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Abstract

In recent times, operational matrix methods become overmuch popular. Actually, we have many more operational matrix
methods. In this study, a new remodeled method is offered to solve linear Fredholm—Volterra integro-differential equations
(FVIDESs) with piecewise intervals using Chebyshev operational matrix method. Using the properties of the Chebyshev
polynomials, the Chebyshev operational matrix method is used to reduce FVIDE:s into a linear algebraic equations. Some
numerical examples are solved to show the accuracy and validity of the proposed method. Moreover, the numerical results

are compared with some numerical algorithm.
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Introduction

Integro-differential equations are very important to model a
real world phenomenons. Integro-differential equations usu-
ally are a combination of differential, Fredholm and Volterra
integral equations. These type of equations arise in applied
sciences such as wave mechanics, heat conduction, medi-
cine, chemistry, astronomy, electrostatics, etc.[1-4]. Hence,
the solutions of these type equations gain prominence to find
out the behavior of modeling.

These type of equations usually difficult to solve exactly
since it has many parts of differential, Fredholm and Volterra
integral. The Fredholm—Volterra integro differential equa-
tions (FVIDEs) have been widely studied by many more
authors to obtain the numerical solutions. In [5], authors
introduced an efficient Bernoulli matrix method to solve
high order linear Fredholm integro differential equation with
piecewise intervals. In [6], an efficient Bernoulli collocation
method has been developed to gain numerical solution such
an equations. In [7], Acar and Dascioglu developed a projec-
tion method based on Bernstein polynomials for solution of
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linear FVIDE:s. In [8], Kiirk¢ii, Aslan and Sezer presented a
collocation method using hybrid Dickson and Taylor poly-
nomials to obtain the numerical solutions of FVIDE:s.

In [9], Yiiksel et al. obtained a Chebyshev polynomial
method for high-order linear Fredholm—Volterra integro-
differential equations. In [10], Ebrahimi and Rashidinia
produced a cubic B-spline approach by using the New-
ton—Cotes formula for FVIDEs. Also, we have many more
studies in literature such as Dickson polynomials solution
[11], Lucas polynomials solution [12], a polynomial solution
[13], the backward substitution method [14], He’s homotopy
perturbation method [15], Mott polynomials solution [16],
Laguerre polynomial solution [17], Taylor series solution
[18], the semi orthogonal B-spline wavelet solution [19], a
Tau method [20] and the power series method [21].

In this study, a operational matrix method is presented
to solve the linear FVIDEs with piecewise intervals of the
following form

X

m P
D P + Y / V,,(x, y()de
k=0 m=0 /

bﬂ

q
+ ) A, / F,(x, )y(t)dt = f(x)
n=0 a (1)

with mixed conditions
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—1
(agy™® (@) + byy® () + c;y®(0)) = a,

3

i=0,1,...,m—1.

@)
where the parameter A, y, and A, are constants.P;(x) and
f(x) are known and belong to L?[0, 1]. We desire to find the
unknown function y(x). For this purpose, the approximation
series are defined by

I
(=}

N

W =Y a T, xelo1], 3)

r=0

where N is any positive integer and T7(x), r =0,1,... ,N
denote the shifted Chebyshev polynomials [22] and N > m.

This paper is organized as follows: Definitions and some
properties of the Chebyshev polynomials are mentioned in
Sect. 2. Section 3 is introduced representation of the matrix
form of differential, Fredholm and Volterra integral part
in Eq. (1). The numerical method establishes in Sect. 4. In
Sect. 5, several treatments are presented. In Sect. 6, a con-
clude adds the paper. All computations have been calculated
by Maplel3. Figures have been plotted by Matlab.

The operational matrix method has been investigated by
some author [23-29]. In these studies, this method is suc-
cessfully solved the Abel equation, fractional integro differ-
ential equations, the Lane-Emden equation, fractional order
differential equations and nonlinear Volterra integro differ-
ential equations. All above issues motivate us to introduce
an operational matrix method for FVIDE:s.

