IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received April 13, 2021, accepted April 29, 2021, date of publication May 4, 2021, date of current version May 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3077518

Model-Based Ideal Testing of GUI
Programs-Approach and Case Studies

ONUR KILINCCEKER 12, (Member, IEEE), ALPER SILISTRE 3, FEVZI BELLI'4, (Member, IEEE),
AND MOHARRAM CHALLENGER 5, (Member, IEEE)

! Department of Computer Science, Electrical Engineering and Mathematics, Paderborn University, 33098 Paderborn, Germany
2Department of Computer Engineering, Mugla Sitki Kocman University, 48000 Mentese, Turkey

3International Computer Institute, Ege University, 35040 izmir, Turkey

*Department of Computer Engineering, Izmir Institute of Technology, 35430 izmir, Turkey

SDepartment of Computer Science, University of Antwerp and Flanders Make, 2020 Antwerp, Belgium

Corresponding author: Onur Kilincceker (okilinc@mail.upb.de)

This work was supported in part by the University of Antwerp under Grant 43169.

ABSTRACT Traditionally, software testing is aimed at showing the presence of faults. This paper proposes
a novel approach to testing graphical user interfaces (GUI) for showing both the presence and absence of
faults in the sense of ideal testing. The approach uses a positive testing concept to show that the GUI under
consideration (GUC) does what the user expects; to the contrary, the negative testing concept shows that the
GUC does not do anything that the user does not expect, building a holistic view. The first step of the approach
models the GUC by a finite state machine (FSM) that enables the model-based generation of test cases. This
is always possible as the GUIs are considered as strictly sequential processes. The next step converts the
FSM to an equivalent regular expression (RE) that will be analyzed first to construct test selection criteria
for excluding redundant test cases and construct test coverage criteria for terminating the positive test process.
Both criteria enable us to assess the adequacy and efficiency of the positive tests performed. The negative
tests will be realized by systematically mutating the FSM to model faults, the absence of which are to be
shown. Those mutant FSMs will be handled and assessed in the same way as in positive testing. Two case
studies illustrate and validate the approach; the experiments’ results will be analyzed to discuss the pros and
cons of the techniques introduced.

INDEX TERMS GUI testing, holistic testing, ideal testing, model-based testing, mutation testing, test

generation, regular expression.

I. INTRODUCTION

The main goal of program testing is to show the presence of
faults, not to show their absence, which Dijkstra [1] expressed
in 1970. This purpose becomes the main acceptance of the
testing community. However, Goodenough and Gerhart [2]
in 1975 proposed a theorem that claims adequately designed
tests could show not only the presence but also the absence
of faults. Based on their theorem, this test with the ability
to show the absence of faults requires being both reliable
and valid. Test results need to be consistent concerning reli-
ability, while this test also needs to be skillfully designed
to detect defects concerning validity. The test approach is
called an ideal test if and only if it satisfies these conditions.
Ideal testing refers to a methodology that satisfies reliability

The associate editor coordinating the review of this manuscript and

approving it for publication was Porfirio Tramontana

68966

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

and validity requirements for testing both the presence and
absence of faults.

Moreover, an exhaustive testing approach utilizing proper
termination criteria can be the ideal test [2]. Chow [3] stated
that a test approach holding reliability and validity conditions
is not possible at the program level. He used the specification
rather than program code to provide a viable solution for
achieving the ideal test and provided formal proof to support
his claim.

However, Chow [3] suggests that the steps required to
obtain the ideal testing can only be achieved with a W-Method
test generation algorithm. Also, he proposes proof that only
satisfies the reliability criterion in his study. While it is
emphasized in his study that it is not possible to obtain the
ideal testing method for the code-based test, it is observed that
reaching the ideal testing for the specification is insufficient
only by satisfying the reliability criterion. The present study
proposes a more systematic approach using the system’s

VOLUME 9, 2021

https://orcid.org/0000-0001-5996-4398
https://orcid.org/0000-0002-2255-1036
https://orcid.org/0000-0002-8421-3497
https://orcid.org/0000-0002-5436-6070
https://orcid.org/0000-0003-3264-185X

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

IEEE Access

specification and meeting both reliability and validity
criteria.

Graphical User Interface (GUI) testing is an evaluation
process for the correctness of the software’s GUL It is a
very significant section of Software Engineering and a crucial
part of the Software Development Life Cycle (SDLC). It is
required to be a section of the development process from the
beginning of application development. In general, software
applications’ correctness and usability are essential and may
constitute a significant reason to choose one software over
another. To attract the users, software developers must con-
sider the User Experience (UX) and GUI of their applications
and their correctness. Flaws or faults in GUIs will result in
dissatisfaction of the customers. Because of this, catching
flaws and hidden faults in an application GUI is critical before
deploying the software.

GUI testing is a process of testing the visual elements
and their design to limit the probable problems. Component
type, size, color, font are just a few examples of those ele-
ments that we can test in an application. More importantly,
the business logic of an application can be tested with GUI
testing via automation. Automated GUI testing can detect
faults in an application with the help of automation tools.
Automated GUI testing is significant because manual GUI
testing is a prolonged and costly process. With test automa-
tion, a significant reduction in test time and cost could be
achieved.

As with other software testing methods, GUI testing
approaches have been suggested to indicate the presence of
a fault. However, GUI originated functional faults are mostly
caused by GUI components. An example of the functional
fault category is called the “Action’ fault in the literature [4],
which is frequently encountered in these components. It can
be given when a GUI user presses a button, and there is no
action or a faulty action. Instead of detecting the presence
of such faults, showing their absence will make it easier for
the tester and prevent the GUI user from experiencing such
a fault. The present study suggests a method that allows
showing both the presence and absence of the fault in this
respect.

Along with introducing a toolchain for automated GUI
testing, this paper introduces a methodology for GUI testing
by addressing functional faults. It uses Holistic Testing (HT)
[5], [6] and Mutation Testing (MT) [7], [8] to achieve ideal
testing of the specification (model) of a GUI instead of its
program code.

Conventionally, the HT offers an integrated perspective
as a joint test of expected and unexpected functions. For
example, for a banking application, it is a function that the
user is expected to be able to log into the system using
the correct personal information successfully. The fact that
the same user can log into the system with wrong infor-
mation is an unexpected function. The HT integrates this
bi-directional perspective into its test methods. The present
method applies the necessary steps for HT to a model-based
testing approach. For this, it uses different and specific

VOLUME 9, 2021

models that contain expected and unexpected functions.
While the conventional HT uses models that use expected
functions to test unexpected functions in certain studies,
the current study uses a separate model for each unexpected
function. In this way, it is possible to obtain test suites specific
to each unexpected function. While advocating testing all cer-
tain unexpected functions with a single set of tests, the current
study argues that different sets of tests are required for each
different function.

MT, a technique for measuring test effectiveness [9],
[10], is a fault-oriented testing technique. It utilizes mutants
acquired by seeding faults into the specification (model)
or directly to the program using proper mutation operators.
To measure test inputs’ effectiveness, the mutants are killed
or survived related to the test execution of those test inputs on
those mutants. Finally, the mutation score is calculated based
on the results of those executions [11]. The MT was origi-
nally introduced to test code-based testing methods. Mutation
operators are varying specific to systems written in different
languages. For example, there are a total of 24 operators for
object-oriented errors with the MuJava tool for the Java lan-
guage. Adaptation of MT to specification-based test methods,
unlike its use for code-based test methods, is among current
research topics. This approach is commonly referred to as
model-based mutation testing (MBMT) [6], [12]. Mutation
operators are applied to the model in the MBMT. Therefore,
mutation operators are diversifying for different models.

The current work uses the code-based mutation test
(CBMT) for evaluation while using MBMT to obtain
model-based mutants. Unlike conventional MBMT, mutant
models are used for test generation in the current work.
Moreover, traditional CBMT approaches randomly generate
mutants using appropriate mutation operators. This results
in a lot of redundant mutants that have nothing to do with
real faults. Also, some mutants may be equivalent to the sys-
tem under test. Eliminating equivalent mutants is one of the
major challenges of mutation testing. While similar situations
occur in MBMT approaches, randomly generated mutant
models in MBMT may also cause non-determinism. Thus,
identifying equivalent and non-deterministic mutant models
in MBMT is a challenging process. The present study follows
a more systematic and novel approach for the difficulties that
arise in CBMT and MBMT using mutant and code-based
mutants specific to the real faults that may occur in the
system.

The proposed approach is called Model-based Ideal Test-
ing (MBIT). This methodology is rather general and can be
adapted to other application domains. We have other works on
applying MBIT to the validation of hardware design. The cur-
rent work adopted the HT because it is an integrated and com-
plementary view for which it uses the negative testing (NT)
aside from the positive testing (PT). The HT acquires the
legal (expected) test inputs using the fault-free model, applied
to the GUI under test for the PT. Moreover, it acquires the
illegal (unexpected) inputs using the mutant model, which are
also applied to the GUI under test for the NT.

68967

IEEE Access

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

The experimental and theoretical studies carried out within
the scope of this study are designed to answer the research
questions (RQs) given below:

1) Is it practically and theoretically possible to offer an

ideal testing [2] approach for GUI testing?
« What types of systems can be tested in this way?
« What types of faults can be targeted with the pro-
posed approach?

2) What is the cost of applying this approach to GUI
testing?

3) How is scalability affected?

Considering the experimental and theoretical studies car-
ried out in this work, the research questions mentioned above
are examined in detail in Section VI-B.

Our previous conference paper [13] applied MBIT for
validation of hardware design to target specific design fault.
It is only evaluated on a demonstrating example with a lit-
tle experimental setup without comparison. It also neglects
two essential selection criteria in the MBIT. In the current
work, we adapt and extend MBIT to GUI testing for tar-
geting GUI-related functional faults and evaluate MBIT on
mature case studies, including comparison with three differ-
ent approaches. The current work uses two selection criteria
for the algorithmic correctness of the models. To this end,
the current work provides the following contributions:

1) Unlike conventional usages of the HT and MT, they are
adapted to achieve the ideal test suites for GUI testing
for the presence and absence of faults

o The HT is adapted by offering different test suites
for each different fault

o The MT is customized by acquiring mutants for
test generation

o A methodology is provided to target functional
faults for GUI testing, including an informal proof
for being MBIT

2) An experimental evaluation for the current methodol-
ogy is presented

o Two mature GUI case studies are used to evaluate
the current work

o Three different test generation approaches and
tools are utilized for comparison

3) A tool support is developed and provided

o The MBIT is partially automated for GUI testing
o The toolchain including examples and details are
provided in a bundle!

By providing an experimental study with two case studies,
a comparison was made for a total of four test generation
approaches, including an industry scale tool called Graph-
walker. Using the results, the proposed approach has been
evaluated comparatively.

The rest of the paper is organized as follows: Section II
summarizes the related work on the HT, code and
model-based GUI testing, GUI testing, ideal testing, and
PQ-Analysis. The proposed methodology is presented in

IMBIT, https://kilincceker.github.io/MBIT4SW/

68968

Section III, including detailed stages and used notions.
Section IV presents two case studies for experimental eval-
uation. Section VI presents a discussion on RQs and threats
to their validity. Finally, Section VII concludes the paper and
presents the possible further studies.

Il. ELEMENTS OF THE APPROACH AND RELATED WORK
This section presents related work and background informa-
tion for the current work. Holistic testing (HT), code-based
MT, MBMT, GUI testing, ideal testing, and PQ-Analysis are
given in the following subsections.

A. HOLISTIC TESTING (HT)

The HT proposed by Belli [5] requires the testing of the
system’s desirable and undesirable features by using the PT
and NT. In the PT, a system is checked against desired
outcomes by using legal (expected) input variables. In the
NT, a system is checked against undesired outcomes using
illegal (unexpected) input variables. For example, consider
testing a website for the user profile page; a tester enters
a numeric variable for testing a box corresponding to the
social security number in the PT. However, a tester enters
the alphabetic variable for testing the same box in the NT.
In this example, a numeric variable is a valid input, whereas
an alphabetic variable is an invalid input.

