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Abstract

This paper studies the potential to ensure a numerical solution
of nonlinear Riccati differential equations with an effective method,
namely operational matrix which is derived by Hermite polynomials
with the sense of Caputo derivative. In order to solve the Riccati dif-
ferential equations, the complete problem is simplified with the oper-
ational matrix obtained. To achieve this goal, the proposed approach
converts the fractional differential equations (FDEs) into a set of alge-
braic equations. We then construct a matrix with the algebraic equa-
tions and extra equations extracted from initial conditions. Therefore,
we achieve the solution by solving these algebraic equations given in a
matrix sense. In order to show the efficiency of the proposed idea, we
show a number of illustrative examples in which the results confirm
the applicability of the suggested approach.
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1 Introduction

In recent years, fractional calculus with its wide range of applications has
been gaining a significant interest in many branches of engineering and ap-
plied science [1]. The main motivation is to realistically model such a real-
world problem through a set of efficient mathematical tools. Fractional dif-
ferential equations (FDEs) have been a popular way of defining real-world
applications. Therefore, a lot of previous numerical studies have attempted
to provide the solutions of FDEs with initial conditions. Typical examples of
numerical techniques for solving FDEs are eigenvector method [2], Adomian
decomposition method [3], power series method [4], collacation method [5]
and operational matrix method [6, 7, 8, 9]. The operational matrix method
is one of most popular method to solve different kinds of linear and nonlin-
ear FDEs [10]. Its underlying feature is to simplify the whole problem by
generating a number of algebraic equations. Depending on the number of
initial conditions, a certain number of algebraic equations are extracted from
the initial conditions. The complete problem therefore requires the solution
of these algebraic equations in a simple way. To accomplish this, orthogonal
polynomials have recently been utilized to derive the operational matrices
of fractional derivatives [11, 12, 13, 14, 15, 16]. A critical effort was previ-
ously placed on the solution of the Riccati differential equation [17]. Due to
the high volume of application areas, the Riccati differential equation is of
paramount significance. The following Riccati differential equation is dealt
with

f1(x)D
au(x) + f2(x)u

2(x) + f3(x)u(x) = g(x), x ∈ (0, 1), 0 < α ≤ 1
(1.1)

subject to the initial conditions up to n

u(1)(0) = d1, k = 0, 1, 2, ., n− 1, (1.2)

where α indicates the order of the fractional derivative, dk is a constant,
f1(x), f2(x) and f3(x) are certain functions with a condition that f1(x) 6= 0
and g(x) is a given source function.
A number of previous studies based on the operational matrix method with a
specific orthogonal polynomial have been achieved by approximate solutions
for Riccati differential equation [18, 19, 20]. This paper presents an efficient
numerical solution to solve nonlinear Riccati differential equation via deriv-
ing the operational matrix by Hermite polynomials in the sense of Caputo
derivative. We first define the Riccati equation in integral form with the
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obtained operational matrix, resulting in a number of algebraic equations.
We then extract extra algebraic equations from the initial conditions. An
algebraic system is constructed with these equations to be solved to obtain
approximate solutions. Therefore, the whole problem will eventually neces-
sitate to solve a system of algebraic equations which simplifies the problem
greatly. The main advantage of the proposed strategy is its low complexity
structure which requires a small number of iterations to obtain good results.
This also makes the proposed strategy more practical with a high speed of
solution. Another advantage is the scope of the test examples including ex-
act solutions in complex form, instead of only simple form of polynomials.
The performance of the proposed idea is tested through a number of Riccati
differential equations. The performance outputs prove the efficiency of the
proposed method. The following sections present the details of the paper.

2 Method of Solution

2.1 Hermite Polynomials

Hermite polynomials are defined on (−∞,∞) with this analytical formula:
[21]

Hi(x) =

⌊ i
2
⌋

∑

k=0

(−1)k(2x)i−2k

k!(i− 2k)!
, (2.3)

where ⌊ i
2
⌋ denotes the smallest natural number greater than i

2
. Hermite

polynomials are orthogonal polynomials [22]

∫ ∞

−∞

Hi(x)Hj(x) = hjδij (2.4)

where hj = 2jj!
√
π and δij is the Kronecker function.