Chebyshev polynomials

It is well known that the fundamental theorem of approxi-
mation is called Weierstrass Theorem which says us any
continuous function can be approximated uniformly by poly-
nomials (See [30] for details). If you need a polynomial to
make an approximation, you should choose an ordinary Fou-
rier series (See [31] for details). The first type Chebyshev
polynomial is a Fourier cos series.

Describe T, (x) which is called the Chebyshev functions
family by formula, forn > 0

T,(x) = cos(narccosx), x¢&[-1,1]

Theorem 1 The family of T,(x) satisfy the following
properties.

a. The degree of T,(x)is n.
b. Forn>1,T, (x)=2xT,(x) - T,_,(x).
c. T,(x)=2""1x"+-.

@ Springer

d. (T,T), = f_l1 w)T,()T(x)dx=0, i#j where
wx) = (1 — x2)~Y2 is called weight function.

_ (2k+ D)z
e. Theroots of theT,  (x)are x; = cos ( Satl) ),0 <k<n

which is called the Chebyshev nodes to compute inter-
polating approximations for continuous functions.

Proof: See [22].

Theorem 2. Let f € C*'[—1,1] and the n degree polyno-
mial p,(x) interpolate to f. Using the Chebyshev nodes, we
have.

I =palle = e . @
Proof: See [22].

Theorem 3. Let yy(x) be an approximation to y(x). The
truncation error E-(N) can be bounded by the following
inequality. If.

N

W =Y a,Tx) (5)

r=0

then

ExN) = v -l < Y ||

r=N+1

Proof: See [22].

Since T,(x) is a function of cos 8, —1 < T, (x) < 1.. If we
want to change the interval of 7, (x) as [0, 1], we can use the
transformation y = 2x — 1. Then the Chebyshev polynomi-
als become

TH(x) = T,(y) = T,2x - 1)

which is called the shifted Chebyshev polynomials of the
first kind.
Some properties can be written as [22]:

1 Qnrn-0+ Dz .
xi—§<l.+cos<w>>, 1—0,1,---,’1 (6)

(1)
are roots of T:+1 (x).

=, 2n
Y= 2—2n+1 Z <k >T:—k(x)’ 0<x<1 7
k=0
(i)
where Y denotes a sum whose first term is halved.

Clearly, Theorems 1, 2 and 3 can be converted for the
shifted Chebyshev polynomials.
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Matrix relations

In this section, the matrix—vector form of the each part of
Eq. (1) is introduced by using Egs. (3) and (6).

Matrix representation of differential part

To obtain the numerical results of Eq. (1), we construct the
fundamental matrix—vector relations. These relations help
us when we use operational method. Firstly, we suppose
that the numerical solution can be written in the shifted first
kind Chebyshev series form. The matrix—vector form the
approximate solution and its derivatives can be written

v = T*0A, YY) = T'"PWA, k=0,...,m (8)
where
T (%) = [Ty (x) Ty (x) - Ty@)], A =lgqa... ayl”

From Eq. (6), we get the following matrix relation

(Y@)" =D(T*x))" and  Y(x) = T*(x)D" &)
where
Yo)=[1x...xY]

0

)

() ()
) ()
)

[\)

[\.)
N N R A O N

;
(

) ()

[\

b
. A
o o
N

o

2—2N 2N 2—2N+l 2N 2—2N+1 2N 2—2n+1 2N . 2—2N+l 2N
N N-1 N-2 N-3 0

Y?Px) = YP@BT = Y(x)(BT)?
: (13)

Y®) = YO0BT = Y(x)(BT)

where

=)
)

0..0
0 ..
B=|0 2 0..0

—
)
=)

00 O0NDO

If the obtained the matrix forms Eqgs. (11) and (13) are
substituted into (8), the approximate solution function
yn(x) = Z” _o %, T (x) can be transformed into the follow-
ing matrix form