Belli et al. [6] adapted the HT to model-based test-
ing by generating legal (expected) and illegal (unexpected)
test suites using models. They propose a graph-theoretic
approach for modeling the system under test, and this model
is called the Event Sequence Graph (ESG). They acquire test
inputs from the ESG model in the PT and ESG’s comple-
ments in the NT. In ESG’s complements, all illegal (unex-
pected) features are included. Test inputs acquired from
this complement graph contain illegal (unexpected) input
variables representing these undesired functions. The HT is
already used to model and test graphical user interfaces [14],
web service composition [15], web application [16], inter-
active systems [17], hardware designs [18], and android
applications [19].

We utilize holistic testing in the current work to show the
presence and absence of specific faults concerning positive
and negative testing.

B. CODE AND MODEL-BASED MUTATION TESTING

The code-based mutation is applicable in white box testing,
where the source code of the software under test is available.
Moreover, MBMT is appropriate for black-box testing in
which the source code is not available. There is another
approach called grey-box testing in which both source code
and model are available.

DeMillo et al. [8] proposed the MT in their seminal paper.
The MT is a fault-oriented technique that uses a given soft-
ware program’s mutation. A mutation contains a simple fault
caused by making small changes in the original software
program. A generated test data is executed on each mutant,
and the results are compared with the result of the original

VOLUME 9, 2021

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

IEEE Access

program’s test execution results. If the result of the test data
differs from the result of the original test data, then the cor-
responding mutant becomes dead; otherwise, it is still alive
because the test data result does not make any difference.
Therefore, the two cases could occur. The test data does not
contain enough sensitivity to distinguish between the mutant
and the original programs, so the mutant is equivalent; thus,
there is no test data to detect the fault.

DeMillo et al. [8] emphasized the power of the coupling
effect that states the test data that distinguish only simple
faults could also be sensitive to cover more complex faults.
The MT method is a powerful and elegant method that is
applied to both software and hardware testing [13], [24]. The
only consideration is the cost of this method, which increases
very quickly related to the program’s size that directly affects
the number of the mutants. A comprehensive literature review
in the form of a ““mini-handbook” -style road-map for the MT
is given in [25].

King and Offutt [20] presented an MT framework with
the 22 mutation operators for the Fortran 77 version of the
Mothra system, a software testing environment. The Mothra
achieves the highest mutation (adequacy) score for the set
of test cases executed on mutant and original programs. The
Mothra system generates 970 mutants for a 27-line program.
These results are computationally and spatially expensive due
to the excessive number of mutants. Therefore, the Mothra
handles this problem by utilizing incremental compilation.

Wong and Mathur [26] offered an empirical study to reduce
unacceptable computational expenses due to the number of
mutants. One of the proposed solutions is randomly selected
from a subset of all mutants (x). Earlier investigation shows
that a random selection of 10 to 100 of all mutants makes
dramatic reductions in requiring efforts while keeping the
MT’s effectiveness. They increase x by 5 up to 40 to examine
the cost and power of the MT. Another offered solution is
constrained mutation that requires selecting a few specific
types of mutants and neglecting the others. They state that
proper selection of a small set of mutant types significantly
lessens the MT’s complexity and still keeps nearly the same
fault detection ability of the MT.

Ma et al. [21] introduced the MuJaVa tool for the MT,
including the GUI of the Java programming language for both
method and class-level mutation with related levels of muta-
tion operators. The method-level mutation operators change
the expressions by replacing, deleting, and inserting opera-
tors. The class level mutation operators are responsible for
object-oriented attributes: inheritance, polymorphism, and
dynamic binding. The MuJava contains the mutant generator,
including an engine to detect equivalent mutants, the mutant
executor, and the mutant viewer components. However, it is
reported that the MuJava is still very slow for a large set of
mutants.

Jia and Harman [27] presented a comprehensive analysis
and survey for the MT. It is also mentioned that the new trend
in the MT is going to be the semantic effects of mutants rather
than syntactic effects.

VOLUME 9, 2021

Fabbri et al. [22] provided an MT technique to validate
state chart-based specifications. The technique uses a set of
mutation operators: the finite state machine, extended finite
state machine, and state charts-feature-based operators [22].
The set contains 37 mutation operators. They also utilize
an abstraction strategy, namely the Hierarchical Incremental
Testing Strategy (HITS), to make the technique more feasible
for conducting a modular and incremental testing activity.
However, they also state that tool support becomes mandatory
for testing large-size statecharts.

Belli and Beyazit [23] made a comparison of the
event-based and state-based approaches for MBMT. The
event-based approach uses the event sequence graphs (ESG),
[23] whereas the state-based approach uses the finite state
machine (FSM). The comparison criteria are mutation oper-
ators, coverage criterion, and test generation method. The
mutation operators are sequence insertion, sequence omis-
sion, event insertion, and event omission for the ESG model,
while transition insertion, transition omission, state insertion,
and state omission are used for the FSM model. The coverage
criterion is event pair coverage for ESG and transition cover-
age for FSM. However, the test generation method for spe-
cific coverage criteria roughly requires solving a well-known
problem, namely the Chinese Postman Problem (CPP). The
CPP requires visiting every edge of a graph to find a shortest
path. They report that the FSM-based test sequences com-
prise more redundancy and cover 40 to 100 more failures.
However, the cost becomes roughly 52 to 122 higher. The
ESG covers 29 to 50 fewer failures while it costs roughly
30 to 55 less due to event sequences clustering. Experiments
conclude that the FSM-based test results are more effective
for covering more failures because of the redundancy.

Belli et al. [6] proposed an MBMT method providing
proper mutation operators, namely omission and insertion
operators, evaluated fault detection ability of test set acquired
using the mutated model, and surveyed the literature on the
MBMT. They validate the effectiveness of three examples
that are industrial and commercial real-life systems. Exper-
iments show that the insertion operator is more efficient than
the omission operator because it reveals more faults.

Kilincceker et al. [13] proposed a hybrid MT approach that
combines code-based mutation testing and MBMT to validate
the hardware design. They use code-based mutation for test
execution. They select the regular expression (RE) model for
test generation due to its algebraic and declarative power.
They also theoretically and experimentally proved that the
proposed method satisfies the conditions of Goodenough and
Gerhart’s ideal testing [2].

To summarize the available studies in the scope of code
and model-based mutation testing, we have provided a com-
parison table, Table 1, in which the mutation operators and
effectiveness of each approach have been elaborated.

We adapt the code-based mutation testing approaches pre-
sented in [8], [20]-[22] to obtain code-based mutants from
the original program using mutation operators. The authors
of [6], [22], [23] offer model-based mutation testing that we

68969

IEEE Access

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

TABLE 1. Comparison of mutation testing methods.

Method Code and Model Mutation Operator Effectiveness

Code-Based Mutation [8] Fortran-like programs Logical Expression replaces Usage of simple faults to detect complex faults via coupling effect
[10] VHDL programs The ten mutation operators N/S
[20] Fortran Programs The twenty-two mutation operators Providing The Mothra software testing environment
[21] Java programs twelve method level and twenty-eight class-level operators N/S

Model-Based Mutation | [22] Statecharts Eight for FSM and eleven for Extended FSM Providing Proteum/ST software testing environment
[23] Event Sequence Graph (ESG) | Insertion, Omission, Replace operators Comprehensive comparison of event-based and state-based models
[6] Event Sequence Graph (ESG) | Insertion, Omission, Replace operators Proposing a MBMT approach with three real life case studies.

Hybrid [13] Finite State machine (FSM) Semantic mutants operators which require higher order mutation | Combine the model and code-based mutation testing

utilize in the current work to construct model-based mutants
from the original (fault-free) model by using model mutation
operators given in [18] for the FSM model. We use the similar
idea proposed in [13] as being a hybrid approach by applying
code-based and model-based mutation testing methods at the
same time.

C. GUI TESTING

The process of testing the GUI-oriented of software applica-
tions, i.e., one that has a GUI front-end and there are available
events(“‘enter a text”, “click on a button”, ‘“select an item
from a dropdown’”) that can be applied on GUI widgets (e.g.,
“text-field”, “button”, “dropdown’’) to perform actions in
the system, is called GUI testing. The GUI testing process
can be carried out effectively through a well-selected model,
i.e., Finite State Machine (FSM) [28], Event Flow Graph
(EFG) [29], [30], Event Sequence Graph (ESG) [5]. The
FSM, EFG, and ESG are graph-based models. Optimization
and traversal algorithms need to be applied to them to produce
test sequences.

Shehady and Siewiorek [28] implemented a formal way
to describe a GUI, called a Variable Finite State Machine
(VESM). The VFSM is then transformed into an FSM to
be used in test generation using a well-known W-Method,
initially introduced by Chow [3]. The W-Method requires
a completely defined FSM, so there could be many NULL
transitions within the model. Although the VFSM requires
fewer states than the FSM, the proposed algorithm runs on a
large number of states of the FSM.

ESG is proposed by Belli [5] to be used in modeling the
GUI. Additionally, a testing method is also proposed to be
used in this novel model. The ESG describes the events at
the vertexes and the relationship of the events at the edges
of the given GUI. Testing methods in [5] merge the PT and
NT to obtain a holistic viewpoint. In the NT, the system is
tested against illegal inputs (incorrect behavior). In the PT,
it is tested against legal inputs (correct behavior) in compli-
ance with user expectations. The suggested approach is thus
generic, describing all correct and incorrect behaviors.

Memon et al. [29] presented a test generation algorithm
based on artificial intelligence-based planning using the EFG
model. They also propose the generation of a hierarchical
model from the given GUI structure. The EFG model is
constructed, and then the planning algorithm is implemented,
which involves the specification of a collection of operators,
an initial state, and a target state. Then by considering GUI
events and interactions, the algorithm produces test sequences

68970

between the initial and target states. They are also using GUI
model decomposition to deal with the issue of scalability.

Memon [30] recast the existing idea of event-based GUI
testing via model-based techniques called event-space explo-
ration strategies (ESES). He decreases the cost and effort of
event-flow techniques and automates the procedure to enable
extensive experiments and simplify the model creation step.

Xie and Memon [32] presented a new concept called
Minimal Effective Event Context (MEEC) and used this
in an empirical way for fault detection. Because generally,
GUIs are implemented as a collective of widgets with their
event-handlers and response to event-handlers. Generating
long test cases becomes expensive. The purpose of modeling
MEEC is to create an abstract model of GUIs and then gen-
erate the shortest ““potentially” problematic event sequences
for test case generation.

Huang er al. [33] developed a method to repair GUI test
suites, which suffer from in-feasibility because graphs are
generally used to acquired test cases, and they are created
from all possible sequences of events. There is a possibility
that an event inside these kinds of test sequences may not
be available for execution and terminate early. They used
a genetic algorithm to fix these problematic test suites and
increase test coverage.

Belli et al. [34] discussed and applied a case study about
GUIs reliability and selecting a GUIs reliability model in
human-machine systems. In the provided work, they indicate
that selecting an appropriate modeling technique for GUI
testing affects the quality of the assessment process, hence
the software.

Banerjee et al. [35] researched GUI testing articles and
studies and matched them with a systematic mapping tech-
nique. They defined selection criteria for studies from the
pool of 230 articles written between 1991 and 2011 about
GUI testing. They classified studies, provided an overview
of existing approaches, and spotted areas that require more
study and research.

Belli ef al. [14] presented a study about reviewing and
summarizing existing works on model-based GUI testing.
They also provide the PT and NT with their examples taken
from real projects. They gave examples from conventional
and modern techniques for model-based GUI testing. They
also covered test-case construction and optimization of the
process.