2.2 Hermite Operational Matrix of Caputo Derivative

In this section, our target is the derivation of an operational matrix for
Hermite polynomials. Let u(x) ∈ L2(Ω)-(Ω = (−∞,∞)). Then u(x) can be
defined in association with Hermite polynomials as

u(x) =

∞
∑

j=0

ajHj(x) (2.5)
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Then, the coefficient aj is written as

aj =
1

2jj!
√
π

∫ ∞

−∞

Hj(x)u(x)w(x)dx j = 0, 1, 2.... (2.6)

where w(x) = e−x2

is the weight function of Hermite polynomials. The first
N + 1 terms of Hermite polynomials appear in

uN(x) =

N
∑

j=0

ajHj(x) = ATφ(x) (2.7)

where

A =
[

a0 a1 . . . aN
]

and

φ(x) =
[

φ0 φ1 . . . φN

]

.

Theorem 2.1. Let φ(x) be the Hermite vector and v > 0. Then

Dv(x) ≃ D(v)φ(x) (2.8)

where D(v) indicates the (N + 1) × (N + 1) operational matrix of fractional

derivative of order v in the Caputo sense that can be given as

D(v) =





























0 0 0 . . . 0
...

...
... . . .

...

0 0 0 0 0
Ωv(i, 0) Ωv(i, 1) Ωv(i, 2) . . . Ωv(i, N)

...
...

... . . .
...

0 0 0 . . . 0
...

...
... . . .

...

Ωv(N, 0) Ωv(N, 1) Ωv(N, 2) . . . Ωv(N,N)





























,

where the element of operational matrix D(v) can be found by

Ωv(i, j) =

⌊
n−⌊v⌋

2
⌋

∑

i=0

1

2jj!
√
π

⌊j/2⌋
∑

r=0

1

2jj!
√
π

(−1)(i+r)2(n−2i+j−2r)n!j!Γ(n−2i+j−2r+1)
2

(j − 2r)!i!r!Γ(n− 2i+ 1− v)
, j = 0, 1, ..., N.

(2.9)
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Proof. We apply Caputo derivative to the analytic form of Hermite
polynomials as:

DvHn(x) =

⌊n
2
⌋

∑

i=0

(−1)i2n−2iDv(xn−2i)

i!(n− 2i)!
(2.10)

=

⌊n
2
⌋

∑

i=0

(−1)i2n−2i(xn−2i−v)

i!
(2.11)

Approximating xn−2i−v by the N + 1 Hermite polynomials, we get

x(n−2i−v) =
N
∑

j=0

cjHj(x) (2.12)

where cj is given by Eq. (2.6) as

cj =
1

2jj!
√
π

∫ ∞

−∞

Hj(x)u(x)w(x)dx j = 0, 1, 2.... (2.13)

Then, in the light of Eq. (2.12) and Eq. (2.13), we obtain

DvHN(x) =

N
∑

j=0

Ω(i, j)Hj(x) (2.14)

where

Ωv(i, j) =

⌊
n−⌊v⌋

2
⌋

∑

i=0

1

2jj!
√
π

⌊j/2⌋
∑

r=0

(−1)(i+r)2(n−2i+j−2r)n!j!Γ(n−2i+j−2r+1)
2

(j − 2r)!i!r!Γ(n− 2i+ 1− v)
, j = 0, 1, ..., N

(2.15)

2.3 Operational Matrix Method for Nonlinear FDEs

This section applies the Hermite operational matrix to the nonlinear FDEs
solution. The nonlinear FDE is given

Dvu(x) = F (x,Dβ1u(x), Dβ2u(x), ..., Dβku(x)) (2.16)

subject to the following initial conditions

u(i)(0) = di, i = 0, 1, ..., m− 1. (2.17)
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Here F is not linear with the conditions of m − 1 < v ≤ m, and 0 < β1 <

β2 < < βk < v. Also, di, i = 0, 1, 2, , m − 1 are initial conditions. The
proposed approximate solution is

uN(x) =

N
∑

j=0

cjHj(x) = CTφ(x) (2.18)

where the coefficients ci are to be determined in a final step. Dvu(x) and
D(β1)u(x) are given in matrix form as