W) = YRBT D) A, k=0,...,m (14)

Matrix representation of Volterra and Fredholm
integral part

In this section, we try to find matrix—vector form Volterra
and Fredholm integral part in Eq. (1). For this purpose, sup-
pose that the kernel function V,,(x, f) can be written as:

0 0
0 0
0 0

Since the matrix D is invertible, Eq. (9) can be clearly
written

T*(x) = YD)’ (10
and

(T*)® = YO@DdH, k=0,...,m. (11)
The following relation give us Y®(x) in terms of Y(x)

YY) = Y(0)B” (12)

N
V(60 = )k, ()T (0). (15)

r=0

and the matrix form of the V,,(x, f) become

V. (1) =K, )T ) (16)
where
K, (0) = [ k,0(0) &, (0) kyp () -+ Ky () ]
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Using Egs. (14) and (16), we obtain the following
matrix—vector form of the Volterra integral part

X

p 14 -
[2 Hn / Vi, r)y(z)dr} = / K, 0D™'Y (YD) Adr
m=0 m=0

Cm

a7

Now, assume that the kernel function F,,(x, f) can be writ-
ten as:

N
F, (0= Y £, ) (18)
r=0

Then the matrix form of the kernel function F,(x,?)
become

F,(x,t) =F, ()T (t) (19)
where

F, () = [f,0(0) fu1 () fro(x) - fun o) ]

Using Eqgs. (14) and (19), we obtain the following
matrix—vector form of the Fredholm integral part

by

q by q
[Z A, / F,(x, z)y(t)dz} = 2 A, / F, 0D 'Y ()Y (©)(DT)'Ads
n=0 n=0

arl

(20)

Method of solution

In this chapter, the matrix—vector form of Eq. (1) and the
operatinal matrix method are assembled to erect the numer-
ical method. Firstly, we have to change the form of f(x)
into a matrix—vector form. The matrix form of f(x) can be
considered

@)~ G"Y)DH)™ 2y

The obtained matrix—vector forms of differential part,
Volterra and Fredholm integral part are put into Eq. (1), we
obtain the following matrix—vector equation

Y P.@Y®®BH D) 'A

k=0

p X
+ Z o / K, D™'Y () Y()(DT) ' Adr
m=0

('m

bn

q
+ Z A, / F,0D'Y'()Y(©)(D")'Adt =~ GTY(x)(D")™!

n=0
an

(22)
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Thus, the residual function Ry (x) can be gained the fol-
lowing equation:
Ry() » Y P Y(BT DA

k=0
X

P
+ 3 / K, D 'Y ()Y () (D")' Adr

m=0 !
c m

b,

. .
+ Z A, / F, D 'Y () Y(H (D) 'Adr — GTY(x)(DT)™!
n=0
(23)
Using operational matrix method idea, we gain
(N —m + 1) linear equations as follows:

1

(RN(x), T}j(x))w = /w(x)RN(x)T:(x)dx =0, n=0,1,...,N—-m
0 (24)
where w(x) = (x - xz)_l/z. The m-times initial conditions
are obtained by
-1
(axY(@®B" D™ + b, Y(B) BT D)
0

3

~
Il

+; YOBH D) A = ¢, (25)

Hence, we have (N + 1) times linear equations including
the unknown coefficients in Eq. (3). If we figure out these
linear equations by aid of Maple 13, the approximate solu-
tion yy(x) can be obtained from Eq. (3).

Error estimation and convergence analysis

Now, we will discuss error estimation and convergence
analysis.

Theorem: Let assume that.

[+ N oo
@ =Y b T Y bTIW+ Y b,

r=0 r=0 r=N+1

(which is the best approximation to y(x)) are the shifted
Chebyshev polynomials expansion of the exact solution
y(x) € CM* andis the approximate solution the obtained by
proposed method. Then, we have

N

W =) a,Trx)

r=0

[y@) = yy |, < ﬁ”y“v“)(x)”co + %”uB — Al
(26)
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where

A=aya; - ay| and B=|[by b, - by|.