Alegroth and Feldt [36] provide a case study including
comprehensive and qualitative work for visual GUI test-
ing (VGT) in industrial practice. The study is carried on

VOLUME 9, 2021

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

IEEE Access

TABLE 2. Comparison of GUI testing methods.

Method| Model Coverage Criteria Pros Cons
[28] Variable Finite State Machine | N-switch set cover Covers nearly all predefined | Results excessive number of re-
(VFSM) faults dundant test cases
[31] Finite State Machine (FSM) Complete interaction sequences (CIS) | N/S N/S
[5] FSM and RE Complete interaction sequences (CIS) | Testing GUI with the PT and | N/S
NT
[29] GUI Tasks N/S Intuitively and easily scalable | Tasks are chosen by test de-
for larger GUIs signer that may yield inade-
quate coverage
[30] Event Flow Graph (EFG) N/S Quickly generate test cases | N/S
without scalability problem
[32] Event Interaction Graph | Genetic algorithm—CIT coverage Increase the feasible coverage | N/S
(EIG) of these suites

well-known music streaming application company, Spotify.
They attempt to answer three research questions about prob-
lems, challenges, and limitations for adaptation of automated
VGT on the company using the Sikuli [37] test automa-
tion tool and Graphwalker [38] model-based testing tool at
the industrial level. They also explain why the VGT was
abandoned in the company due to organizational changes
based on experiences. Finally, they present an automated GUI
testing solution for Spotify company by focusing on adapta-
tion of Graphwalker. However, they neglect effectiveness of
Graphwalker than others. The current work not only adapts
the Grapwalker to proposed methodology but also provides
experimental evaluation over others.

Besides automated methods based on test automation
tools, some works utilize machine learning methods, espe-
cially deep reinforcement learning [39], [40] for automat-
ically traversing the GUI. Eskonen et al. [39] present an
image-based deep reinforcement learning method for the
exploration of GUI structure. The introduced method mainly
focuses on learning GUI behaviors by feeding screenshots
of the GUI to the neural network and letting the learning
method explore the GUI events. They also compare the explo-
ration efficiency of the algorithm with Q-learning and random
exploration methods. However, they do not provide an appro-
priate experimental evaluation of how the method effectively
catches faults. Similar to [39], Adamo et al. [40] presents
a reinforcement learning method for automated GUI testing
based on exploration. They utilize a Q-learning algorithm
that outperforms the random exploration approach based on
experimental evaluation concerning only code coverage effi-
ciency. They also do not provide any information regarding
fault coverage.

Jan et. al [41] present a test generation approach to
exploit security vulnerabilities of web application repre-
sented by GUI. They offer a security attack mechanism
addressing SOAP communication of web application based
on search-based techniques. They analyze four different algo-
rithms and two fitness functions and provide a comprehen-
sive experimental work based on a large set of case studies
including two industrial examples. Based on experimental
evaluation, their automated approach is effective to generate
such security vulnerability of web application.

In addition to GUI testing of web applications, the auto-
mated test generation for mobile applications is having

VOLUME 9, 2021

increasing interest in both academia and industry due to
becoming indispensable part of our daily life of smart phones.
Arnatovich and Wang provides [42] a systematic literature
review for automated GUI testing of mobile applications.
Jiang et al. [43] carry out a systematic study on factors affect-
ing GUI testing of Android applications. Salihu et al. [44]
offers an automated GUI testing approach (called AMOGA)
for mobile application based on static-dynamic model gen-
eration. The AMOGA tool based on model-based testing
utilizes static ana dynamic analysis to construct model
(called Windows Transition Graph (WTG)) of mobile appli-
cation. It uses a crawling algorithm to explore GUI states
within a depth first search manner. It achieves 0.90 mutation
score in the experimental part for which it uses MuDroid,
a mutation testing tool, for mutant generation of 15 mobile
applications.

Ardito et. al [45] introduce a testing framework which
contains a test script language (1) for writing generic test
scripts, a modeler (2) to define activities and widgets of the
application, a classifier (3) to determine type of the applica-
tion under test, an activity classifier (4) to define objective of
the screens, and an adapter (5) for execution of implemented
test scripts on the application. They utilize a deep neural
network for the classification phase of the framework that
are evaluated on 32 different mobile applications. However,
a complete evaluation of the proposed framework with other
approaches are missing and the used metrics for experiments
are poor.

Table 2 presents a comparison among the studies related
to GUI testing, focusing on each approach’s advantages and
disadvantages. It also gives the models used in each study and
the coverage criteria for the study.

In the current work, we model GUI under test as given
in [46] and partially in [28]. Then, we use the FSM model
for a mutant generation. However, we convert them to the
RE model for test generation that is different from [28],
[46]. Our modeling approach is more similar to [5] in which
the authors do not offer a test generation approach that
we propose in the current work. In [30], [32], the authors
use a very different modeling methodology than the current
work using various node types for different GUI events. The
advantages and disadvantages of these different models for
GUI testing are elaborated in [47]. The main bottlenecks of
the exploration-based solutions [39], [40] are unnecessary

68971

IEEE Access

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

test inputs and automatic exploration of GUI events without
knowing the correct input(s) to trigger a fault. However,
the exploration-based methods are valuable for automatic
extraction of the GUI model (called GUI ripping), accompa-
nied by static analysis methods to eliminate low-quality and
redundant test suites. Therefore, the current work focuses on
the model-based testing approaches due to their robustness
and determinism. In contrast to the current methodology,
the approaches in [44], [45] provides a solution for GUI
testing of mobile applications.

D. IDEAL TESTING

Goodenough and Gerhart [2] define the ideal test based on
its principal conditions. The theorem states that in the case
of test data satisfying these conditions, namely reliability
and validity, this test data enables testing the absence of
faults. They also provided proof of this fundamental theorem
in [2]. Howden [48] introduced a testing method for analysis
of paths, namely P-Testing, and evaluated the ideal test in
terms of reliability condition. The reliability of P-Testing is
checked against different types of common faults. However,
Howden [48] stated that P-Testing is reliable or almost reli-
able for subset faults not covering all faults. Bouge [49]
extended the ideal test’s current conditions by offering addi-
tional features, namely bias and acceptability. Bouge [49]
also provided a detailed relation of program testing and
program proving for bias and acceptability conditions.
Langmaack [50] presented sufficient and readable proof for
compiler verification, considering the ideal test for verifica-
tion and software testing. The main inspiration of the current
work is based on the seminal work of Goodenough and
Gerhart [2].

Before the informal definition of the ideal testing, some
terms require to be clarified. These terms are Program (p),
Test case (t), Selection criterion (c). Program (p) pairs
domain (D) to range (R) as being a function. Test case (t) is
an input (i) and expected output (o) tuple. Selection criterion
(c) is a requirement to select some test cases for a specific
reason (e.g., fault detection).

The following definition of the ideal test is summarized
[51] based on the given terms above.

Definition 1: OK(d) implies the availability of the outcome
of (t) as being a predicate based on p(t), execution of t on the
program p. OK(d) = true if and only if (t) is an adequate
output 0. OK(d) = false if and only if (t) is not adequate
output o.

The OK(d) examines the adequacy of a test case. In case
entire test cases become adequate, T turns out successful in
terms of the given definition below.

Definition 2: Successful(T) characterizes an achievement
of a set of test cases (#;) that belongs to T. T is a suc-
cessful test if and only if (#) belongs to T and OK((#)).
Successful (T) = true if and only if t belongs to T and OK(t)
or Successful (T) = false test if and only if ts belongs to T
and not OK((ty)).

68972

OK(d), Successful(T), Fail(T), Satisfy(t,c) as being pred-
icates are supported to characterize reliability and validity
conditions to attain an ideal test.

Definition 3: Reliable Criterion refers to consistency for
the chosen test suite demonstrated by Reliable(T).

Definition 4: Valid Criterion refers to the capability of the
chosen test suite for revealing the faults, demonstrated by
Valid(C).

Therefore, we can define the ideal test by reliability and
validity criteria.

Definition 5: A test (t) is called an ideal test if and only if
for all ts belongs to T satisfying criterion ¢ that is both reliable
and Valid.

E. PQ-ANALYSIS

PQ-Analysis proposed by Eggers and Belli [52], [53] indexes
the provided RE to obtain missing state information during
conversion from the FSM. Moreover, the context of the RE
elements can cause ambiguity due to the same symbol appear-
ing in different positions, which is copied after PQ-Analysis
using indexing of the symbols. The primary purpose is to
extract information regarding the analyzed system’s fault
tolerance capability using indexing and context tables (CTs).
In the current work, it is utilized to increase the ability of
test sequences acquired from CTs. The PQ-analysis contains
seven steps, for which we provide the details, with an exam-
ple, in the appendix in section VII. We adopt the PQ-Analysis
as a base of our test generation approach using tables result-
ing from the PQ-Analysis. Test generation from these tables
results in more efficient test suites than from the others based
on different models, such as FSM, due to usage of redundancy
provided by the PQ-Analysis.

Ill. PUTTING THE ELEMENTS OF THE APPROACH TO
WORK

In the current section, we present the proposed approach,
including necessary information. Test preparation and Test-
ing steps are provided in Section III-B and III-C, being two
main MBIT stages, offer necessary information supporting
sub-steps. We use the FSM and the RE models as defined
in [54] the current work.

In Fig. 1, the general flow of the current methodology is
shown. The test preparation step follows the model and test
generation sub-steps. The testing stage follows test execution
and test selection sub-steps.

In Fig. 1, the straight lines perform the paths that are
utilized by the current work. However, the dashed lines show
other options that can be employed. For example, the FSM
of the GUI program can be obtained from the specifica-
tion by the designer and then given to the PQ-Analysis
tool.

A. THE MBIT AND IT'S PROOF

The MBIT contains test preparation and test composition as
being the main stages for which we present the following
information.

VOLUME 9, 2021

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

IEEE Access

Compact
RE

Test Test
Generation Compaction

Legend

0]

PQTestGen ul

]

Test
Sequences

Process

1

Test Suite

0

Test Suites

deal Test Suites

Tesilng

Selenium Test Script

GuUI

0

Selected flow

Optional flow

FIGURE 1. General flow of the current methodology.

1) TEST PREPARATION

We consider that an FSM as being a model provided or
obtained from the GUI or its specification. The provided or
obtained FSM model requires to be deterministic. The tester
needs to be careful to avoid a non-deterministic model that
causes invalid test sequences resulted from the test generation
algorithm.

We utilize the MT to acquire mutant models for
fault-specific models by mutation operators [18]. Then,
we construct the CTs from transformed the RE. Then, we gen-
erate test suites based on these tables.

Finally, we obtain positive test suites (PTSs) and negative
test suites (NTSs) using these suites.

2) TESTING

The PTSs are used to test the original (fault-free) GUI pro-
gram on which these suites execute. For criterion 1, we select
test sequences that are “passed’. The set of these “passed”
test sequences are called 7.

For criterion 2, the PTSs are used to test the faulty GUI
program to acquire ““failed” test sequences that are executed
on this GUI program. The set of these ““failed” test sequences
are called T55.

In the NT, the NTSs are used to test the mutant (faulty) GUI
program on which these suites execute. Then, we collect test
sequences that are “failed” concerning criterion 3. The set of
these “failed” test sequences are called 7S3.

For criterion 4, the NTSs are used to test the mutant (faulty)
GUI program to acquire “‘passed” test sequences that are
executed on this GUI program. The set of these “‘passed’ test
sequences are called 7'4.