Dvu(x) ≃ CTDvφ(x) = CTD(v)φ(x) (2.19)

Dβku(x) ≃ CTDβkφ(x) = CTD(βj)φ(x). (2.20)

Substituting equations (2.19) - (2.21) into (2.17), we obtain

Dvu(x) = F (CTφ(x), CTDβ1φ(x), ..., CTDβkφ(x)), (2.21)

where F is the nonlinear function given as F = g(x)−f2(x)u
2(x)−f3(x)u(x)

and u(x) is the solution function. Considering Eqs. (2.18)-(2.20), the non-
linear fractional differential can be solved in matrix form Eq. (2.21). Then,
(N −m+ 1) roots of the Hermite polynomials are used for solving the non-
linear algebraic equation system. In other words, we collocate the equation
system with (N−m+1) roots and (m) equations from the conditions. There-
fore, the equation system is solved with Newton iteration method and finally
the unknown

CT =
[

c0 c1 . . . cN
]

coefficients are found. Then, the approximate solution form given in (2.19)
will be found by the coefficients.

3 Numerical Examples

Example 3.1. We first consider the following nonlinear Riccati differential

equation

Dαu(x) + u2(x) = 1, (3.22)

subject to initial condition

u(0) = 0. (3.23)

For α = 1, the exact solution of this equation is given as

u(x) =
e2x−1

e2x+1
(3.24)



Operational Matrix by Hermite Polynomials... 531

Figure 1: The results of the exact and approximate solutions, for α = 0.9
and α = 1.

For N = 2, we obtain the following derivative

D2 =





0 0 0
0 0 0
0 8 0



 .

After applying the technique described in the previous section, we obtain

CT =
[

−0.09 0.5 −0.045
]

.

The proposed method yields the approximate solution as

u(x) = CTΦ(x) = x− 0.18x2 (3.25)

We then plot the results of the exact and approximate solutions as illustrated

in Figure 1. The results show a highly-accurate approximation with the exact

solutions by converging the α value to 1.

Example 3.2. We consider the following nonlinear Riccati differential equa-

tion

Dαu(x) + u2(x)− 2u(x) = 1, 0 < x, α ≤ 1 (3.26)
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Figure 2: The results of the exact and approximate solution, for α = 0.3 and
α = 1.

subject to the initial condition

u(0) = 0. (3.27)

For α = 1, the exact solution of this equation is given as

u(x) = 1 +
√
2 tanh(

√
2x+

1

2
log

√
2− 1√
2 + 1

) (3.28)

After applying the technique described in previous section, we obtain

CT =
[

0.225 0.65 0.1125
]

The proposed method obtains the approximate solution as:

u(x) = 1.3x+ 0.45x2. (3.29)

Similarly, Fig. 2 presents the results of exact and approximate solutions. The

results clearly show a close match with the exact solutions.
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Figure 3: The results of the exact and approximate solutions, for α = 0.9
and α = 1.

Example 3.3. The final nonlinear Riccati differential equation is

Dαu(x)− u2(x) + exu(x) = ex (3.30)

subject to the initial conditions

u(0) = 1. (3.31)

For α = 1, the exact solution of this equation is given as u(x) = ex. After

applying the technique described in previous section, we obtain

CT =
[

1.3 0.5 0.15
]

.

The proposed method obtains the approximate solution as

u(x) = 1 + x+ 0.6x2 (3.32)

Fig. 3 indicates the results of the exact and approximate solutions with a

good agreement.
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4 Conclusion

This paper introduced the derivation of the operational matrix by Hermite
polynomials to solve the nonlinear Riccati differential equations. The pro-
posed method can be applied to different type of nonlinear fractional dif-
ferential equations (FDEs). The main idea is to simplify the problem by
converting the FDEs into a group of algebraic equations with given initial
conditions. As a result, by solving the algebraic equations, we achieve either
the exact or approximate solutions. It is shown that the method presents a
good level of approximation with accurate results.
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