Proof: Firstly, the following inequality is held.

[y = yp @], < Iy =y, + |[ys() = yv @),

From Eq. (4), we have the following inequality

[y =y,
| 1/2

= / WO y() — yp0)| dx

0

| 1/2
(N+1)
= /[22N+1(N+1)1“y (x)” ]dx
0
(N+1)
22N+1(N + 1! ”y (x)”
and we have
[lys(0) = yv@)||,
. L, 12
/ lZ(br—ar)T:‘(x) dx
0 r=0 ]
| . 1/2
N N
< /lZ(b,—a,)z Z|Tr*(x)|2]dx
0 r=0 4 L=0
1/2

r=0

N 12(y 1
= [Z (b,.—a»z] 2 / |77 dx
r=0
0
3
B -All.

On the other hand, since the approximate solution yy(x)
is the approximate solution of Eq. (1), then Eq. (1) must be

which is called error estimation function.

lllustrative examples

In this section, we apply our method some examples to check
the accuracy and effectiveness of the method. In examples,
some comparisons are dispalyed by below fundamental error

types:

1. Absolute error (NV,) is defined by:

Ne(x) = |)’(x) _yN(x)|’ X e [O’ 1]

where y(x) are the exact solution and yy(x) denote the
approximate solution.
2. relN is relative error which is defined by

|y(x) = yy ()|

relN =
R4€9]

, x€[0,1]

Example 1. Firstly, we apply our method to following the
linear FVIDE with piecewise intervals subject to y(0) = 1,
Y'(0)=-2,y"(0) = 2y'(0) = 7.

X

yrrx) —y'(x) + / xty(t)dt

0

1/2

+ / (1= 2x)y(0de - / (1 = ny(ndt = f(x)
1/4 1/2

where

) = (=2 +x+ 2% + x)e* + 0.0861606918 — 0.014742845x2

The exact solution is y(x) = (1 — x)e™™. Then, we have

approximately satisfied by the function y, (x). Po) =0, Pix) = =1, Py(0) =0, P3() = 1
m » X b,
Y Py ™ + ) / V,, (x, Dy(t)dr + Z A / F,(x, Hy(nd = f(x)| ~ 0 (e2))
k=0 m=0
The following comparison strongly advise by [20]:
m x q by
Ey = Z P ()y™ (x) + Z . / V(. 0y(0de + Y 4, / F, (x, )y(t)dt — f(x) (28)
n=0

m n
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Al = 1, Fo(x,t) :xt, CO = 0

iy =1y = =1, Vo(x, 1) = 1 = £, V,(x, 1)
=1—-t,ay=1/4,by=1/4,a,=1/2,b, =1
If these values and functions are put into Eq. (24), we

have the following approximate solutions for various N
values

Vi@ = 1= 2x+ %f —~ 0.6605636x°
+0.18906493x* — 0.028481763x°

ye(x) =1—2x+ %xz —0.66617680x> + 0.20580958x*
—0.0452840x° + 0.0055757467x°

;) =1-2x+ %xz —0.66663491x° + 0.2080941625x*
—0.0493161690x° + 0.008770421x° — 0.000912765x

Comparison of these approximate solutions and exact
solution are presented in Table 1. Table 2 gives us the com-
parison of the relative errors. Figure 1 shows us comparison
of absolute errors, Fig. 2 and 3 display error estimation func-
tions and relative error functions, respectively. These figures
say that if the N values are increased, the absolute values and
relative errors are decreased. Hence, the numerical results
are more close with the exact solution.