Definition 6: Model-based Ideal Test (MBIT) suite: The
resulting test suite T becomes MBIT suite if and only
if any t(M) belonging to T satisfying a certain Crite-
rion C; or Cy or CzorCy4 that are reliable and valid.
(See definitions 3 and 4)

VOLUME 9, 2021

TS1, TS>, TS3, and TS4 (Test Suites) are acquired with
respect to C1, C, C3, and Cy, respectively.

The reliability and validity requirements will be examined
to show that provided test suites are an ideal test by means of
the following 2 lemmas including their proofs;

o Lemma 1 (Reliability): TSy, TS2, TS3, and TSs (Test
Suites) for the PT and NT are either “pass” or “fail”” for
all test cases contained in the corresponding test suites.

Proof:
PT:
Any t; belonging to T acquired from criterion Cj is
Successful(z;). Thus, C; is reliable from definition 3.
Any f; belonging to T acquired from criterion C; is
Fail(#;). Thus, C; is reliable from definition 3.
NT:
Any f; belonging to T acquired from criterion C3
is Fail(#¢). Thus, C3 is reliable from definition 3.
Any t; belonging to T acquired from criterion Cy is
Successful(#;). Thus, Cy is reliable from definition 3.

o Lemma 2 (Validity): TSy, TS, TS3,and TS4 (Test
Suites) are able to detect the faults or testify their
absence.

Proof:

Any ¢; belonging to T acquired from criterion C; is
OK (#;). Thus, C; is not valid from definition 4. Any
belonging to T acquired from criterion C; is not OK (#)).
Thus, C; is valid from definition 4. Any #; belonging to
T acquired from criterion C3 is not OK (#). Thus, C3 is
valid from definition 4. Any #; belonging to T acquired
from criterion Cy4 is OK (7). Thus, Cy4 is not valid from
definition 4.

o Theorem: TS, and TS, (Test Suites) selected using cri-
teria CoorCz constitutes an MBIT suite based on the
definition 5 given in Section 2.1.

Proof: Lemma 1 and Lemma 2 show that TS, and TSy
are ideal suites and constitute MBIT suites.

68973

IEEE Access

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

1 Open the SUT (GUI of a web page);
2 while (check all events of the SUT for all pages) {
3 for (each elements (events) at the currentPage){
4 if (event==radio button){
5 click =radio button;
6 Model=AddEvent(click);
7 }else if (event== edit field){
8 click=edit field ;
9 Model=AddEvent(click);
10 telse if (event== text box){
11 click=text box (addRandomText);
12 Model=AddEvent(click);
13 }else if (event==combo box){
14 click=text box;
15 Model=AddEvent(click);
16 }else if (event== button){
17 click=text box;
18 Model=AddEvent(click);
19 }
20 }
21 currentPage = nextPage;
22}

Listing 1. Pseudocode of the model generation algorithm for a web page.

oo ||/ rou HW_L

A

Y4 2 : FSM Lé RE :

<«—Model and Mutant Generation———

PQ-Analysis

PQ-TestGen

«—Test Generaton———>

Legend

L Gul Model Process

FIGURE 2. Test preparation step.

B. TEST PREPARATION

The GUI under test is represented by an FSM and then
converted to a corresponding RE by the JFLAP tool shown
in Fig. 2. To acquire mutants, artificial faults are seeded into
the FSM. Each mutant can contain one or more faults.

An FSM model can be automatically generated from the
specification of the GUT, or one of the GUI ripping methods
[55], [56] automatically generates the proper model by using
reverse engineering techniques. It is assumed that the specifi-
cation is missing, and we generate the model of the GUI under
test manually using the JELAP.?> We provide pseudo-code for
generating a model from a GUI of a web page in listing 1. The
algorithm given in listing 1 starts opening the system under
test (SUT). Then, it proceeds by checking all elements of the
current page of the SUT. These elements can be “radio but-
ton”’, “edit field”, “text box’’, “combo box”’, or “button”.
Once selecting the current element (event), the corresponding
entry is added to the model with its input and output response.

2JFLAP, Available online at http://www.jflap.org/

68974

FIGURE 3. An FSM example.

After finishing all elements on the current page, the algorithm
proceeds to the next page. This procedure continues until
exploring all the elements for all pages of the SUT. While
exploration carries on, the corresponding responses are added
to the model. Once the exploration is finished, the model
generation is also finished.

For example, let us suppose that SUT is Gmail login page.?
Once the user clicks this page, he/she has got several options,
such as a textbox for user email or telephone number. The
user requires to enter his/her email account into this text box
to proceed next step, or he/she can create a new account by
clicking the “create account” button. Let us again suppose
that the tester (the person responsible for the model gener-
ation) enters the correct email address to the textbox, then
he/she needs to add this event to the model with Email entry
and its corresponding response of the SUT to this action.
This procedure must be applied for all elements of the login
page by the tester and added to the model with corresponding
responses. Finally, the tester constructs the Gmail login page
model once he/she finishes all elements of this web page. The
manual construction is straightforward and easy for this kind
of login page that is the main bottleneck of automatic model
generation approaches due to missing correct information
of user accounts. Therefore, the automatic model generation
approach requires user intervention to cope with this kind
of problem. Another advantage of manual construction is to
decide the capacity of the model by neglecting unnecessary
features.

We provide a formal definition of a Finite State
Machine (FSM) below to clarify further steps.

Definition 7: Finite State Machine (FSM) is defined by
5-tuples (S, >, 8, o, F) in which; S is a finite set of states,
> is a finite set of symbols, § is a state transition function g
is the initial state is an element of Q, and F is a finite set of
final states is a subset of Q.

Example 1: An FSM example is defined by (s0, s1, x, y, z,
8, 50, s1), where § = {5(s0, x) = s0, §(s0, y) = sl, §(sl, z)
=1, §(s1, x) = s0} is a transition function. Fig. 3 represents
the FSM graphically.

We utilize insertion, omission, or replacement of the
state(s) or transition(s) of the FSM to acquire mutants. The
following definitions, including examples, are presented to
elaborate on how to acquire mutant FSM models.

Definition 8: Insertion operator (I0) adds an extra transi-
tion(s) or state(s) into the FSM.

Example 2: 10(s0, z, sl) refers to adding an extra “z”
transition from sO to sl, or 10(s0, z, s2, x, sl) refers to

3Gmail Login Page, Available online at https://gmail.com/

VOLUME 9, 2021

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

IEEE Access

adding an extra state s2 between s0 and s1 with “z” and “x”
transitions.

Definition 9: Omission operator (OP) deletes a transi-
tion(s) or state(s) from the FSM.

Example 3: OP(s0, x, s0) refers to deleting the transition
“x”’, or OP(s1) refers to deleting the state s1 with correspond-
ing transitions.

Definition 10: Replace operator (RO) substitutes a transi-
tion(s) or state(s) from the FSM.

Example 4: RO(s0, x, s0, z) refers to replacing the tran-
sition “x” with “z”, or RO(s1, s2) refers to replacing the
state s1 with s2.

To model semantic faults, the mutants require higher-order
mutation, in contrast to inserting a single fault in the model
or code to create first-order mutants. In this higher-order,
mutation applies the mutation operator more than once [57].

Once we acquire mutants, we transform the resulting FSM
model into the RE models using the JFLAP tool that provides
a more compact RE than the PQ-Analysis. The procedure
of the FSM to RE conversion for the PQ-Analysis tool is
presented in the Appendix section, including the pseudo-code
for the conversion. The PQ-Analysis tool generates CTs that
accommodate forward and backward information. This infor-
mation is useful for generating more efficient test suites to
increase the possibility of covering the faults because cover-
ing the only symbol without its right and left context does not
guarantee the coverage of the modeled fault(s).

We use the PQ-TestGen [13] tool for test generation. The
CT contains two different and independent tables, namely
forward right and left CT. Therefore, we have two sets of test
sequences from the forward right and left tables. We select
the forward right table considering any overlapping between
the two tables. PQ-TestGen [13] parses the table and then tra-
verses, starting from the initial symbol in a depth-first search
manner in the first phase. The traversing finishes once the
final symbol is reached to construct complete test sequences.
However, some sequences can be incomplete because of a
different symbol in the final test suite by reaching cover-
age criteria to assess adequacy. For those partial sequences,
the algorithm uses already complete sequences to complete
them in the second phase. The algorithm utilizes a com-
paction procedure to eliminate redundant sequences in the
final phase while keeping the coverage criteria in a predefined
ratio.

PQ-TestGen [13] initiates from the opening symbol “[”
and selects the next symbol from its forward right context.
Test generation continues until assessing coverage criterion
satisfied when all different symbols are in the resulting test
suite. Kilincceker and Belli in [58] define the coverage cri-
teria depending on the CT and extensively analyze their
effectiveness for GUI testing.

C. TESTING

The test execution and then test composition are the sub-steps
of the testing stage. In the test execution, the test suites are run
automatically on the corresponding GUI programs, and then

VOLUME 9, 2021

these sequences are collected into MBIT test suites in the test
composition step.

We run the test suites on the fault-free (original) and
faulty (mutant) GUI programs in this step (see Fig. 4). Hence,
two different testing scenarios happen as follows;

Original

Original
Model
GUI
'ﬁ ,’, Mutant
Mutant ' / GUls
Models Im

1
<“«—Test Execution—> € Test Composition—>
Legend

Model T% GUI

FIGURE 4. Testing step.

1. (Positive Testing (PT)) Executing test sequences
obtained from original models on corresponding mutant
GUISs under test. These test sequences contain legal inputs.

2. (Negative Testing (NT)) Executing test sequences
obtained from mutant models on original GUI under test.
These test sequences contain illegal inputs.

Test selection criteria are a filtering mechanism to select
satisfying test cases. It is important to note that the coverage
criteria and selection criteria are not to be mixed. Coverage
criteria are termination criteria utilized for the test generation
procedure. However, test selection criteria (also called test
criteria) are a filtering mechanism to accomplish the ideal test
conditions.

The current methodology does not intend to utilize a code
level or function level coverage at the program level. The
main intention of the used coverage criteria in the current
work is to assess adequacy of GUI testing at the functional
level with respect to events captured by test sequences. There-
fore, we only use coverage of events based on black box
testing from user perspective. On the other hand, the tester
focuses on code coverage in white box testing from develop-
ers perspective to assess adequacy.

Based on the test criteria, “failed” test sequences are col-
lected into ideal test suites concerning the PT and NT. To test
the presence and absence of predefined faults, we utilize these
test suites using the PT and NT, respectively.

Model Correctness: Test generation algorithm from the
model under analysis is used to check model correctness.
Therefore, the suite generated from the model is executed
on the system modeled. The entire test suite requires to be
“passed’ on the system modeled to satisfy algorithmic cor-
rectness. The test generation algorithm must be deterministic
in order to avoid different results in each generation.

We utilize criteria 1 and 4 to satisfy model correctness.
Hence, the original model is checked by executing the test

68975

IEEE Access

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

suite generated from the original model on the original sys-
tem under test concerning criterion 1. Any mutant model
is checked by executing the test suite generated from the
corresponding mutant model on the mutant system under
test. To this end, we can satisfy that all the models hold
correctness.

IV. CASE STUDIES

This section provides the case studies, the GUI of ISELTA*
website’s “Special” and “Additional” modules (see Fig. 5).
ISELTA is a commercial web portal for marketing tourist
services and an online reservation system for hotel providers.
It is a cooperative work between ISIK Touristic company and
the University of Paderborn. The “Special”” module provides
agents’ ability to promote special advertisements, such as
the New Year event. The “Additional” module offers other
advertisements rather than regular events. For each module,
the GUI of ISELTA enables agents and providers to use
different attributes for specific events to catch customers’
interest. It is written in PHP programming language and
contains 69323 lines of code inside five different modules for
each provider under the “Hotels” section. Readers can log in
to ISELTA using demo information given on the website as
being a provider role (see Fig. 5 for details).

Welcome

« What is ISELTA?

