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Abstract
In this study, we present a model which represents the interaction of financial companies in their network. Since the long
time series have a global memory effect, we present our model in the terms of fractional integro-differential equations. This
model characterize the behavior of the complex network where vertices are the financial companies operating in XU100
and edges are formed by distance based on Pearson correlation coefficient. This behavior can be seen as the financial
interactions of the agents. Hence, we first cluster the complex network in the terms of high modularity of the edges. Then,
we give a system of fractional integro-differential equation model with two parameters. First parameter defines the strength
of the connection of agents to their cluster. Hence, to estimate this parameter we use vibrational potential of each agent
in their cluster. The second parameter in our model defines how much agents in a cluster affect each other. Therefore, we
use the disparity measure of PMFGs of each cluster to estimate second parameter. To solve model numerically we use an
efficient algorithmic decomposition method and concluded that those solutions are consistent with real world data. The
model and the solutions we present with fractional derivative show that the real data of Borsa Istanbul Stock Exchange
Market always seek for an equilibrium state.

Keywords: Network Modelling, Stock Market Network, Fractional Calculus, Caputo Fractional Derivative.
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1 Introduction

Complex systems are mathematical structures involving interacting agents at different levels. These interac-
tions emerge from the financial, chemical, social, and computer system entities. In the realm of computational
finance, a financial market can be viewed as interacting group of boundedly-rational agents and its fluctuation
represent strong nonlinearity and persistent memory. The mathematical tools such as network and graph theories
can be used to understand and analyze these systems [1, 2]. There are several models expressed in the terms of
differential equations in biological complex systems. For instance, the virus models that classify individuals and
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hosts can be used to analyze spread of a contagion [3–5]. Besides, bursting electrical activity in the pancreatic
β -cell, population models, and unilingual-bilingual interactions [6], and the interaction of biological species liv-
ing together [7] can also be modelled by differential equations. However, these models are not only restricted to
biological systems. Recent studies show that complex systems involving financial agents have similar structures
as systems involving biological agents [8, 9]. Therefore, it is reasonable to model the interaction of financial
agents as we model the interaction of biological agents.

In a financial market, heterogeneous agents interact through simple investment strategies driven by the in-
vestors. In a perfect rational market, information is transmitted continuously and agents adopt their behavior
accordingly. Besides, asset prices reflect economic fundamentals. Agents are considered as they only interact
though price system. Hence, a complex network where agents are expressed as vertices and edges are formed
by the correlation of price fluctuations emerges as a powerful mathematical tool to model such a financial sys-
tem in the traditional way. In contrast to Keynesian approach, such traditional way takes account of prices of
assets as they are only driven by market fundamentals and the role of market psychology is neglected. Even
though we use the traditional way to express our model in this study, we need to point out two important classes
of investors which are called chartists and fundamentalists in the traditional way of interaction of agents [10].
Chartists tend to look for simple patterns such as trends, past prices, and base and make their investment upon
those patterns. Conversely, fundamentalists make their decisions upon the expectation of asset price as moving
towards its fundamental value. The fundamentalist investors buy or sell assets that are under or overvalued. The
market tends to be dominated by one of fundamentalists or chartists. However, since the behavior of the agents
is persistent, the majority of agents switches to the other view at certain point [11, 12].

Our approach in this study aims to model interaction of agents in a stock market network in the traditional
way. We first use a threshold method to construct a network model where vertices are the companies operating
in a stock market and edges are formed by the correlation distance of daily logarithmic returns of stock prices.
The dimensionality of the resulting network model would be really high and the patterns that yield power law
of degree distributions would be disappeared, however it would involve optimally many edges to characterize
community structures. By maximization of the modularity of edges in the network, we can cluster agents into
densely connected vertex sets. Then, each cluster has its subdominant ultra-metric structure that is a hierarchical
structure with at least one leading actor. We set the number of cluster to two, then assume the investors, even
chartists or fundamentalists, start to invest one cluster regarding to factors such that merging, capital augmen-
tation, public flotation, etc. Then, the investors in the other cluster start to sell assets to get the capital to invest
increasing valued assets. Therefore, the price fluctuation spread within each cluster by conducting leading ac-
tors. However, at certain time, the profit realizations start within the asset price increasing cluster, and then the
capital emergent by the profit realization is used to invest assets in price decreasing cluster. Eventually, the two
clusters find an equilibrium state.