Example 2. Let us consider the following linear Fredholm
integro-differential equation with piecewise intervals [5]

1/4 1/2 1

yx) =e —x— 4/ Ey(nde + 2 / xe'y()dt — / e y(r)dt,

0 0 0

¥0) =1, y1(0) = =1, y(0) = 1
If the above numerical algorithm is applied, we have the
following numerical solutions
Vo) = 1 —x + 0.5x% — 0.166602262x°
+0.0413353094x* — 0.00770776517x°
+0.00085415183x°

yg(x) = 1 —x + 0.5x% — 0.166664113x> + 0.0416480144x*
— 0.00828084359x° + 0.001315741562x°
—0.0001454724104x” + 0.61145088¢ — 5x°

Also, this problem has been solved by Bernoulli matrix
method (BMM) [5]. Table 3 and Fig. 4 show the comparison
of Present Method and BMM. From Fig. 4, our numerical
results are better than BMM.

@ Springer

Example 3. Let us consider the following linear FVIDE with

piecewise intervals.
Y') = (1 =x)y +y

1/2 1
=f(x)+ /xty(t)dt + / (1 = xt)y(r)dr
0 1/2

+ / (x> — X*0)y(n)dt, y(0) = 0, y'(0) = 0.
0

choose

If we
L %xg — L8, the exact solution is x

1
+6x° — E)C"" 640, 0 X
When solving this example by mention method, we get the

exact solution for N = 5.

Fx) =24x3 — 12x2 — 10x*

> — Xt

Example 4. Let us consider the following equation [33]

1 x
V(@) —yx)=—€e"—e+2+ /y(t)dt + /y(t)dt
0 0

with nonlocal boundary condition

1

y(0) + / yindr=e

0

The exact solution of this problem is y(x) = ¢*.In Table 4,
we compare our results with the existing method Chebyshev
collocation method [33]. The comparison of these results in
Fig. 5 and Table 4 shows that our numerical results have a
perfect harmony with the exact solution.

Example 5. Let us consider the following Fredholm integro
differential equation [7, 34]:

/2

yII(x) = sin(x) — x — /xtyl(t)dt and
0
y(0) =1, y1(0) =0, y1(0) = —1

The exact solution is y(x) = cos(x). The Bernstein projec-
tion method (BPM), the variational iteration method (VIM)
and the proposed method (PM) are compare in Table 5. It
can be observed from Table 5 that PM has less errors com-
pare with BPM and VIM.
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Steps of Solutions

In this section, steps of solution have been presented the
given numerical method. Maple program is used in this arti-
cle for run it. Readers can apply the algorithm any computer
program.

Algorithm:

(a) Input values and function should be determined N, u,,, 4,,, P;(x),
V@, 1), F,(x, 1), f(X), Cp» Qyps Qs by Cip» @, b, ¢ and a;.
(b) Take suitable matrices for A, D, Y(x), B, K,,, F,,G

(c) Using Eqs.(24)-(25), construct the Ry (x) and (N — m) linear equa-
tions from mixed conditions

(d) Solve the obtained linear equations on (c) with conditions

(e) Substituting all coefficients into Eq. (3), this is approximate solu-
tion

Table 1 Error values of Ex. 1 for the x value

X Exact solution N,=5 N,=6 N,=T7
0.1 0.8143536762 0.43818E—5 0.28141E—6  0.13865E—7
0.2 0.6549846024 0.24278E—4  0.11686E—5  0.37154E-7
0.3 0.5185727544 0.54243E—4  0.17378E-5  0.19435E-7
0.4 04021920276 0.80309E—4  0.12867E—5  0.28425E-7
0.5 0.3032653298 0.90721E—4  0.27736E-7  0.55326E—7
0.6 0.2195246544 0.81677E—4  0.11841E-5  0.33501E-7
0.7 0.1489755911 0.58648E—4  0.15469E-5  0.11121E-7
0.8 0.0898657928 0.33728E—4  0.94845E—6  0.29990E—7
0.9 0.0406569659 0.19464E—4  0.11238E—6  0.12180E-7
1.0 0.0 0.19555E—4  0.13123E—-6  0.11126E-8
10° ’ . . . . . . . . ;
qu Fé]
10° EEE 4
ﬁ. 0 = ==!§' F] g
\ ri] tl 1
l o ' m o
P o i
il S \ e,
\ ATy o &%
4 ¥ * + *
10°E / * / .
* ! *
!
t
10°} ! 3
i 3
— 3 -E6
— 4 -E7
10'7 1 1 1 1 1 1 1 1
0 01 02 083 04 06 06 07 08 09 1