FIGURE 5. Iselta webpage.

A. TEST PREPARATION
This section presents the test preparation step for only the
“Special” module case study. However, we provide a sup-
plementary website for the “Additional” module,’ which
also introduces required information to reproduce the current
work.

Firstly, an FSM is manually constructed from the GUI of
the ISELTA’s “Special”’ module. This module is called GUI

4ISELTA, hitp://iselta.ivknet.de/
SMBIT4SW, https://kilincceker.github.io/MBIT4SW/

68976

Under Test. An omission, insertion, and replace mutation
operators [18] are performed on these FSM(s) for a mutant
generation. Then, further steps are carried on as provided in
Section III-B and ITI-C.

There are many input areas and buttons in the main GUI of
the “Special” module, and it is redundant and tedious to test
each case of the module. Therefore, the current work restricts
the scope to a relatively small module in the application for
evaluation. In this step, the FSM model is acquired by the GUI
under Test (GUT). To do this, the tester enters the ISELTA
web page and proceeds to the “Special”” module. He/She has
listed all elements (events) of this module. These elements
are given in Table 3. Then he/she applies the algorithm given
in section III in the listing 1. First of all, he/she tries to
set required input boxes such as “price”, “title’, “number”
elements. While the tester provides this information to the
SUT, he/she is also added this information, including SUT’s
responses to the FSM model. When the tester satisfies cov-
ering all elements and their combinations in the FSM model,
he/she finishes the model construction procedure.

In the fault-free FSM of the “Special” module, a symbol is
assigned for each event that becomes a transition label in the
FSM. All symbols represent filling an input, clicking a button,
or removing a text from an input. These action symbols
enable the implementation of the Selenium test script. All
event symbols are listed in Table 3.

TABLE 3. Event symbol list.

Symbol Event Symbol Event
e Back k Click Edit
1 Click Save v Click Add
u Set Title X Set Number
y Set Price z Set Description
r Remove All t Remove Title
p Remove Price n Remove Number

In the case study, we intend to catch functional faults that
directly affect the system’s desired operations based on user
interaction with the GUI.

Definition 7: Functional fault is a higher level and
event-based fault in which the system achieves the final event
without providing expected output.

Example 7: Mutant 1 given in Table 4 is a functional fault
in which the system ends up not adding a new offer due to
required empty input boxes. However, it reaches the final
event called the ““add” event. Once the user clicks the “add”
button, he/she receives a message. This type of fault is called
functional fault.

GUI-related user interaction faults are high levels and dif-
ferent than low-level faults such as low-level security faults
and performance faults. The reader may refer [4] for detailed
classifications and qualifications of high-level user interac-
tion faults.

In total, 12 different types of mutants are acquired at code
and model levels. Table 4 gives the semantics of these mutants
for the “Special”” module, including mutation operators uti-
lized to generate these mutants. GUIs under test enable only

VOLUME 9, 2021

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

IEEE Access

TABLE 4. Mutant semantics.

Mutant Semantics Mutation Operator(s)

1 Add with empty input boxes OPIO

2 Update with empty input boxes OPIO

3 Add with empty Number of Packages OP,RO

4 Add with empty price OPRO

5 Add with empty title OPRO

6 Update with empty title RO, OP
7 Update with empty price RO, OP

8 Update with empty number RO, OP
9 Add click does not respond OP, RO
10 Edit click does not respond OP, IP
11 Add and Edit click does not respond OP, IP
12 Save button move to initial state OP, 10, RO

these number of semantic faults at a model level, based
on experimentation for a mutant generation. Note that the
number of possible mutants at the code level can be more
than the number of modeled mutants related to the utilized
mutation operators. In our case study, we only focus on
semantic mutants that can be acquired by the FSM. Hence,
the mutant and test generation carried out on the FSM model,
but the test execution and selection steps were carried out on
the code level in this study.

In this step, we use the JFLAP tool to transform original
and faulty FSMs into REs. Then, we apply the PQ-Analysis
[53], [59] tool to these RE models to obtain CTs.

The original (fault-free) RE is provided below. The RE in
(1) is converted from the FSM model and contained symbols
provided in Table 3. The RE in (1) is shortened to fit the page.

R = [(ve) x (knl(el) x exl + ...+ ky(xl + 1) + kxl + kl)*]
ey

The PQ-TestGen [13] tool acquires test suites using each
CTs of both original (fault-free) and mutant (faulty) RE
models. Finally, the PQ-TestGen tool utilizes test compaction
to obtain the test suites’ final form by removing redundant
sequences. Those sequences are the ones for the test exe-
cution part of the study, which operates on Selenium® test
automation.

t1 = “klktleulkl”,

t3 = “yxzveuvkl”,

12 = “klknlexlkl” 2)
t4 = “yuzvexvkl” 3)

For instance, test sequences are given above in (2) and (3)
are acquired from RE given in (1) utilizing the PQ-TestGen
tool.

B. TESTING

We utilize a Selenium test script for test execution. The
Selenium script runs all test sequences on each original and
faulty GUTs that are “Special” and ‘“‘Additional” modules
of the ISELTA. Then test scripts result in either ‘“Pass” or
“Fail” for each test sequence. We will then group those to
analyze them and decide the required set of test cases for
constructing the MBIT suites. These suites agree with the
conditions of the ideal testing.

6Selenium Test Automation, https://www.selenium.dev/

VOLUME 9, 2021

In the current work, 12 different mutants for the ISELTA
website’s “Special” and “Additional” modules are obtained,
and 12 different test suites from these mutants are acquired for
the NT.

We utilize Selenium for test automation, which enables
us to automatically execute test sequences on the web-based
software and collect the test execution results. It contains two
parts, which are the Web-Driver and the IDE. The Web-Driver
provides functionality with Java and Python programming
languages for automation of the test execution. The IDE
contains an easy-to-use interface, including plugins for spe-
cific internet browsers and simple record-and-playback inter-
actions with the browser. There are too many commercial
or non-commercial web or mobile test automation tools,
especially for test execution. We select Selenium due to its
robustness, simplicity, and popularity among the scientific
community. Besides Selenium, Sikuli’ is also an open-source
and robust solution. Sikuli uses image recognition powered
by OpenCV to capture GUI events. Both Selenium and Sikuli
can run the various internet browsers from different vendors.
Selenium is more community-driven and supported among
other testers. We could easily adapt Selenium to our method-
ology for test execution.

V. EVALUATION

The proposed approach was evaluated through the ISELTA
“Special” and “Additional” modules with respect to experi-
mental studies. For this evaluation, 24 mutants of the ISELTA
“Special” and ‘“Additional” modules (see Table 5) at code
and model levels were obtained. The list of these mutants is
provided in section IV with details. To test the presence and
absence of the faults, the evaluation was carried out. Consid-
ering the presented general methodology, the test generation
is only one of the stages. However, in the evaluation phase,
the test generation has become a priority.

TABLE 5. Mutant profiles.

Quantities
Special Module | Additional Module | Total
Functional Fault 12 12 24

Fault Type

In order for the FSM models used within the scope of
experimental studies to comply with the definition of algo-
rithmic correctness proposed in Section III, the test suites
obtained from the original model within the scope of cri-
terion 1 were also run on the original GUI system. It was
observed that all test sequences passed the test successfully.
Similarly, each test suite generated from mutant FSM models
is executed on the corresponding mutant GUI system based
on criterion 4 to avoid wrong model utilization.

Test generation is optional for the current methodology.
Thus, the general methodology can be realized by chang-
ing the test generation stage. However, an approach that
provides coverage of all modeled faults has been proposed

7Sikuli Test Automation, http://sikulix.com/

68977

IEEE Access

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

TABLE 6. Results of the PT and NT for Special module.

PQTestGen PQRTestGen100 | PQRTestGen60 Grapwalker
Symbol Coverage 100 100 60 90
Mutation Score 1* 0,92 | 0,75 0,75 0,58 0,75 0,92 0,92
Fault Coverage (%) 100* 92 75 75 58 75 92 92
Test Suite Size (Symbols) 412 486 228 209* 193 154 767* 594*
Test Generation Time (ms) 249 178 263 203 216 157 3870*% | 3897*
Test Execution Time (s) 207 180 84 72 120 71 283% 262%

PS: Positive Testing (left), NT: Negative Testing (right), ms: milliseconds, s: seconds

TABLE 7. Results of the PT and NT for Additional module.

PQTestGen PQRTestGen100 | PQRTestGen60 Graphwalker
Symbol Coverage 100 100 60 90
Mutation Score 1* 1* 0,58 0,75 0,5 0,58 0,92 0,83
Fault Coverage (%) 100* | 100* 58 75 50 58 92 83
Test Suite Size (Symbols) 486 412 215 215 180 160 554%* 508%*
Test Generation Time (ms) 254 181 275 218 217 158 3856* | 3676*
Test Execution Time (s) 104 88 47 47 40 40 133* 132%

PS: Positive Testing (left), NT: Negative Testing (right), ms: milliseconds, s: seconds

in this study. An approach that produces random test gen-
eration has been developed and used for this evaluation.
Also, an industrial-level model-based testing tool called
Graphwalker is adapted to the methodology and utilized for
evaluation. Thus, the extent to which the overall approach is
effective and appropriate to test for the presence and absence
of faults has also been evaluated.

In the literature, various metrics are utilized to evaluate the
approaches proposed for software testing. The most impor-
tant and preferred of these is fault coverage. Other important
metrics are the time for test generation and test execution
and test suites size. All of these metrics were considered to
evaluate the current methodology.

Using Selenium, an open-source test automation tool,
we automate the test execution process.

For example, in mutant number 3 (Add with empty Num-
ber of Packages input box) for Special module, in the original
system, the user cannot add a new form to the system if
he/she does not fill the “Number of Packages™ input box.
However, to create a mutant and a test sequence for this
mutant, the adding “Number of Packages” input state from
the FSM is removed in mutant three. Because the ‘““‘Number of
Resource” input state is removed from the FSM, the mutant
test file does not contain the test sequence for adding the
“Number of Packages™ action. When the test suite is exe-
cuted on the original GUI under test, the system fails in
some test sequences for adding the new special form action.
This is because the original system expects the ‘“Number of
Packages” input box to be filled to save the form to the system
database. These validation points in the application lead to
several failing test sequences in each mutant because those
parts from the mutant are deliberately removed. Later, these
failing sequences are used to assert the required parts of the
GUI under test.

Together with the mentioned metrics for evaluation,
we provide Table 6 and Table 7 with a comparison of

68978

the other three techniques. The symbol coverage criterion
is set to 100 and 60 for the random test generation tool,
PQRTestGen100 [60], and PQRTestGen60 [60]. We created
a new FSM model to adapt the Graphwalker [38] using its
visual editor. Then, we run Graphwalker to generate test
sequences by setting symbol coverage to 100. After running
Graphwalker for about one hour, we stopped the process
due to excessive memory usage and resulted in an enor-
mous output file. Experimentally, we decreased the cover-
age value and decided that 90 coverage was the optimum
value. The proposed approach is called PQTestGen in the
corresponding tables. We also utilized the RETestGen [61]
tool for test generation. However, RETestGen resulted in
excessive size test suites, which were unable to execute
on the GUI under test at the acceptable times. Therefore,
we neglect RETestGen from the experimentation. To elimi-
nate randomness on evaluated metrics, we run each tool using
a random test generation algorithm ten times and selected
average test suite size among others with their corresponding
metrics.

As provided in Table 6 and Table 7, PQTestGen attained
the highest coverage of faults. Moreover, for the PT, PQTest-
Gen has the highest mutation score that is 1. Therefore, for
the entire set of mutants, we acquired MBIT test suites for
Special and Additional GUI under test using PQTestGen.
For the PQRTestGen method, while the fault coverage and
mutation score values decrease, the symbol coverage value
also decreases. However, the PQRTestGen method resulted
in the same coverage for the “Special” module in the NT.