In the complex network model of financial agents the interactions are modelled by the correlations of long
time series [13–19]. Beside the other types of complex systems, financial systems have the strong memory and
heredity properties. Therefore, while using differential equations in financial models it is much more useful
to get fractional calculus involved. Fractional calculus is the extension of the integer order differential and
integral operators to fractional orders [20,21]. The dynamic memory in a financial process can be defined as the
averaged characteristic that describes the dependence of a process in the past. Such memory assumes withitness
of financial agents about the history of the process. In formal way, the information on the state of the process
{t,χ(t)} does not only affect the behavior of financial agents, but also the information about the process state
{τ,χ(τ)} also has effect at τ ∈ [0, t]. This effect is related with the fact that the change of the factors can
leads to different amount of change in indicators that is there exist multivalent dependencies among variables.
One type of such memory of financial agents is called the fading memory and have range application area in
physical sciences [22–30]. In this study, we assume that financial agents can remember the previous changes
of investments and the impact of these changes on the output by following fading memory by using Caputo’s
definition of fractional derivative.
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In this study, we present our model with fractional derivative as similar as the model describing biological
species living together. This model of biological species is first given in [7] as the following usual integro-
differential equations:

dµ1

dt
= µ1(t)

[
k1− γ1µ2(t)−

ˆ t

t−T0

f1(t− τ)µ2(τ)dτ

]
, k1 > 0 (1)

dµ2

dt
= µ2(t)

[
−k2 + γ2µ1(t)+

ˆ t

t−T0

f2(t− τ)µ1(τ)dτ

]
, k2 > 0. (2)

Several solution methods are also presented to study this model [31–33]. The characterization of the fractional
order of the model is also studied in [34].

The rest of the paper is organized as follow: In Section 2, we present the preliminaries about to fractional
calculus and graph theoretical concepts that we use throughout the paper. We start our analysis by first deter-
mining the financial agents in Section 3. The stock market we choose to study is Borsa Istanbul Stock Exchange
Market (XU100). The agents are the companies operating in XU100 and expressed with the time series of the
time span of working days from 2013 to 2015. Afterwards, we determine the clusters of financial agents that
have strong correlations by using high modularity method. Afterwards we introduce the Adomian decomposi-
tion method for solving the system numerically. In Section 5, we present the results by solving the model with
Adomian decomposition method. And finally, in Section 6, we deeply discuss the computational results.

2 Preliminaries

Fractional calculus is an efficient mathematical tool to express complex system phenomenon which involve
memory effect. Hence, we use fractional derivatives and integrals to study the model we present in this study. In
this section, we give some basics about the fractional calculus in Caputo sense. We also introduce some basics
about the graph theory which is the fundamental tool for network modelling. Throughout the paper we let Γ to
represent Gamma function that is an extension of the factorial function.

2.1 Fractional Calculus

The generalization of the integer order differentiation and integration to the fractional order is called frac-
tional calculus [20, 21]. The basic definitions and properties of fractional calculus theory is given as follows:

Definition 1. [20] For f (x) ∈ C (a,b) and n−1 < α ≤ n, the Caputo fractional derivative operator of order α

is given as
C
a Dα

t f (t) =
1

Γ(n−1)

ˆ t

a

f (n)(τ)
(t− τ)α+1−n dτ.

Throughout this paper, we denote the Caputo fractional derivative operator as C
a Dα

t = Dα
a . We also let a = 0

since our formulation only involves the initial conditions as t = 0.

Definition 2. [20] The Riemann-Liouville fractional integral operator of order α ≥ 0 of a function f is defined
as

Jα f (t) =
1

Γ(α)

ˆ t

0
(x− τ)α−1 f (τ) dτ, α > 0, t > 0

J0 f (t) = f (t).

The several properties of the Riemann-Liouville fractional integral operator can be found in [35–37]. Since
the Caputo fractional derivative allows traditional initial and boundary conditions to be included in the formula-
tion of the problem [38], we present our model in the sense of Caputo fractional derivative. By the introduction
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of the Jα , the Dα
a can also be expressed as

Dα
0 f (t) = Jm−αDm f (t),

where m−1 < α ≤ m, m ∈ N, t > 0.
Also, the following two basic properties of the entwined relations among Caputo and Riemann-Liouville

fractional operators are needed to present the solution of the fractional differential equations.

Lemma 1. [35] If m−1 < α ≥ m,m ∈ N, then

Dα
0 Jα f (t) = f (t)

and

JαDα
0 f (t) = f (t)−

m−1

∑
k=0

f (k)(0+)
tk

k!
, t > 0.

