,7(to) = 70 and r(ty) = ro.

Here
filt,;s(6) = [A —pus(r) — Bs(1)/(t)], 97)
flts() = [—os(®)(n)],
gi(t, /() = [Ps(t)e(t) — (u+v+ <)),
&(t, () = [os(n)e(1)],
hi(tr() = [re(t) — pr(1)]

If g(t) is positively increasing function differentiable then we have
followings

oDfis(1) = g ()i (1.5(1)) +8 ()2 (1 5(1)). (98)
oDi(1) = & (Dgi(t,4(0) + & (Dga(t, (1)),

oDfr(t) = & (hi(t,r(1)) + g (ha(t,7(1))

So we can convert to above system to integral version with expo-
nential kernel below:
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0 eOH)r [
99
HOES /(0) + /UL g (r)g1 (T, ; (r) ) dr + /01 g (r) @ <T, ; (T) > dB(7),
r(0) + AI I's (T) hy (r, r(r) )dT + /0’ g <T> hy (T, r(r) ) dB(t).
Here we assume that B(t) is differentiable then we can write
()=o) LoD O [ Ole o
(100)
)= +(0) + /0’ g (T)gl (r, ‘ (r) > dr + /0[ g (r) & (T, ; (1) > B (1)dr,
r(0) + /Ol g (7) hy (r, r(t))dr + /0, g (T) hy (17 r(r) ) B (1)dr.

Now, taking the difference of equations above we have following
equation

Rest of the proof we can apply Atangana Toufik scheme on its final
form, we have following numerical scheme

s(th) 7S(tn) (102)

= {%gl ([rx)fl (’nv S”> Ar— %g, <tn—l>fl (tn—l ’ 5"71) At}
+{%g, <tn)f2 (tm S”)B/ (tn)At - %g, <tn—l)f2 (tn—l ) Snil)B/ (tn—l)At }7

/(l‘,,+1 ) — /(l,l)

3 1,
= {Eg (tn)gl(fmlﬁ>Al—§g (tn—1>gl<tn—1-,;”7])At}
3, , . N
+ zg t, ) g2\ tn, " B(tn)A[—Eg tor Vo[ tars ™ ) B (1) AL

and

(103)

S(tas1) — s(t) (104)

(6 = st (35) = et01) = 02 (1157 )

N W

2 (6(0,) — 8(6))(B(1) — Bt 1)) (r)

N = N W

(g(tnfl) - g(lnfz))(B(tn,,) — B(ZH—Z))fZ (tn—]7sn71),
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/(thrl) — /'(tn) (105)
= 360 = el (1) = 360 ~ ) (1)

43 600) = 8() B0) = B0 ) (1.

5 6000 = 806 ) B0 1) — B0 ) (11,77 )
r(tn1) = r(ta) (106)

= %(g(tn) = &(ta1)) (tn, r") 7%(g(tn,1) — gty )y (,H 7 ,n—l) .

Atangana-Toufik scheme for Caputo-Fabrizio order stochostic equation
with global derivative version

We start first with introducing the equation with Caputo-Fabrizio
version.

DUx(r) = fi (t,x(t)) +/ (t,x(t)), (107)
(101)
X([O) = Xp.
If g is differentiable, then we will write
Fpix(t) = g (0f: (1, x(r)) + g ()= (1, x(¢) ) 108 (108)

From the definition of the Caputo-Fabrizio integral, we can rewrite
the above equation as;

x(1) — x(0) = %g, 0 <t,x<t>> n A% /0 () (T,x(T) )dr (109)
+11w%)”g’(z) , <t,x(z)>B(z) +%/0 o <T,x(f))d3(r).

Now we assume that B(t) is differentiable then we can write

x(t) = x(0) = ﬁg’mfl (t,x(t)) +Aﬁ/o ¢ (@) (f,x<1> )df (110)
+ﬁg’(t)fz (z,x(z))B(z) +ﬁ /0 I g ()f <T7x<r)>8’ (f) dr.