Graphwalker resulted in a larger test suite than other tech-
niques, and its test generation time is about 15 times higher
than others, in absolute figures, that is about 4 CPU seconds
for the case studies. On the other hand, its test execution
time is about 300 seconds for Special and 130 seconds for
Additional modules provided in Table 6 and 7. The rea-
son for the larger test suite is the random test generation

VOLUME 9, 2021

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

IEEE Access

100
==0==PQTestGen

80 —o— PQRTestGen_100

60 PQRTestGen_60

—&— GraphWalker
40

Fault Coverage

20

0

0 o1 02 03 04 O05 06 07 08 09 1

Normalized Test Execution Time

=
o
=]

®
(=]

-]
=)

e=tms PQTestGen

Iy
o

@@= PQRTestGen_100

Fault Coverage

PQRTestGen_60

~
=]

~—— GraphWalker

0 0,1 0,2 0,3 04 05 06 0,7 0,8 0,9 1
Normalized Test Execution Time

FIGURE 6. Fault coverage and normalized test execution time curve for Special module (left diagram is for the PT, and

right diagram is for the NT).

100
==O==PQTestGen

80 «=@==PQRTestGen_100

PQRTestGen_60
60
—&— Graphwalker

40

Fault Coverage

20

0

o o1 02 03 04 05 06 07 08 09
Normalized Test Execution Time

==Q== PQTestGen

«=@-=PQRTestGen_100

PQRTestGen_60

—&— Graphwalker

Fault Coverage

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1
Normalized Test Execution Time

FIGURE 7. Fault coverage and normalized test execution time curve for Additional module (left diagram is for positive

and right diagram is for negative testing).

algorithm utilized by Graphwalker. We run Graphwalker on
the command-line interface (CLI) and calculate test genera-
tion time using its jar file. Execution of jar files may explain
excessive test generation time of Graphwalker, among others.
Except for Graphwalker, PQTestGen yielded the largest test
suite results among others. This is because the test generation
algorithm used by PQTestGen includes even each repeating
symbol in the coverage value as if it were a different symbol.
Thus, while some redundant symbols are included in the
test suite, this situation directly affects the fault detection
capability.

The cumulative distribution curves for fault coverage and
normalized test execution time are given in Fig. 6 and Fig. 7
for the “Special” and the ‘“Additional” modules for each
tool. All the techniques have at least 58 fault coverage in
around 225 seconds for both GUIs under tests. In about
207 seconds (PT) and 180 seconds (NT) for the ““Special”
module, PQTestGen achieves the maximum fault coverage.
It is around 104 seconds and 88 seconds in the PT and
NT, respectively, for the ‘“Additional” module. To calculate
normalized test execution times, the minimum (min) and
maximum (max) values of all test execution times for the
respective GUT were found. Then, the normalized form of
the x value as (x-min) / (max-min) was calculated. The nor-
malization process resulting from the proportional difference
between PQTestGen and PQRTestGen test execution times is
needed. Thus, Fig. 6 and Fig. 7 were obtained.

Using automatized processes, we collected these results.
We neglected the manual effort. Usually, the manual effort

VOLUME 9, 2021

requires more time than the automatized process. The highest
manual effort is the mutant generation. To this end, we plan
to automatize these manual efforts.

The proposed approach is efficient to test the presence
and absence of the faults in the model’s scope based
on the collected results. Finally, using a Selenium test
script, we automatically collected MBIT test suites for the
“Special” and “Additional” modules.

The Web-Driver part is integrated into the current
framework. We use Selenium for the test execution and
test selection steps that are performed using the Web-Driver
containing generic Java test scripts to automatically execute
test sequences from PQ-TestGen and PQ-RanTest. Then,
it collects the results that are ““pass” or ‘“‘fail”.

VI. DISCUSSION

This section discusses the current work concerning testing
techniques and selection of mutant generation based on our
experimental and theoretical works. We provide answers to
research questions, including the internal and external valid-
ity of the current work.

A. TEST AND MUTANT GENERATION TECHNIQUES
To acquire mutants and to obtain test suites, we utilize the
FSM and RE, respectively. However, alternatively, it is possi-
ble to use others, such as the ESG or EFG, for these processes.
We adapted the FSM and RE to the current work.

We use the PQTestGen tool in this study to obtain test suites
due to its effectiveness in detecting faults. The PQTestGen

68979

IEEE Access

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

is an efficient tool that uses the tables that eliminate the
uncertainty using the right and left context of each symbol
in the RE. This enhances the capability of fault detection.

B. CHECKING THE RESEARCH QUESTIONS

The research questions provided in Section I are answered
concerning theoretical and experimental evaluation within the
current work scope.

1) Is it practically and theoretically possible to offer an
ideal testing [2] approach for GUI testing? The exper-
iments’ result is that the conditions of being an ideal
test [2] are satisfied with the GUI programs based
on the “Special” and ““Additional” modules of the
ISELTA. Also, it is applicable based on theoretical
evidence. Therefore, the answer to the RQ1 is yes.

o What types of systems can be tested in this way? In
the current work, we address the GUI system of a
computer application, representing an application
by a combination of icons, menus, buttons, bars,
boxes, and windows. However, the current work
applies to any mobile GUI program. Other types of
computer programs such as the GUI of game pro-
grams are neglected, which requires the utilization
of different abilities and methods.

o What types of faults can be targeted with the
proposed approach? The fault type addressed in
the current work is a functional fault [62] in the
GUI under test that is unable to deliver desired
and expected behavior/function in case this fault
occurs.

2) What is the cost of applying this approach to GUI
testing? The proposed approach’s computational com-
plexity is O(M*N3 +M*K*N) for N states, M mutants,
and K is the total number of test sequences from each
mutant. We provided Table 6 and Table 7 for the cost
of the “Special” and “Additional” modules of the
ISELTA case studies, including the test suite’s size.

o How is scalability affected? The CT-based test
generation is the main bottleneck of the current
work due to the transformation of the models for
analysis. Nonetheless, we automate the main steps
by using the tool-chain.

C. THREATS TO THE VALIDITY
We provide potential internal and external threats of the
current work in this section.

1) INTERNAL VALIDITY

The current work presents the MBIT methodology for testing
the GUI program using the HT and the MT. Theoretical evi-
dence to confirm this assertion is also presented in the same
section to show the requirements to be accepted as the ideal
test. Additionally, the experiments are provided with two case
studies in section IV to evaluate theoretical evidence. In the
experimentation, the selected faults are seeded into both code
and model to address functional faults in the GUI under

68980

test. The experimental and theoretical evidence verify that
the claim is correct, indicating no threat to internal validity.
We show the MBIT effectiveness results in section V with
tables and graphs, which let us see the improvements and
benefits of this approach.

However, there is an essential point that we need to address
here and which will lead us to ask this question about the
model utilized in the proposal: How to make sure that the
model obtained from the GUI under test is correct? For
more than three decades, this question has been asked by
people studying in the model-based testing domain because
the model’s correctness has vital importance in the study and
results. A wrong model will certainly lead us to wrong results
no matter which techniques are used in testing. This critical
question has satisfactorily been answered: use every possi-
bility, every method to validate the model. For instance, use
model checkers [63], [64] or, more importantly, get feedback
from end-users as early as possible to assess the model long
before starting with test generation and testing itself. How-
ever, we use test generation algorithm to ensure the model
complies with the system modeled. We utilize test selection
criteria 1 and 4 to get rid of the model correctness problem
provided in Section III. Belli and Gueldali [65] also proposed
a test generation approach based on model checking that can
be also a solution to model correctness.

2) EXTERNAL VALIDITY

In the test composition part of the proposed approach, there
is the step of running the test suites. Although these suites run
automatically thanks to the Selenium tool, each test run can
take a few minutes, as shown in the tables of section I'V. This
time varies in proportion to the number of states in the model.
Moreover, considering that the PT and NT are applied for
each mutant, the total number of Selenium test operations will
be the mutant number times 2. This can be a few hours, even
in the small GUI form used in our case study. This approach
will take much longer when applied in larger models with
more mutants. For this reason, the most important external
validity can be considered as this complexity problem.

To cope with the complexity issue that may lead to a state
explosion problem, we may utilize one of the GUI ripping
methods [55], [56] to obtain the model automatically. On the
other hand, there is another solution [66], [67] to cope with
huge models utilizing layered modeling methods that are
well-suited for the hierarchical structure of GUI systems.
These layers can be manually created by the tester or auto-
matically extracted from a non-layered model by utilizing a
community detection algorithm introduced in [46] to mitigate
the complexity thread.

The current work addresses the detection of functional
faults rather than other types of faults related to visual
attributes as mostly utilized in the GUI of games. This may
lead to external validity. Models functionally represent sys-
tems under test in the current work. Testing visual attributes
on the screen is not suitable for the current work due to
the constructed model’s use. Testing such visual attributes

VOLUME 9, 2021

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

IEEE Access

requires the utilization of white box code-based testing
methods.

3) CONSTRUCT VALIDITY

The current methodology requires manual efforts for the
model and mutant generation. Test expert carries out the
model generation using the JFLAP tool. However, the test
expert may construct the wrong model as an original model,
as it is also addressed in the internal validity. In this way,
the test expert manually constructs the wrong mutant models
from the wrong original model. This is also considered a
potential threat to construct validity. To overcome this threat,
we execute generated test suites from an original model on the
original SUT and from mutant models on the corresponding
mutant SUTs. Furthermore, we check that all test cases pass
on these executions to ensure that the model and the SUT are
equivalent concerning the generated test suites. We also plan
to automatize these manual efforts, which may lead us to the
wrong models.

VIi. CONCLUSION AND FUTURE WORK

In the current work, the MBIT approach is introduced for
the GUI programs to test the presence and absence of func-
tional faults. The proposed methodology is composed of two
main steps, which are test preparation and testing. In the test
preparation step, we use a GUI program model described
by an FSM that is converted to a RE. The same procedure
is also applied to the mutant models acquired by seeding
faults into the original GUI model. We generate test suites
from the fault-free and the mutant models concerning the
positive testing (PT) and negative testing (NT). We utilize
code-based mutation operators to obtain mutant GUI pro-
grams and model-based mutation operators for mutant mod-
els. The mutated models are used for test generation, and the
mutated GUI programs are used for test execution. In the
testing step, we run generated test suites on the fault-free
and mutant GUI programs. We collect the ideal test suites
from these executed test suites considering selection criteria.
These test suites enable us to test both presence and absence
of functional faults within the scope of the GUI models.

We evaluate the proposed methodology using two case
studies, namely ‘““Special” and “Additional” modules of
the ISELTA webpage. The results show that the proposed
methodology achieves ideal testing utilizing the PT and NT
and provides ideal test suites to test the presence and absence
of functional faults. We compare the proposed test genera-
tion method, called PQTestGen, with PQRTestGen100 and
PQRTestGen60 methods. PQTestGen achieves a higher fault
coverage than the other methods. Besides, PQTestGen has a
higher mutation score than the other PT methods, meaning
that it can kill all mutants for “Special” and “‘Additional”
modules of the case study. However, PQTestGen results in a
more extensive test suite than the other methods due to the
Breadth-First Search (BFS) algorithm. This large test suite
size in PQTestgen also increases test execution time. How-
ever, test sets’ size is within acceptable limits considering

VOLUME 9, 2021

time for test generation and execution steps that finish in
milliseconds.

We automate all procedures for the proposed methodology
except for the model and mutant generation steps that the
test expert carries out. These steps require knowledge about
the system under test. However, we plan to automate the
model generation step using one of the proper GUI ripping
methods to extract the model from the GUI program auto-
matically. We also plan to automate the mutant generation
step using omission, insertion, and replace mutation operators
on the FSM models. Finally, we plan to obtain an end-to-end
solution for test automation of GUI programs for the MBIT
approach.