2.2 Graph Theory

The real–world problems are often expressed with the relations of interacting individuals. One of the efficient
mathematical tools to represent such relations is the simple graphs. In the Stock Market Networks, interactions
of financial agents can be modelled by simple graphs. Let V be the set of the interacting individuals and E be
the set of relations, then a simple graph is a tuple G = (V,E). Here we call V as the vertex set and E as the set of
edges. The each element of E is the unordered pair of vertices as ek = (vi,v j), where vi,v j ∈V for all i, j,k ∈N.
The number of edges incident to a vertex v is called as the degree of v and we denote the degree as dv.

A sequence of edges between the vertices vi and v j is called a path, and if there is a path between any vertices
of the graph G, then G is called as connected. If there is an edge between all elements of V , then G is called as a
complete graph. The k-clique of the graph G is the complete subgraph of G which involves k-many vertices of
G.

For the simple graph G = (V,E) with the unordered edges, a binary matrix which has the entities as

AG(i, j) =
{

1, i f (vi,v j) ∈ E
0, otherwise

is used to represent the relations and called as adjacency matrix. AG is symmetric by definition.
Now let |V | = n and DG be the diagonal degree matrix of G defined as DG = diag[dv1 , . . . ,dvn ]. The matrix

LG = AG−DG is called the Laplacian matrix of G. The spectrum of the LG encodes structural properties of
G. The one that we use in this study is helpful to construct a threshold network of the financial agents. All
eigenvalues of LG are positive semi-definite with the least one 0. The multiplicity of the 0 eigenvalue equals the
connected components number of G [39].

Several types of subgraphs also involve the information about the network which is expressed as a simple
graph G = (V,E). One of them is the tree structure that has minimum weight. Such subgraphs are called as
Minimum Spanning Tree (MST) and involve the junction vertices which are dominant in the flow of information
and comes up with subdominant ultra-metric structure [40, 41]. In the case of financial agents are the vertices
of the network, MST gives the hierarchical structure of the financial network [42–44]. A planar graph is a
simple graph that can be embedded on the plane, which is none of the graph edges intersect. Trees like planar
graph that involve cliques are also useful to extract information about the network. Such tree like planar graphs
have the same hierarchical structure as MST but they contain larger amount of information about the relation
among the interacting agents [45–47]. In [45], authors present a method to obtain a planar graph with maximum
non-crossing edges among the agents of a network and called it Planar Maximally Filtered Graph (PMFG).
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3 Model

This study involves 93 companies that have been operating in Borsa Istanbul 100 Stock Exchange Index
(XU100) from January 2013 to January 2015. The Pearson correlation coefficient of time series assumes the
equality of the length of time series. Hence, even though XU100 has 100 operating companies, we only consider
93 of them which have the equal time length. Trading hours for the stocks are held by two sessions on business
days with mid-day break, and one session in some official holidays [44, 48]. The tickers of the companies
operating in XU100 and that are considered in this study is given in Table 1. The more details on the data can
be found in [44].

Financials
AKBNK, SKBNK, SNGYO, TSKB, TEKST, TRGYO,

VKGYO, ALGYO, ISGYO, GARAN, ALBRK, GLYHO,
ISCTR, YKBNK, SAHOL, GOZDE, HALKB, VAKBN,

ECZYT, SAFGY, EKGYO, SAHOL, GSDHO
Industrials

ASELS, TAVHL, TKFEN, TTRAK, CLEBI
Consumer Discretionary

ASUZU, TKNSA, TOASO, YAZIC, AKSA, ARCLK,
GSRAY, KARSN, THYAO, BRISA, DOAS, FENER,

MNDRS, METRO, VESBE, ADEL , BJKAS, NTTUR,
GOODY, OTKAR, TMSN, EGEEN, FROTO, IHLAS

Energy
AYGAZ, TUPRS, IPEKE , KCHOL

Technology
NETAS, VESTL

Materials
SASA, AFYON, ANACM, BAGFS, CIMSA, KONYA,
KOZAA, ERBOS, KRDMD, PRKME, SISE, ALKIM ,

TRKCM, GUBRF, KOZAL, BRSAN, KARTN, PETKM,
GOLTS, EREGL
Communications

TTKOM, TCELL, DOHOL, HURGZ
Consumer Staples

AEFES, CCOLA, BIZIM, ECILC, BIMAS, MGROS,
SODA, ULKER

Utilities
AKSEN, ALARK, TRCAS, ZOREN, ENKAI

Table 1 Sectors of each considered stock

The data we use is available with sessional closure price, therefore we calculate sessional closure price
logarithmic return as

Cli = logPi(t +1)− logPi(t),

where Pi(t) is the closure price of the i-th stock at the session t. To represent the relation between stock pairs,
we use the Pearson correlation coefficient of stocks as

ρi j =
<CliCl j >−<Cli ><Cl j >√

(<Cl2
i >−<Cli >2)(<Cl2

j >−<Cl j >2)
,
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where < · · ·> is the temporal average performed on the trading days.
Pearson correlation coefficient varies between -1 and 1. ρi j = 1 indicates that the stocks i and j are com-

pletely correlated whilst ρi j indicates that the stocks i and j are completely uncorrelated [42]. Hence, it is also
possible to introduce a new distance dCorr :=

√
2(1−ρi j)/2 as in [13,44]. We can conclude that if dCorr(i, j)= 0,

then the stocks i and j are completely correlated, and if dCorr(i, j) = 1, then the stocks i and j are completely
uncorrelated.