We have at the point t,11 = (n+ 1)A(t),

x(tar1) —x(0) = ﬁg, (tus)f (lwhx(fwl)) (111D



B.S.T. Alkahtani and I. Koca

+ﬁ r”” g, (0)fi (T,x(r))dr
1—

+M( n+l f2("+la <n+]>)B n+1

+M? f2<r x( ))B()dr

and at the point £, = nA(®)
e i (mn(n))
s [ @ () Jar
i 0 (1x () ) o)
s [ s (o (e) )3 ().

Let us put some simplicity again for equation above;

& (0fi(1,x(1)) = ¢y (8, x(1),
& (Df:(t,x(1))B (1) = ¢y (8, x(2)).

Putting simplifications above and then consider the interpolation;

x(t,) — x(0) (112)

+

113)

T—1,

T 1, .
P(z) = ¢ (1,,x") Lyt ) : (114)
by — th ty — thy
T~ In- _ T—1,
P) = ol ) T i) T
n — tn—1 1y — iy

Now taking the difference of equations above we have followings;

x(tns1) = x(t) (115)

_ ﬁg’( ,,H){fl ( X (H])) fz(m, (,,H))B(m])}
+ﬁg,(t,,){fl (z,ﬁx( )) —f (t,”x(t,,)>B(tn)}
i / "o (T,x(r) ) aries | "o (T,x(f))s’ (T> .

We consider here interpolation polynominals.

X(tar1) — x(t,) (116)

A o)) (e )
S (1)) (o))
il oot ()

X(tyyr) — x(2,)

117)

o) = 02 (1o ) = ST (),
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A0 (1)) () )
Sy (1)) () )

+Maa){3¢ (t, X" )A;,,(ﬁ (6 1,x”")At}
M(Za){ 221, x")A f*gd’z(tnfl,x”")m},

(118)

et ) = i) < H ()
G210, ") = & (1) (1, ¥")B (1),
_ 8t ;f(tnfl)f (tmxn)B(tn) ;f(tn—l)7
ba(tar, ") = & (1) (01X )B (101)
_ g(tm)A—tg(tnfz)f2 (tnfl,f‘")B(t"q)A_tB(tH)-
And

X(tysr) — x(1,) 119

i L R ) ey
) e

e o )
-
M(a)

3g(1.) gt 1) (tx) =B(ta—1)

2g Agt (t,,,)f) At Al
1g(ta-1) —g(ta2) 1\ B(ta1) = B(tx2)
_E%ﬁ (t""’x) )TAI}‘

If we arrange all operations then we have;

(120)

L) b0 (o)) nn () )
oy o)) ) o)
)-

(
Mz:;g(tn)ti(f - {j
(a0 )5 () -0 el (500 ) |
Sy (10 ) )
8\ B

) ‘)
— l,ﬂ*‘) (B(t,_1) 7B(t,,,2))}.

X(tuy1) — x(2,)

1
1)
a( 4
Iy

(

A
(1) =
n g

t
(

1g(tu 1-2)
2 At P2

Now we can apply this (*) scheme on sir stochastic system.

S(tnﬂ) - S(tn)

t,)—B(

(121)
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1— ag( n+l)

TM@) A (){( )f< >B(’”*‘)}

A o

LA {;<g () )1 (") =600~ (105 )}
T

Maa 2 (’"75 )(B(Z’l)_B(anl))
_%sz (IH 7s”’l) (B(ty_1) _B(;,H))}

/(thrl) — /(l,,) (122)

— s O g () (e ) B) |
)l
(a0 )5 () 560002 (127 ) |

3
2
;g( ) g(tn—])fz(tml.n)(B(tn)—B(lnfl))
)

a2
i

%&Ei#i%%”“HyMM&$mﬁ%7

At

Fins1) (123)

_1—ag(ti) —g(n) il
_r(tn) _WT}“ (tn+]7r )
—&(ta1)

1 0
M(a) At Tl <tn7 r’)

s e o o)
—§<g<zn4> gltn- 2))h1(n )}

Atangana-Toufik scheme for Atangana-Baleanu order stochostic equation
with global derivative version

| l—a g(tn)

T

We start first with introducing the equation with Atangana-Baleanu
version.