APPENDIX

PQ-ANALYSIS

A. THE MAIN IDEA

Eggers and Belli [52], [53] introduced a method based on reg-
ular expression (RE) for detection, localization, and finally,
correction of faults. They used the method in compiler con-
struction. This method is also used in the general theory of
fault tolerance and its applications to sequential systems, such
as system-user interactions [5] and hardware [59] by Belli.
The ability of self-detection and self-correction is analyzed
for a system under consideration (SUC). In case SUC does not
have these abilities, the method offers functional redundancy
[53] by expanding the SUC. The method is provided with
minimum redundancy.

The method is applied to strictly sequential SUCs to uti-
lize the RE model by the syntax-based technique. The RE
is a composition of the symbols with concatenation, union,
and star operators. The symbols can be defined differently,
such as events being inputs and outputs. The method uses
a set of hypotheses to handle context-based faults. The
hypothesis is utilized by insertion (I), replacing (R), and
deletion (D) of symbol(s). For example, “insertion of a
symbol between other symbols”. The method applies the
pairwise and mutually exclusive hypothesis for an explicit
self-correction of a fault. For instance, hypotheses P and Q out
of LR,D are applied to a fault. In the numerous master’s and
Ph.D. projects on this topic, the students coined the method as
“PQ-Analysis”.

The current paper uses the PQ-Analysis as a base of the
test generation using the context tables obtained from the
PQ-Analysis.

B. CONCEPT AND STEPS

We can generate sequences (strings) from a given regular
expression T using a regular (type 3) language L(T) that
accepts T. The main aim of PQ-Analysis is to obtain the
context relations of the symbols from T called context and
compatibility tables and then is to utilize these tables for
checking whether a string corresponds to the language L(T)
or not. Therefore, we avoid expensive backtracking. The steps
of the method are provided in Fig. 8.

68981

IEEE Access

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

Step 2 N Step 3 i
Construct TOW

Determine T' Step 6
Construct
Step 1 T, forrw
Basic Indexing: bsack
T tep 7
Determine
\—> Step 4 — Step 5 Features

Determine

mirr
T Construct Ty, T

FIGURE 8. Steps of the PQ-Analysis.

L% | SymboT | R,x%
_________ o mmmm e mmm—m e —m
b,4 + [,5] a,2 1,1 + €,3 + b,4
——————————————— tommmm e i'a,j : 2'a,z 6'a,z2
a,2 + ¢,3| 1,1 | i'b,j : 3'b,4
--------- ettt i'c,j : 4'c,3
a,2 + ¢,3| ¢,3 |[1,1 + c,3 + b,4 i'[,i : 1'[,5
--------- Fommmm o — e i'],7 : 5'1,1
a,2 + ¢,3| b,a | a,2
_________ o mmmm i m—mmm——m——m— o

I (b)

FIGURE 9. (a) Context table and (b) Compatibility table.

We present the method’s steps, including an example for
the corresponding steps to make the concept clear as follows.
Example: Given the following regular expression:

T = [(a(ba + c*)%)] “)

the related PQ-Analysis tables can be provided by following
the Step 1-7.

Step 1: Indexing the given regular expression T that leads
to the indexed T’.

7' =['a' '@ + (0] (5)
Step 2: Convert T' to an equivalent FSM Eforv [68], [69].

‘We determine the states of the FSM as follows;

(a) i =: j (input a transfers the state i into state j) initial
state = 0, (D0 = ([N0=:1=[', (@) | =(a")l =:2 =ad',
MI=hHht=3=1, 0 2=0B>)1=4=0b! 2=
@2=2=d) l=H1=5=p Dl=0"2=
3=]1, Final State = 3.

Step 3: Scan T through E™ to obtain 7/°™

7 = (M@ B3a® + (cHx))P (©6)

Step 4: Reverse (mirror) T* to have ™.

Step 5: Scan 7™ through E?? to obtain 7" +forw
Tmirr+f0rw =]1((C3) * +(a2b4)) * a2[5 (8)
Step 6: Reverse (mirror) T™"7" to construct
Tmirr—kfbrw+m[rr.
Tmirr+f0rw+mirr — [S(az(b4a2 + (C3)*)*)]1 (9)

Step 7: Determine the characteristic relations of T resulting

from the context and compatibility tables given in Fig. 9.
We use the algorithm given listing 2 to convert the FSM

model into the RE model. The procedure starts from reading

68982

1 Input: State Table of the FSM; D[x,x]
2 Output: Regular expression; R

3 R=update (r);

4 function update (x){

5 arden(x);

6 for each i <=x-1

7 d[x-1,i] =d[x-1,i] + d[x,i].d[x,x+1]
8 if x>=1

9 update (Xx);

10 else return(d[1,1);

11}

12 arden (x){

13 for each i <=x-1

14 d[x,i] = d[Ix,x]*.d[x,1]
15 }

Listing 2. Pseudocode of the model conversion from FSM to RE.

the state table representation of an FSM. Then, it uses an
update function to iterate over the entries of the state table
and uses the Arden function if needed.

REFERENCES

[1] W. E. Dijkstra, Notes on Structured Programming. New York, NY, USA:
Academic, 1972, ch. 1, pp. 1-82.

[2] J. B. Goodenough and S. L. Gerhart, “Toward a theory of test data selec-
tion,” IEEE Trans. Softw. Eng., vol. SE-1, no. 2, pp. 156-173, Jun. 1975.

[3] T.S. Chow, “Testing software design modeled by finite-state machines,”
1EEE Trans. Softw. Eng., vol. SE-4, no. 3, pp. 178-187, May 1978.

[4] V. Lelli, A. Blouin, and B. Baudry, “Classifying and qualifying GUI
defects,” in Proc. IEEE 8th Int. Conf. Softw. Test., Verification Validation
(ICST), Apr. 2015, pp. 1-10.

[5] F. Belli, “Finite state testing and analysis of graphical user interfaces,” in
Proc. 12th Int. Symp. Softw. Rel. Eng., Nov. 2001, pp. 34-43.

[6] F.Belli, C.J. Budnik, A. Hollmann, T. Tuglular, and W. E. Wong, “Model-
based mutation testing—Approach and case studies,” Sci. Comput. Pro-
gram., vol. 120, pp. 25-48, May 2016.

[7] R.G.Hamlet, “Testing programs with the aid of a compiler,” IEEE Trans.
Softw. Eng., vol. SE-3, no. 4, pp. 279-290, Jul. 1977.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no. 4,
pp. 34-41, Apr. 1978.

[9] I. Offutt, ““A mutation carol: Past, present and future,” Inf. Softw. Technol.,
vol. 53, no. 10, pp. 1098-1107, Oct. 2011.

[10] C.Robach and M. Scholive, *“Simulation-based fault injection and testing
unsing the mutation technique,” in Fault Injection Techniques and Tools for
Embedded Systems Reliability Evaluation. Boston, MA, USA: Springer,
2003, pp. 195-215.

[11] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “MulJava: An automated class
mutation system,” Softw. Test., Verification Rel., vol. 15, no. 2, pp. 97-133,
2005.

[12] B. K. Aichernig, H. Brandl, E. Jobstl, W. Krenn, R. Schlick, and S. Tiran,
“Killing strategies for model-based mutation testing,” Softw. Test., Verifi-
cation Rel., vol. 25, no. 8, pp. 716-748, Dec. 2015.

[13] O. Kilincceker, E. Turk, M. Challenger, and F. Belli, “Applying the ideal
testing framework to HDL programs,” in Proc. ARCS Workshop 31th Int.
Conf. Archit. Comput. Syst., 2018, pp. 1-6.

[14] FE Belli, M. Beyazit, C. J. Budnik, and T. Tuglular, “Advances in model-
based testing of graphical user interfaces,” Adv. Comput., vol. 107,
pp. 219-280, 2017, doi: 10.1016/bs.adcom.2017.06.004.

[15] F. Belli, A. T. Endo, M. Linschulte, and A. Simao, ‘A holistic approach to
model-based testing of Web service compositions,” Softw., Pract. Exper.,
vol. 44, no. 2, pp. 201-234, Feb. 2014.

[16] F. Belli and M. Linschulte, “On negative tests of Web applications,” Ann.
Math., Comput. Teleinformatics, vol. 1, no. 5, pp. 44-56, 2008.

VOLUME 9, 2021

http://dx.doi.org/10.1016/bs.adcom.2017.06.004

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

IEEE Access

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

F. Belli, C. J. Budnik, and A. Hollmann, “Holistic testing of inter-
active systems using statecharts,” in Sicherheit 2006, Sicherheit-Schutz
und Zuverliissigkeit. Bonn, Germany: Gesellschaft fiir Informatik, 2006,
pp. 345-356.

O. Kilincceker and F. Belli, “Towards uniform modeling and holistic
testing of hardware and software,” in Proc. Ist Int. Informat. Softw. Eng.
Conf. (UBMYK), Nov. 2019, pp. 1-6.

G. Mercan, E. Akgiindiiz, O. Kilinggeker, M. Challenger, and F. Belli,
“Android uygulamas testi icin ideal test on ¢aligmasi,” presented at the
12th Turkish Nat. Softw. Eng. Symp. (UYMS), A. Tarhan and E. Murat,
Eds., Istanbul, Turkey, Sep. 2018, pp. 1-12.

K. N. King and A. J. Offutt, “A fortran language system for mutation-
based software testing,” Softw., Pract. Exper., vol. 21, no. 7, pp. 685-718,
Jul. 1991.

Y.-S. Ma, J. Offutt, and Y.-R. Kwon, “MuJava: A mutation system for
Java,” in Proc. 28th Int. Conf. Softw. Eng., 2006, pp. 827-830.

S. C.P.F. Fabbri, J. C. Maldonado, T. Sugeta, and P. C. Masiero, “Mutation
testing applied to validate specifications based on statecharts,” in Proc.
10th Int. Symp. Softw. Rel. Eng., Nov. 1999, pp. 210-219.

F. Belli and M. Beyazit, “Event-based mutation testing vs. state-based
mutation testing—An experimental comparison,” in Proc. IEEE 35th
Annu. Comput. Softw. Appl. Conf., Jul. 2011, pp. 650-655.

T. Nguyen and C. Robach, ‘“Mutation testing applied to hardware: The
mutants generation,” in Proc. 11th IFIP Int. Conf. Very Large Scale Integr.,
2001, pp. 118-123.

M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman,
“Mutation testing advances: An analysis and survey,” Adv. Comput.,
vol. 112, pp. 275-378, 2019, doi: 10.1016/bs.adcom.2018.03.015.

W. E. Wong and A. P. Mathur, “Reducing the cost of mutation testing:
An empirical study,” J. Syst. Softw., vol. 31, no. 3, pp. 185-196, Dec. 1995.
Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Trans. Softw. Eng., vol. 37, no. 5, pp. 649-678,
Sep. 2011.

R. K. Shehady and D. P. Siewiorek, “A method to automate user interface
testing using variable finite state machines,” in Proc. IEEE 27th Int. Symp.
Fault Tolerant Comput., Jun. 1997, pp. 80-88.

A. M. Memon, M. E. Pollack, and M. L. Soffa, ‘‘Hierarchical GUI test case
generation using automated planning,” IEEE Trans. Softw. Eng., vol. 27,
no. 2, pp. 144-155, Feb. 2001.

A. M. Memon, “An event-flow model of GUI-based applications for
testing,” Softw. Test., Verification Rel., vol. 17, no. 3, pp. 137-157, 2007.
L. White and H. Almezen, “Generating test cases for GUI responsibilities
using complete interaction sequences,” in Proc. 11th Int. Symp. Softw. Rel.
Eng. (ISSRE), Oct. 2000, pp. 110-121.