This distances based on Pearson correlation is helpful to us for edge determination on the network. By using
an empirical threshold value among the stocks, it is possible to determine edges representing strong relations as

AG(i, j) = 1 i f f dCorr(i, j)≤ T hV,

where T hV is the threshold value. The threshold value can be determined by the subdivision of the interval [0,1],
where the boundaries are the extremal values of dCorr, into h many subintervals. The details on the algorithm of
network construction and computational complexities can be found in [13, 44].

The model we proposed in this study first deal with the two clusters of financial agents of the network. In
the literature, the cluster of densely connected vertices of a network is called graph communities [49, 50]. This
densely connection is internal and can be used to analyze the relations that are represented by edges on the
network. There are several methods to detect communities in a network [51–54]. To find the graph communities
in the network; we use the Modularity Maximization Method which is based on the maximizing the Newman
modularity index [51] defined as

Q =
NC

∑
i=1

Ek

m
− 1

4m2

(
∑
j∈Vk

d j

)2
 ,

where Ek is the number of edges in the k-th module, NC is the total number of modules, m is the total number of
edges and d j is the vertex degree. Since the resulting communities are non-overlapping and this method let us
to determine final number of the communities, we choose it as an efficient tool.

Now let us consider the two communities of financial agents with the total number of investments µ1(t)
and µ2(t), respectively, at time t. Let us assume the investment in the first community is increasing with the
coefficient of increase k1 and in the second community is decreasing with the coefficient of decrease k2. Both
coefficients k1 and k2 are positive reals. If the two communities are left separate; i.e. they are non-overlapping,
then the fractional growth of the first can be represented by

Dα
0 µ1(t) = k1µ1(t) (3)

and the decline of the second community can be represented by

Dα
0 µ2(t) =−k2µ2(t). (4)

The neoclassical liberal economy states that markets always look for the equilibrium state. Hence, if we put
these two communities together in the corresponding stock market environment, the decrease of the rate of the
increase of first community is proportional to µ2(t) and vice versa. Therefore, it is reasonable to assume the
increase and decrease coefficient as

k′1 = k1− γ1µ2(t) (5)

and
k′2 = k2 + γ2µ1(t), (6)

where γ1 and γ2 are the proportionality constants which depend on other investor behavior, respectively. The
actual decrease and increase of the investments in the communities are due not only to the presence of the other
community but also to all previous presences for the whole time interval t−T0 < τ < t, where T0 is the finite
heredity duration of both communities. In addition to the present γ1 and γ2 factors, we may have the record of
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decrease as f1(τ) and increase as f2(τ). Therefore, by considering the heredity duration of both communities,
the total decrease in k1 in the time interval T0 is

δk1 =−
ˆ t

t−T0

f1(t− s)µ2(s) ds (7)

the total fractional increase in k2 is

δk2 =

ˆ t

t−T0

f2(t− s)µ1(s) ds. (8)

Now, by considering effective values of the k1 and k2 and the equations 3–8, the fractional model with fading
memory of the equilibrium state of the two communities of financial agents in same stock market can be given
as the system of fractional integro-differential equations as follows:

Dα
0 µ1(t) = µ1(t)

[
k1− γ1µ2(t)−

ˆ t

t−T0

f1(t− s)µ2(s) ds
]
, (9)

Dα
0 µ2(t) = µ2(t)

[
−k2 + γ2µ1(t)+

ˆ t

t−T0

f2(t− s)µ1(s) ds
]
, (10)

µ1(0) = N1, µ2(0) = N2, (11)

where N1 and N2 are the initial conditions.

4 Method

In this section, we present the graph theoretical methods to determine parameters k1, k2, γ1, and γ2 of the
fractional integro-differential equation model in the initial value problem 9–11 and the numerical solution that
is based on Adomian Decomposition Method.