A’*CD;’x(t) =fi (t,x(t)) +f (z,x(r)), (124)
X([o) = Xp.

If g is differentiable, then we will write
AEpax(r) = g (O (1,x(1)) + & (0f (1, x(1) ) 125 (125)

From the definition of the Caputo-Fabrizio integral, we can rewrite
the above equation as;

x(1) —x(0)

Son ()i o) o
s o) on oo

Now we assume that B(t) is differentiable then we can write

(126)

Results in Physics 24 (2021) 104124

x(1) —x(0) (127)

= ;(7 )g ( ) l( ()) m/{) g/(r)fl(Tyx(T))(t—‘[)”’ldT

1- a

+ﬁ ()fz(t x(t))B (I)er/t) gl(r)ﬁ(r,x(r))(t—r)"le/ (1)dr.

We have at the point ;1 = (n+1)A(t),

X(tuy1) —x(0) = 2(;? (tue )i ( x( )) (128)
o, ¢ (ea(7) o o e
+IB(;G{)I (n+l f2<n+l7 (n+l)> n+l
a a l
o)y ¢ (s(s) )t =8 (5)ae
Let us put some simplicity again for equation above;
g (0fi (1,x(1) = ¢, (8, x(1)), (129)

& (Dfs(t,x(1))B (1) = ¢ (8, x(1)).

Putting simplifications above and then consider the interpolation;

P0) = 1 (6,3") =2 = (1) (130)
o T Do T—
() (/JZ(I"’XJ)tn*tn 1_4)2(” 17 )tn*tn—l.

Now taking the difference of equations above we have followings;

X(tn1) (131)

= 1(0) g o {5 (smrn (1)) 2 (mren (1) )30 |
-&-m/omI g (Of (Lx(r)) (tye1 —7)*'dt
+m /0 " ¢ (0)f (z,x(z)) (tor — ) 'B (1) dr.

We consider here interpolation polynominals.

x([n+l ) - x(o)

N ;E—a?%{ ]("“’ ("H)> +f2<n+17 (tm))B(z,,H)}
B
e [ o)

Then we write

x(th ) - x(o)

(132)

(133)
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Fig. 1. Stochastic behavior of s(t).

Fig. 2. Stochastic behavior of 1(t).

900 :
——a=-095
800 ——a=09
——a =085
——a=08
700 ——a=06
——a=095
600
500
)
=
400
300
200
100
0

0 5 10 15 20 25 30 35 40 45 50
t

Fig. 3. Stochastic behavior of r(t).

- 13(7_0(3’%[(){](”“ (m)) +f2(n+l7 (tm))B(zm)}

.

Results in Physics 24 (2021) 104124

Replacing by its Lagrange polynomial interpolation formula, we
obtain

l—a g(tn+l) — g(tn)

n+l __ .0
SN B Ar

(134)

A (s, X(tai1)) F fo(tarr, X(8011))B(tar1) }

N[(r=j+1D)'(n—j+2+a)
3 o)
a+2

—(n—=j)*(n—=j+2+2a)

(n—j+ 1)a+l

¢1 117

“*22 ( >[<nj>“(nj+1+a)
N[(n—j+ 1) (n—j+2+a)

s (o) |

—(n—7)"(n—j+2+2a)

a+2 24’52(5 Y 1)

Replacing ¢, (t,x(t)) and ¢,(t,x(t)) by their values, then the above
equation is converted to

(n—j+ 1)"4rl

—n—) -+ 1+a)]

i (135)

1—ag(ty)—g(t ){ﬁ(n+17 (M))+f2(n+1,x(tn+1))3(tn+1)}

T a—
(nj+1)“(nj+2+a)]

—(n—j)"(n—j+2+2a)

ol (n—j+1)™"!
aAtaJrz Zﬁ(, 1 1) j)g(fjl))[ ( ’

—(n—j)*(n—j+1+a)

(n—j+1)“(n—j+2+a)]
== (n—j+2+2a)

et 3o (et )00 00) -6

/o

(nfjJrl)‘Hl ]
—(n=j)*(n—j+1+a)

Now we can apply final scheme on sir stochastic system. (See
Figs. 1-3)

l_ag(nﬂ)

Ba) A (){( ())
+fz(n+1, (tn+1))8(tn+u)}

a(an) & ' (n—j+1)*(n—j+2+a)
B (f SJ)( (111) ~8(s)) [_(n_j)a(n_mm)

Sn+] — SO+
(136)

(n—j+1)""!