Q. Xie and A. M. Memon, “Using a pilot study to derive a GUI model
for automated testing,” ACM Trans. Softw. Eng. Methodol., vol. 18, no. 2,
pp. 1-35, Nov. 2008.

S. Huang, M. B. Cohen, and A. M. Memon, “Repairing GUI test suites
using a genetic algorithm,” in Proc. 3rd Int. Conf. Softw. Test., Verification
Validation, 2010, pp. 245-254.

F. Belli, M. Beyazit, and N. Giiler, ‘““Event-oriented, model-based gui test-
ing and reliability assessment—Approach and case study,” Adv. Comput.,
vol. 85, pp. 277-326, 2012, doi: 10.1016/B978-0-12-396526-4.00006-0.
1. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical user
interface (GUI) testing: Systematic mapping and repository,” Inf. Softw.
Technol., vol. 55, no. 10, pp. 1679-1694, Oct. 2013.

E. Alégroth and R. Feldt, “On the long-term use of visual gui testing in
industrial practice: A case study,” Empirical Softw. Eng., vol. 22, no. 6,
pp. 2937-2971, Dec. 2017.

T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: Using GUI screenshots for
search and automation,” in Proc. 22nd Annu. ACM Symp. User Interface
Softw. Technol. (UIST), 2009, pp. 183-192.

N. Olsson and K. Karl. (2015). Graphwalker: The Open Source Model-
Based Testing Tool. [Online]. Available: http://graphwalker.org/index

J. Eskonen, J. Kahles, and J. Reijonen, “Automating GUI testing
with image-based deep reinforcement learning,” in Proc. IEEE Int.
Conf. Autonomic Comput. Self-Organizing Syst. (ACSOS), Aug. 2020,
pp. 160-167.

D. Adamo, M. K. Khan, S. Koppula, and R. Bryce, “Reinforcement
learning for Android GUI testing,” in Proc. 9th ACM SIGSOFT Int.
Workshop Automating TEST Case Design, Selection, Eval., Nov. 2018,
pp. 2-8.

VOLUME 9, 2021

(41]

[42]

[43]

[44]

(45]

[46]

[47]

(48]
[49]

[50]

[51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]
[63]

[64]

[65]

S. Jan, A. Panichella, A. Arcuri, and L. Briand, “‘Automatic generation of
tests to exploit XML injection vulnerabilities in Web applications,” IEEE
Trans. Softw. Eng., vol. 45, no. 4, pp. 335-362, Apr. 2019.

Y. L. Arnatovich and L. Wang, “A systematic literature review of auto-
mated techniques for functional GUI testing of mobile applications,” 2018,
arXiv:1812.11470. [Online]. Available: http://arxiv.org/abs/1812.11470
B. Jiang, Y. Zhang, W. K. Chan, and Z. Zhang, “A systematic study on
factors impacting GUI traversal-based test case generation techniques for
Android applications,” IEEE Trans. Rel., vol. 68, no. 3, pp. 913-926,
Sep. 2019.

I.-A. Salihu, R. Ibrahim, B. S. Ahmed, K. Z. Zamli, and A. Usman,
“AMOGA: A static-dynamic model generation strategy for mobile apps
testing,” IEEE Access, vol. 7, pp. 17158-17173, 2019.

L. Ardito, R. Coppola, S. Leonardi, M. Morisio, and U. Buy, “Automated
test selection for Android apps based on APK and activity classification,”
IEEE Access, vol. 8, pp. 187648-187670, 2020.

A. Silistre, O. Kilincceker, F. Belli, M. Challenger, and G. Kardas, “Com-
munity detection in model-based testing to address scalability: Study
design,” in Proc. Federated Conf. Comput. Sci. Inf. Syst., Sep. 2020,
pp. 657-660.

A. Silistre, O. Kilincceker, F. Belli, M. Challenger, and G. Kardas, ‘“Models
in graphical user interface testing: Study design,” in Proc. Turkish Nat.
Softw. Eng. Symp. (UYMS), Oct. 2020, pp. 1-6.

W. E. Howden, “Reliability of the path analysis testing strategy,” IEEE
Trans. Softw. Eng., vol. SE-2, no. 3, pp. 208-215, Sep. 1976.

L. Bougé, “A contribution to the theory of program testing,” Theor. Com-
put. Sci., vol. 37, pp. 151-181, 1985, doi: 10.1016/0304-3975(85)90090-8.
H. Langmaack, “Contribution to Goodenough’s and Gerhart’s theory of
software testing and verification: Relation between strong compiler test
and compiler implementation verification,” in Foundations of Computer
Science. Berlin, Germany: Springer, 1997, pp. 321-335.

K. Naik and P. Tripathy, Software Testing and Quality Assurance: Theory
and Practice. Hoboken, NJ, USA: Wiley, 2011.

B. Eggers and F. Belli, “Eine theorie der analyse und konstruktion fehler-
tolerierender systeme,” in Fehlertolerierende Rechensysteme. Berlin,
Germany: Springer, 1984, pp. 139-149.

F. Belli, “Extending regular languages for self-detection and self-
correction of syntactical faults,” (in German), Ph.D. dissertation, Tech.
Univ. Berlin, Berlin, Germany, vol. 119.

J. E. Hopcroft, R. Motwani, and J. D. Ullman, “Introduction to automata
theory, languages, and computation,” ACM SIGACT News, vol. 32, no. 1,
pp. 60-65, 2001.

A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse engi-
neering of graphical user interfaces for testing,” in Proc. 10th Work. Conf.
Reverse Eng., 2003, pp. 260-269.

D. Amalfitano, A. R. Fasolino, P. Tramontana, S. D. Carmine, and
A. M. Memon, “Using GUI ripping for automated testing of Android
applications,” in Proc. 27th IEEE/ACM Int. Conf. Automated Softw. Eng.
(ASE), 2012, pp. 258-261.

Y. Jia and M. Harman, “Higher order mutation testing,” Inf. Softw. Tech-
nol., vol. 51, no. 10, pp. 1379-1393, Oct. 2009.

O. Kilinggeker and F. Belli, “Grafiksel kullanici arayiizleri igin diizenli
ifade bazli test kapsama kriterleri,” presented at the 11th Turkish Nat.
Softw. Eng. Symp. (UYMS), Alanya, Turkey, Oct. 2017, pp. 332-343.

F. Belli, “Regular expressions for fault handling in sequential cir-
cuits,” in Proc. ARCS 28th Int. Conf. Archit. Comput. Syst., 2015,
pp. 1-5.

O. Kilincceker, A. Silistre, M. Challenger, and F. Belli, “Random test
generation from regular expressions for graphical user interface (GUI)
testing,” in Proc. IEEE 19th Int. Conf. Softw. Qual., Rel. Secur. Companion
(QRS-C), Jul. 2019, pp. 170-176.

O. Kilinccceker, E. Turk, M. Challenger, and F. Belli, “‘Regular expression
based test sequence generation for HDL program validation,” in Proc.
IEEE Int. Conf. Softw. Qual., Rel. Secur. Companion (QRS-C), Jul. 2018,
pp. 585-592.

F. Belli, N. Nissanke, C. J. Budnik, and A. Mathur, “Test generation using
event sequence graphs,” Tech. Rep., 2005.

E. M. Clarke, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model
Checking. Cambridge, MA, USA: MIT Press, 2018.

P. E. Ammann, P. E. Black, and W. Majurski, “Using model checking to
generate tests from specifications,” in Proc. 2nd Int. Conf. Formal Eng.
Methods, Jun. 1998, pp. 46-54.

F. Belli and B. Giildali, “Software testing via model checking,” in Proc.
Int. Symp. Comput. Inf. Sci. Berlin, Germany: Springer, 2004, pp. 907-916.

68983

http://dx.doi.org/10.1016/bs.adcom.2018.03.015
http://dx.doi.org/10.1016/B978-0-12-396526-4.00006-0
http://dx.doi.org/10.1016/0304-3975(85)90090-8

IEEE Access

0. Kilincceker et al.: Model-Based Ideal Testing of GUI Programs—Approach and Case Studies

[66] A. C. Paiva, N. Tillmann, J. A. C. Faria, and R. F. Vidal, “Modeling and
testing hierarchical GUIs,” in Proc. 12th Int. Workshop Abstract State
Mach., 2005, pp. 1-17.

[67] F. Belli, N. Giiler, and M. Linschulte, ‘“Layer-centric testing,” FERS-
Mitteilungen, vol. 30, no. 1, pp. 55-62, Apr. 2012.

[68] V.M. Glushkov, “The abstract theory of automata,” Russian Math. Surv.,
vol. 16, no. 5, p. 1, 1961.

[69] R.McNaughton and H. Yamada, ‘“‘Regular expressions and state graphs for
automata,” IRE Trans. Electron. Comput., vol. 9, no. 1, pp. 39-47, 1960.

ONUR KILINCCEKER (Member, IEEE) received
the bachelor’s degree in applied mathematics and
the master’s degree in informatics from Ege Uni-
versity, Turkey, in 2005 and 2011, respectively.
He is currently pursuing the Ph.D. degree in
electrical engineering and information technolo-
gies with the University of Paderborn, Germany.
In 2009, he joined the Department of Computer
Engineering, Mugla Sitki Kocman University, as a
Research Associate. He is also involving in scien-
tific and technical research in the fields of model-based testing, mutation
testing, and holistic testing of software and hardware systems. He is also a
member of ACM.

ALPER SILISTRE received the B.Sc. degree in
software engineering from the Izmir University of
Economics, in 2015. He is currently pursuing the
M.Sc. degree in information technology with the
International Computer Institute, Ege University,
Tzmir, Turkey. He is also a Software Engineer.
His research interests include software testing and
software engineering.

68984

FEVZI BELLI (Member, IEEE) received the B.S.,
M.S., Ph.D., and Habilitation (a German postdoc-
toral) degrees in information technology and com-
puter science from Technical University Berlin.
He is currently a Professor Emeritus of Software
Engineering with the University of Paderborn and
the Izmir Institute of Technology. He has more
than 35 years’ experience in research, develop-
ment and teaching software engineering, valida-
tion and verification, fault tolerance, and quality
assurance. He started as a programmer in the aircraft industry and wrote
programs to create simulation environments and to validate safety critical
features. In 1983, he was awarded a Professorship with the University of
Applied Sciences in Bremerhaven; in 1989, he moved to the University of
Paderborn. He was also, for many years, a Faculty Member of the University
of Maryland, College Park, MD, USA, and the European Division. He was
also the Founding Chair of the Computer Science Department, University of
Economics in Izmir, Turkey. He has an interest and experience in software
reliability/fault tolerance, model-based testing, and test automation.

MOHARRAM CHALLENGER (Member, IEEE)
received the Ph.D. degree in information tech-
nology from the International Computer Institute,
Ege University, in February 2016. From 2005 to
2009, he had been a Faculty Member and a Senior
Lecturer with the Computer Engineering Depart-
ment, IAU-Shabestar University. From 2010 to
2013, he was a Researcher and a Team Leader of
a bilateral project between Slovenia and Turkey
(TUBITAK). From 2012 to 2016, he was the
Research and Development Director of UNIT IT Ltd. leading a national
project funded by TUBITAK and two international software-intensive
projects in Europe called ITEA ModelWriter and ITEA Assume. From
2017 to 2018, he had been a member of the faculty as an Assistant Professor
with Ege University. From January 2019 to July 2020, he was a Postdoc-
toral Researcher with the University of Antwerp working in a Flanders
Make projects called PACo and DTDesign. He is currently a tenure-track
Assistant Professor with the Department of Computer Science, University
of Antwerp. His research interests include domain-specific modeling lan-
guages, multi-agent systems, cyber-physical systems, and the Internet of
Things.

VOLUME 9, 2021