Fig.2 Comparison of error estimation functions in Ex. 1

195
Table 2 Some values of relative N elN
error
5 0.4787E—4
0.2765E-5
7 0.3148E—-6

0 0.1 0.2 03 0.4 0.6 06 07 08 09

i —&--rels
] —#%--rel6
— % rel7

Fig. 3 Comparison of relative error functions in Ex. 1

Conclusion

The operational matrix method is treated as accurate, effec-
tive and plain method to gain numerical solutions of the
FVIDEs. This method is based on polynomial approxima-
tion and basic operational method. By the aid of operational
matrices, the all terms of Eq. (1) reduce to a linear alge-
braic equations. The present method has some consider-
able advanteges. Since the entry of operational matrices is

@ Springer
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Table 3 Numerical comparisons for Ex. 2

b BMM [5] Present method

N.=6 N, =8 N.=6 N, =8

0.1 0.31830E-8 0.29967E—10 0.35862E—7  0.114469E—8
0.2 0.22137E-7 0.506946E-9  0.15016E—-6  0.332729E—8
0.3 0.37989E—7 0.265453E—-8  0.22456E—6  0.247957E—8
04 0.12781E-6  0.898136E—8  0.16520E—6  0.103320E—8
0.5 O0.11175E-5 0.254436E-7 0.37140E-8  0.353077E-8
0.6 0.45985E-5 0.684357E-7 0.17051E—6  0.271857E-8
0.7 0.14152E-4  0.182284E-6  0.22607E—6  0.14506E—10
0.8 0.36567E—4 0.476192E-6  0.15097E—6  0.142662E—8
0.9 0.83519E-4 0.119350E-5 0.40120E-7 0.486501E-9
1.0 0.17390E-3  0.283062E-5 0.74450E—8  0.266051E—9

Table 4 Numerical comparisons for Ex. 4 10°
X CCM [33] Present method ;-—-aoa.ﬂ ~
10 [ TO~ws 3
N, =5 N,=6 N, =5 N, =6 B - N
E 8-~ _'B'“'—D S.\.\ /()
0.1  0.329E-3 0.593E—4 0.493E—6 0.119E-7 10° b N, n P
02  0.268E-3 0.388E—4 0.142E-5 0.571E-7 g \'h B g et
03  0.215E-3 0.305E—4 0.114E-5 0.186E~7 100 AT T N TN \\B/ 3
04  0.170E-3 0.233E—4 0.631E—6 0.654E—7 I; L
05  0.949E—4 0.170E-5 0.170E-5 0.160E—7 107 5 ” 3 \-\ 3
06  0.633E—4 0.116E-5 0.908E—6 0.523E-7 T \‘\‘*_/-/ TR e
.8 3 ¢ i/
07  0.364E—4 0.680E—5 0.889E—6 0.390E-7 10°F \ Mg
08  0.139E—4 0.246E—5 0.146E—5 0.333E~7 N ":'Em (mj? \«\ E
09  0.616E-5 0.153E-5 0.326E—6 0.208E-7 107 k _G..CCM( (;,z),;,-) 3
1.0 0.302E-4 0.495E-5 0.155E-8 0.140E-9 of — & - CCM (N=6) b
10 1 1 1 1 1 L

0.1 0.2 03 0.4 05 06 07 08 09 1

Fig.5 Comparison of PM and CCM

zeroes, the present method has lower operation count and

shorter computation time. These advantages bring about ~ US this polynomial. The proposed method presents us more
less cumulative truncation errors. Also, from Ex.3, if the ~ convenient numerical results than compared methods from

exact solution is a polynomial, our numerical method give ~ EXs. 2,4 and 5.