4.1 Parameter Estimation

The parameters in network models can be estimated by using graph theoretical concepts. For the system
9–11, to determine the coefficients of increase and decrease, we use an interpretation of the displacement of a
vertex in a network from its equilibrium state while the network is under a thermal bath. This thermal bath can
be seen as the change of investment strategies on given network. This procedure is called vibrational potential
and first presented in [55]. The later studies consider vibrational potential as an efficient measure to vertex
centrality [56–58]. The main idea to compute the vibrational potential of a network is embedding vertices to
n-dimensional Euclidean space by using the Moore-Penrose pseudo-inverse of the Laplacian, where n = |V |.
Within the hierarchical structure of each community, each stock market tends to be adjacent to junction vertices.
Therefore, the change of investment on the junction vertices directly affect the corresponding leaves. Therefore,
we correspond the increase/decrease coefficients with vibrational potential of the network. However, instead of
direct computing vibrational potential of the network, we compute vibrational potential of each vertex respect
to its neighborhood graph.

For this purpose we present the vertex displacement in vibrational potential of a vertex respect to its neigh-
boring vertices with

V (~xv) =
k
2
~xv

T LN~xv, (12)

where k is the spring constant, LN is the Laplacian of the neighboring graph GN of the vertex v in G, and ~xv is
the vector whose i-th entry is the displacement of v. The mean displacement of the vertex v can be computed
with the reverse temperature β as

∆xi =

√ˆ
x2

i P(~xv)d~xv, (13)

https://www.sciendo.com


324 Mehmet Ali Balcı Applied Mathematics and Nonlinear Sciences 5(2020) 317–336

where the probability distribution P(~xv) is

P(~xv) = exp
(
−βk

2

)/ˆ
exp
(
−βk

2

)
d~xv . (14)

Similarly the displacement correlation of the vertices in same neighborhood can be defined as

< xi,x j >=

ˆ
xix jP(~xv)d~xv, (15)

where < · · ·> is the thermal average.
Let 0 = λ N

1 < λ N
2 ≤ . . . ≤ λ N

n be the spectrum of LN respect to eigenvalues λ N
µ . Since the quantity respect

to 0 eigenvalue is the center of mass, the 0 eigenvalue does not affect the vertex displacement. Then the integral
measure can be transformed by

d~xv =
n

∏
i=1

dxi = |detUN |
n

∏
i=1

dξi = d~ξv (16)

where UN is the matrix formed by the orthogonal eigenvectors of LN . By the introduction of this transform the
new probability distribution can be obtained as

P(~ξv) = exp
(
−βk

2
~ξv

T
ΛN

~ξv

)/ˆ
exp
(
−βk

2
~ξv

T
ΛN

~ξv

)
d~ξv

= exp
(
−βk

2
~ξv

T
ΛN

~ξv

)/ n

∏
µ=1

ˆ
∞

−∞

exp
(
−βk

2
λ

N
µ ξ

2
µ

)
, (17)

where the diagonal matrix ΛN involves the eigenvalues λ N
µ .

Since 0 eigenvalue does not effect the vertex displacement, we can remove the component µ = 1 from the
Equation 17, and the probability distribution can be computed as

P(~ξv) = exp
(
−βk

2
~ξv

T
ΛN

~ξv

)/ n

∏
µ=2

ˆ
∞

−∞

exp
(
−βk

2
λ

N
µ ξ

2
µ

)

= exp
(
−βk

2
~ξv

T
ΛN

~ξv

)/ n

∏
µ=2

√
2π

βkλµ

. (18)

Hence, by using the probability distribution obtained in Equation 18, it is possible to compute the Equation
13 as

∆xi =
√

< x2
i >=

√√√√Li

/
n

∏
µ=2

√
2π

βkλµ

, (19)

where

Li =
n

∑
j=2

ˆ
∞

−∞

(Ui jξ j)
2 exp

(
−βk

2
λ jξ

2
j

)
dξ j×

n

∏
µ=2,µ 6= j

ˆ
∞

−∞

exp
(
−βk

2
λµξ

2
µ

)
dξµ

=
n

∏
µ=2

√
2π

βkλµ

×
n

∑
j=2

U2
i j

βkλ j
.