_%;ﬁ (tj"sj]> (g(t) —8(1-1)) {

—(n=))*(n—j+1+a)

11
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n—j+1)*"n—j+2+a)

e 3o (10 60 ) 00) 6|

—(n=j)*(n—=j+2+2a)
(n—j+ I)OHrl

S oYt st 1500 |

L N 0 () O ) P

aa™ e (N [ ) -2 4 a)
Bla)(a+2) & * (t”l ) (&) ~2(5)) { —(n—j)"(n—j+2+2a)
A & L (n—j+1)""
B(a)r(a+2>;g‘<”“” )MI’) ol ))[(nj)“(nj+l+a)

a(A)*? ; o N (n—j+D)'n—j+2+a
e ( ) (6(0) — £ (B(5-1) ~ B(1)) { IR
L a(a)? (n—j+1)""
B@l(a+2) = gz —(n—j)n—j+1+a)

) ) = 0 06) - 860 |
{

0 ;(—_a? g(tm)A; g [, (mh r(tnﬂ)) }

—n—) -+ 1+a)]

(137)

+M ihl (l]y"’) (g(tj+1) _g(tj)) |:(n_j+ 1) (n _j+2+a)

—(n=7)"(n—j+2+2a)

Ot(At"’1
h
[(a+2) Z !

-2
0

5

10 15 20 25 30 35 40 45 50 55 60 65 70
time

Fig. 4. Stochastic behavior of 1(t).

(n—j+ 1)

( ) ()_g(tj]))[(nj)a(nj+l+a)

12

Numerical simulation

In this section, we depict numerical simulation of the chosen system
of fractional stochastic differential equations. We have made use of the
model with the Caputo differential operator and the numerical scheme
that was suggested by Atangana and Toufik where the Lagrange poly-
nomial interpolation is used. The numerical simulation are performed
for different values of fractional orders. The used initial conditions are
1000, 10 and 1 respectively. The first 3 figures are depicted for the
following values of densities of randomness 0.001, 0.006 and 0.006

1100

700

S(t)

6001

—+—a=0.95
500 | ——a=09
—+—a=08
—+—a=08

——a=06

*a 05

400

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
time

Fig. 5. Stochastic behavior of s(t).
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400

3001

200

100

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
time

Fig. 6. Stochastic behavior of r(t).

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70
time

Fig. 7. Stochastic behavior of 1(t).

100 - 0 T s . . ; . . . . .
[ 5 10 15 20 25 30 35 40 45 50 55 60 65 70
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Fig. 8. Stochastic behavior of s(t).
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Fig. 9. Stochastic behavior of r(t).
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Fig. 10. Stochastic behavior of s(t).
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Fig. 11. Stochastic behavior of 1(t).
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Fig. 12. Stochastic behavior of r(t).

respectively. To obtain Fig. 4, 5 the densities of randomness used are
given as 0.0016, 0.007 and 0.008, Figs. 7-9 0.0018, 0.01, and 0.01
finally figure Fig. 10-12, the randomness was removed. (See Fig. 6).

Conclusion

A simple SIR model was considered in this work. First we presented a
detailed analysis of stability using existing technics such as Lyapunov
function, the Ruth criteria. We presented the condition under which the
Lyapunov function was positive, zero and negative. The system of or-
dinary differential equation was converted to fractional stochastic dif-
ferential equation with the aim to include into the mathematical model
the effect of nonlocality and randomness. The existence and uniqueness
has been presented. A numerical scheme based on the Lagrange inter-
polation was used to solve numerically. Some simulations are presented.
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