Table 5 Comparison of BPM,

X BPM [7] VIM [34] PM
VIM and PM
N, =6 N, =12 k=5 k=10 N, =6 N, =12

0.2 6.6E—8 8.2E-15 2.1E-5 6.3E-7 1.03E-7 6.29E—13
0.4 6.6E—7 5.6E—14 34E—-4 1.0E-5 3.01E-8 1.03E—14
0.6 2.2E-6 1.9E-13 1.7E-3 5.1E-5 6.57E-7 5.24E-13
0.8 5.7E—6 4.7E-13 54E-2 1.6E—4 1.80E—-6 1.65E—13
1.0 1.2E-5 1.0E-12 1.3E-2 3.9E-4 4.11E-6 4.04E—-12

@ Springer



Mathematical Sciences (2021) 15:189-197

197

References

10.

11.

12.

13.

14.

15.

16.

Delves, L.M., Mohamed, J.L.: Computational Methods for Inte-
gral Equations. Cambridge University Press, Cambridge (1985)
Agarwal, R.P. (ed.): Contributions in Numerical Mathematics.
World Scientific Publishing, Singapore (1993)

Agarwal, R.P. (ed.): Dynamical Systems and Applications. World
Scientific Publishing, Singapore (1995)

Wazwaz, A.M.: A First Course in Integral Equations. World Sci-
entifics, Singapore (1997)

Bhrawy, A.H., Tohidi, E., Soleymani, F.: A new Bernoulli matrix
method for solving high-order linear and nonlinear Fredholm inte-
gro-differential equations with piecewise intervals. Appl. Math.
Comp. 219, 482-497 (2012)

Biger, G.G., Oztiirk, Y., Giilsu, M.: Numerical approach for solv-
ing linear Fredholm integro-differential equation with piecewise
intervals by Bernoulli polynomials. Inter. J. Comp. Math. 95,
2100-2111 (2018)

Acar, N.I, Dascioglu, A.: A projection method for linear Fred-
holm-Volterraintegro differential equations. J. Taibah Univ. Sci.
13(1), 644-650 (2019)

Kiirketi, O.K., Aslan, E., Sezer, M.: A novel collocation method
based on residual error analysis for solving integro differential
equations using hybrid Dickson and Taylor polynomials. Sains
Malaysiana 46, 335-347 (2017)

Yiiksel, G., Giilsu, M., Sezer, M.: A Chebyshev polynomial
approach for high-order linear Fredholm-Volterra integro-differ-
ential equations. GU J Sci. 25, 393-401 (2012)

Ebrahimi, N., Rashidinia, J.: Spline collocation for Fredholm and
Volterra integro-differential equations. Int. J. Math. Model. Com-
put. 4(3), 289-298 (2014)

Kiirkeii, O.K., Ersin, A., Sezer, M.: A numerical approach with
error estimation to solve general integro-differential difference
equations using Dickson polynomials. Appl. Math. Comput. 276,
324-339 (2016)

Gilimgiim, S., Baykus, N., Savasaneril, N., Kiirkgii, 0., Sezer, M..;
A numerical technique based on Lucas polynomials together with
standard and Chebyshev-Lobatto collocation points for solving
functional integro-differential equations involving variable delays.
Sakarya Univ. J. Sci. 22(6), 1659-1668 (2018)

Kurt, N., Sezer, M.: Polynomial solution of high-order linear Fred-
holm integro-differential equations with constant coefficients. J.
Franklin Inst. 345, 839-850 (2008)

Reutskiy, S.Y.: The backward substitution method for multipoint
problems with linear Volterra-Fredholm integro-differential equa-
tions of the neutral type. J. Comput. Appl. Math. 296, 724-738
(2016)