Therefore, the mean displacement of a vertex from its neighborhood can be computed as

∆xi =

√√√√ n

∑
j=2

U2
i j

βkλ j
.
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By the introduction of the Moore-Penrose pseudo inverse LN+
i j of LN as in [59, 60], it is also possible to

compute the mean displacement of a vertex from its neighborhood as

∆xi =
1

βk
(LN+

ii ). (20)

We also note that the displacement correlation of the vertices in the same neighborhood that is given in the
Equation 15 can be computed in the terms of Moore-Penrose pseudo inverse as

< xi,x j >=
1

βk
(LN+

i j ). (21)

Another parameters we need to estimate in the system 9–11 are γ1 and γ2 which are the proportionality
values. The proportionality values control how much financial agent in the same community affect each other.
Hence, they can be measured as how strong each agents are connected internally. This measurement is naturally
arise from the PMFG of each communities. PMFG structure allows cliques which are the topological subgraph
structure representing strong relations. Since PMFG also has the information about the hierarchical structure,
it is reasonable to measure internal connectedness of communities by using PMFG. For this measurement we
follow the way presented in [45]. The mean disparity measurement < y > of a PMFG can be defined as the
mean of

y(i) = ∑
i6= j, j∈Clique

(
dCorr(i, j)

si

)2

, (22)

where i is the generic element of the clique and

si = ∑
i 6= j, j∈Clique

dCorr(i, j). (23)

4.2 Adomian Decomposition Method

It is well known that many nonlinear differential equations exhibit strange attractors and their solutions have
been discovered to move toward strange attractors. If these strange attractors are examined deeply, it can be
seen that these are fractals. Therefore, we aim to deal with fractal nonlinear differential equations rather than
classical forms of them. Hence we shall extend the Adomian decomposition method to be used for solving
fractional nonlinear equations. For the solution of the system 9–11, we use an efficient decomposition method
for approximating the solution of systems of fractional integro-differential equation that are given in Caputo
sense. The approximate solutions are calculated in the terms of a convergent series as in [34].

Now let us consider the system 9–11 with 0 < α ≤ 1. By following the decomposition idea we may state
that

Dα
0 µ1(t) = m1(t), (24)

Dα
0 µ2(t) = m2(t). (25)
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This equations lead us to the integral equations

µ1(t) = µ1(0)+ Jα(m1(t)) (26)

= N1 + Jα
0 m1(s)ds, (27)

µ2(t) = µ2(0)+ Jα(m2(t)) (28)

= N2 + Jα
0 m2(s)ds, (29)

m1(t) = µ1(t)
(

k1− γ1µ2(t)−
ˆ t

t−T0

f1(t− s)µ2(s)ds
)

(30)

= k1

(
N1 +

ˆ t

0
m1(s)ds

)
−µ1(t)

(
γ1µ2(t)−

ˆ t

t−T0

f1(t− s)µ2(s)ds
)
,

m2(t) = µ2(t)
(
−k2 + γ2µ1(t)−

ˆ t

t−T0

f2(t− s)µ1(s)ds
)

(31)

= k2

(
N2 +

ˆ t

0
m2(s)ds

)
+µ2(t)

(
γ2µ1(t)+

ˆ t

t−T0

f2(t− s)µ1(s)ds
)
.

Afterwards, the Adomian process will be as follows:

µ1,0 = N1, µ2,0 = N2, (32)

m1,0 = k1N1, m2,0 = k2N2, (33)

µ1, j+1 = Jα
0 m1, j(s)ds, µ2, j+1 = Jα

0 m2, j(s)ds, (34)

m1, j+1 = k1

ˆ t

0
m1, j(s)ds− γ1

j

∑
k=0

µ1,k(t)µ2, j−k(t) (35)

−
ˆ t

t−T0

f1(t− s)

(
j

∑
k=0

µ1,k(t)µ2, j−k(t)

)
ds

m2, j+1 = k2

ˆ t

0
m2, j(s)ds− γ2

j

∑
k=0

µ1,k(t)µ2, j−k(t) (36)

+

ˆ t

t−T0

f2(t− s)

(
j

∑
k=0

µ1,k(t)µ2, j−k(t)

)
ds.

5 Results

In order to study the proposed model in the Borsa Istanbul Stock Exchange, we first apply our algorithm to
the data set to obtain stock market network. For the fraction size h= 10000, the algorithm determines the control
parameter as 0.6854. The vertices are sorted from 1 to 93 by the alphabetical order in Table 1. The formed
network is presented in Figure 1. The vertices with maximum vertex degree are ADEL, AKBNK, AKSEN,
ALBRK, ALGYO, ALKIM, ARCLK, ASELS, BRISA, DOAS, GARAN, GOLTS, HALKB, ISCTR, KARTN,
KCHOL, KONYA, KRDMD, MGROS, OTKAR, PRKME, SAHOL, SISE, SNGYO, TKFEN, TKNSA, TMSN,
TOASO, TRCAS, VAKBN, and YKBNK with the degree number 92, and the vertex with minimum vertex
degree is VKGYO. The maximum and mean correlation distances among the companies are 0.7211 and 0.5798,
respectively. Hence it can also be concluded this network has strong internal connectedness. The correlation
distance matrix of the agents are presented in Figure 2 with temperature mapping.