Dehghan, M., Shakeri, F.: Solution of an integro-differential equa-
tion arising in oscillating magnetic field using He’s homotopy per-
turbation method. Prog. Electromagnet. Res. PIER 78, 361-376
(2008)

Kiirkgii, O.K.: A numerical method with a control parameter for
integro differential delay equations with state dependent bounds
via generalized Mott polynomials. Math. Sci. 14, 43-52 (2020)

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Giirbiiz, B., Sezer, M., Giiler, C.: Laguerre collocation method for
solving Fredholm integro-diftferential equations with functional
arguments. J. Appl. Math. 682398 (2014)

Giilsu, M., Sezer, M.: Taylor collocation for the solution of sys-
tems of high-order linear Fredholm-Volterraintegro-differential
equations. Int. J. Comput. Math. 83, 429-448 (2006)

Sahu, P.K., Saha Ray, S.: Numerical solutions for the system of
Fredholm integral equations of second kind by a new approach
involving semiorthogonal B-spline wavelet collocation method.
Appl. Math. Comput. 234, 368-379 (2014)

Shahmorad, S.: Numerical solution of the general form linear
Fredholm-Volterra integro differential equations by the Tau
method with an error estimation. App. Math. Comput. 167,
1418-1429 (2005)

Turkyilmazoglu, M.: An effective approach for numerical solu-
tions of high-order Fredholm integro-differential equations. Appl.
Math. Comput. 227, 384-398 (2014)

Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chap-
man and Hall/CRC, New York (2003)

Vanani, S.K., Aminataei, A.: Operational Tau approximation for
a general class fractional integro-differential equations. Comp.
Appl. Math. 30(3), 655-674 (2011)

Oztiirk, Y., Giilsu, M.: An operational matrix method for solving
Lane-Emden equations arising in astrophysics. Math. Methods
App. Sci. 37, 2227-2235 (2014)

Babolian, E., Fattahzadeh, F.: Numerical solution of differential
equations by using Chebyshev wavelet operational matrix of inte-
gration. Appl. Math. Comp. 188, 417425 (2007)

Saadatmandi, A.: Mehdi Dehghan, A new operational matrix for
solving fractional-order differential equations. Comp. Math. Appl.
59, 1326-1336 (2010)

Oztiirk, Y.: Numerical solution of systems of differential equations
using operational matrix method with Chebyshev polynomials. J.
Taibah Uni. Scie. 12(2), 155-162 (2018)

Oztiirk, Y., Giilsu, M.: Numerical solution of Abel equation using
operational matrix method with Chebyshev polynomials. Asian-
Eur. J. Math. 10(3), 175053 (2017)

Oztiirk, Y., Giilsu, M.: An operational matrix method for solving a
class of nonlinear Volterra integro-differential equations by opera-
tional matrix method. Inter. J. Appl. Comput. Math. 3, 3279-3294
(2017)

Rivlin, T.J.: Introduction to the Approximation of Functions. Lon-
don (1969)

Body, J.P.: Chebyshev and fourier spectral methods. University of
Michigan, New York (2000)

Epperson, J.F.: An Introduction to Numerical Methods and Analy-
sis. Wiley & Sons, Inc., Hoboken, New Jersey (2013)

Giilsu, M., Oztiirk, Y.: On the numerical solution of linear Fred-
holm-Volterra integro differential difference equations with piece-
wise intervals. Appl. Appl. Math. Int. J. 7(2), 556-570 (2012)
Shang, X., Han, D.: Application of the variational iteration
method for solving n-th order integro differential equations. J.
Comput. Appl. Math. 234, 1442-1447 (2010)

@ Springer



	An operational matrix method to solve linear Fredholm–Volterra integro-differential equations with piecewise intervals
	Abstract
	Introduction
	Chebyshev polynomials
	Matrix relations
	Matrix representation of differential part
	Matrix representation of Volterra and Fredholm integral part

	Method of solution
	Error estimation and convergence analysis

	Illustrative examples
	Steps of Solutions
	Conclusion
	References