To determine the two non-overlapping clusters of financial actors we use the high modularity method. The
resulting communities are presented in Figure 3. The agent numbers of each community give us the initial
conditions as N1 = 66 and N = 27.
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Fig. 1 The network of XU100 with the threshold value 0.6854.
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Fig. 2 The matrix of correlation distance among the financial agents of XU100. The darker points are closer to 1 while
the lighter ones are closer to 0.

As aforementioned, parameters of the model described by the system 9–11 are obtained by vibrational
potential respect to neighborhood graphs and mean disparity measures of each communities. We need to note
that vibrational potentials of each vertices are tend to form internal clusters; i.e., some of them have higher
values and some of them have lower values. Therefore, while determining k1 and k2 values, we choose the mean
value of each vibrational potentials. Afterwards forming the PMFG of each community, it becomes possible to
obtain disparity measures respect to 4-cliques, which are the representation of the strongest connections. The
resulting parameters γ1 = 0.3342 and γ2 = 0.3388. The parameters are close to the value 1/3 which also states
that the clustering method we choose is reasonable [45]. To interpret the results, we present MSTs and PMFGs
of both two clusters in Figures 4–5
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Fig. 3 The community plot of the resulting network.

In the light of these computed parameters we may now state the system 9–11 with T0=100, f1(t) = f2(t) = et

as

Dα
0 µ1(t) = µ1(t)

[
5.95−0.3342µ2(t)−

ˆ t

t−100
e(t−s)

µ2(s) ds
]
, (37)

Dα
0 µ2(t) = µ2(t)

[
−4.39+0.3388µ1(t)+

ˆ t

t−100
e(t−s)

µ1(s) ds
]
, (38)

µ1(0) = 66, µ2(0) = 27. (39)

By applying the Adomian process obtained in Section 4.2, the solution of the initial value problem 37–39
can be obtained as

µ1(t) = N1 +
k1N1tα

Γ(1+α)
+

N1tα
((
−1+ e−T0

)
N2 +4−αk2

1
√

πtα/Γ(0.5+α)−N2γ1
)

Γ(1+α)
, (40)

µ2(t) = N2 +
k2N2tα

Γ(1+α)
+

N2tα
((

1− e−T0
)

N1 +4−αk2
2
√

πtα/Γ(0.5+α)−N1γ2
)

Γ(1+α)
. (41)

with a three-term approximation.
The plots of the solution functions (40–41) are presented in Figures 6–15 for the different α values.
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Fig. 4 MST (above) and PMFG (below) filtering of Community 1.
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Fig. 5 MST (above) and PMFG (below) filtering of Community 2.
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Fig. 6 The solutions of the initial value problem 40–41 for α = 0.1
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Fig. 7 The solutions of the initial value problem 40–41 for α = 0.2
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Fig. 8 The solutions of the initial value problem 40–41 for α = 0.3
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Fig. 9 The solutions of the initial value problem 40–41 for α = 0.4
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Fig. 10 The solutions of the initial value problem 40–41 for α = 0.5
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Fig. 11 The solutions of the initial value problem 40–41 for α = 0.6
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Fig. 12 The solutions of the initial value problem 40–41 for α = 0.7
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Fig. 13 The solutions of the initial value problem 40–41 for α = 0.8
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Fig. 14 The solutions of the initial value problem 40–41 for α = 0.9
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Fig. 15 The solutions of the initial value problem 40–41 for α = 0.10

6 Conclusions

Ordinary differential equations are the most common mathematical tool to represent real world problems.
But ordinary differential equations become less effective whenever the problem involves memory effect. Com-
plex systems that representing financial agents have the memory effect, hence it is reasonable to model such
systems by using the idea of fractional differential.

In this study, we propose a model which is represents the fractional interaction of financial agents. The
interaction of the agents is determined within a complex network of a stock market. We express the model as
a system of fractional integro-differential equations in Caputo sense. Hence, we keep the fading memory of
the financial interaction. Our model considers two clusters of agents where one cluster tends to get investment
flow. To determine the clusters we use maximization of the edge modularity in stock market network. The
resulting clusters are consistent with the structure of Borsa Istanbul. Both MST and PMFG filtration of the
clusters involve agents of Financials sector as the leading elements. To estimate the parameters of the model, we
use graph theoretical concepts such as vibrational potentials and disparity measure of respected PMFGs.

By the computed parameters, we use Adomian decomposition method to obtain a solution of the model. This
solution show us that for different fractional dimensions α , the model always reaches to an equilibrium state.
For the lesser values of fraction rate α , agents reach to an equilibrium state relatively slower. Besides, the flows
of investments tend to be in same characteristics. For the greater α values, agents reach to an equilibrium state
faster and similarly the flows of investments tend to be in same characteristics. The model keeps the memory of
the investment in best for 0.4≤ α ≤ 0.6. This results shows us that the fractional interaction of financial agents
is consistent with reality when autocorrelations are discarded.

As neoclassical liberal theory of economics states, markets always seek for an equilibrium state. Hence,
the model we present with fractional derivative is consistent with the real data of Borsa Istanbul Stock Ex-
change Market. We also believe that these kind of models can provide useful information for understanding and
prediction of the global economic crisis.
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[40] Cyman J., Lemańska M., Raczek J. (2006) On the doubly connected domination number of a graph, Open Mathematics,

4(1): 34–45
[41] Graham R. L., Hell P. (1985) On the history of the minimum spanning tree problem, Annals of the History of Comput-

ing, 7(1): 43–57
[42] Mantegna R. N. (1999) Hierarchical structure in financial markets. The European Physical Journal B-Condensed Matter

and Complex Systems, 11(1):193–197
[43] Naylor M. J., Rose L. C., Moyle B. J. (2007) Topology of foreign exchange markets using hierarchical structure

methods. Physica A: Statistical Mechanics and its Applications, 382(1): 199–208
[44] Balcı, M. A. (2018). Hierarchies in communities of Borsa Istanbul Stock Exchange. Hacettepe Journal of Mathematics

and Statistics, 47(4), 921-936.
[45] Tumminello M., Aste T., Di Matteo T., Mantegna R. N. (2005) A tool for filtering information in complex systems.

Proceedings of the National Academy of Sciences of the United States of America, 102(30): 10421–10426
[46] Barfuss W., Massara G. P., Di Matteo T., Aste T. (2016) Parsimonious modeling with information filtering networks.

Physical Review E, 94(6): 062306
[47] Wang G. J., Xie C., He K., Stanley H. E. (2017) Extreme risk spillover network: application to financial institutions.

Quantitative Finance, 1–17
[48] Aksu M., Kosedag A. (2006) Transparency and disclosure scores and their determinants in the Istanbul Stock Exchange.

Corporate Governance: An International Review, 14(4): 277–296.
[49] Clauset A., Moore C., Newman M. E. J. (2008) Hierarchical structure and the prediction of missing links in networks.

Nature, 453(7191): 98–101
[50] Lü L., Zhou T. (2011) Link prediction in complex networks: A survey. Physica A: statistical mechanics and its appli-

cations, 390(6): 1150–1170
[51] Newman M. E. J. (2004) Detecting community structure in network, The European Physical Journal B-Condensed

Matter and Complex Systems, 38(2): 321–330
[52] Lancichinetti A., Fortunato S., Kertész J. (2009) Detecting the overlapping and hierarchical community structure in

complex networks. New Journal of Physics, 11(3): 033015
[53] Newman M. E. J., Girvan M. (2004) Finding and evaluating community structure in networks. Physical review E,

69(2): 026113
[54] Agarwal G., Kempe D. (2008) Modularity-maximizing graph communities via mathematical programming. The Euro-

pean Physical Journal B, 66(3): 409–418
[55] Estrada E., Hatano N. (2010) A vibrational approach to node centrality and vulnerability in complex networks. Physica

A: Statistical Mechanics and its Applications, 389(17): 3648–3660
[56] Estrada E., Hatano N., Benzi M. (2012) The physics of communicability in complex networks. Physics reports, 514(3):

89–119
[57] Ranjan G., Zhang Z. L. (2013) Geometry of complex networks and topological centrality. Physica A: Statistical Me-

chanics and its Applications, 392(17): 3833–3845
[58] Feng L., Bhan B. (2015) Understanding dynamic social grouping behaviors of pedestrians. IEEE Journal of Selected

Topics in Signal Processing, 9(2): 317–329
[59] Davidson J., Savaliya S., Shah J. J. (2013) Least-squares fit of measured points for square line-profiles, Procedia CIRP,

10: 203–210
[60] Grant W. S., Voorhies R. C., Itti L. (2013) Finding planes in LiDAR point clouds for real-time registration, In Intelligent

Robots and Systems (IROS), 2013 IEEE/RSJ International Conference, 4347–4354

https://www.sciendo.com

	Introduction
	Preliminaries
	Fractional Calculus
	Graph Theory

	Model
	Method
	Parameter Estimation
	Adomian Decomposition Method

	Results
	Conclusions

