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1 Introduction

A partially linear model includes multicollinearity as follows:

yi =

p∑
j

xi jβ j + g (zi) + εi, 1 ≤ i ≤ n, (1.1)

where yi represents the response values, xi j denotes the values of covariates correlated
with each other, β j represents unknown regression coefficients for the parametric
component, g(zi) is the nonparametric part of the model with single nonparametric
covariate zi and an unknown smooth function g(.), and εi denotes the random error
terms with constant variance σ2

ε and mean zero. To simplify this notation, the matrix
and vector form of the model (1.1) can be written as follows

y = XTβ + g + ε, (1.2)

where y = (y1, y2, . . . , yn)T is the (n × 1) vector of response values, XT = (x1, . . . , xp)
is the (n × p) covariate matrix formed by observations of independent variables and
assumed to be a full-ranked matrix, β = (β1, β2, . . . , βp)T is the (p×1) vector of regression
coefficients to be estimated, g =

(
g(z1), g(z2), . . . , g(zn)

)T is the (n×1) dimensional vector
of nonparametric component, and ε = (ε1, ε2, . . . , εn)T is the (n × 1) vector of random
error terms with E(ε) = 0 and E

(
εεT

)
= σ2

i In. A number of researchers have studied the
fitness of the model defined in (1.2). Examples of such studies include Schimek (2000),
Ruppert et al. (2003), and Liang (2006).

The paper discusses two important problems that arises in model (1.2), multi-
collinearity and censored response values.

Multi-collinearity is an increasingly common problem in recent years, as data
collection methods have been developed and data structures have evolved into high
dimensionality. It is well-established that standard regression phenomenon assumes
that covariates are linearly uncorrelated. However, in many application areas such
as biology, economics, industry, finance, medical studies, and especially recent work
in bioinformatics, this assumption often breaks down because there are many more
explanatory variables to model the response variable. Therefore, multi-collinearity
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is an inevitable problem for any linear, nonparametric or semi-parametric modeling
procedures.

It is quite common to have observations with missing values for response variables
in applied fields such as survival analysis. These missing observations are sometimes
unavoidable, due to the fact that individuals can withdraw from a study at any time.
In general, censoring occurs when there is incomplete information about the survival
time of some individuals in the study. The censored data problem, where the observed
value of a variable is partially known, is related to the missing data problem. Ordinary
regression techniques cannot be used directly in the fitting procedure of model (1.1)
because censored data leads to biased estimates. In such cases, one typical approach
is to impute, or "fill in", the missing observations; another is to transform response
observations.

It should be emphasized that when there are many independent variables affecting
the right-censored response observations, the multi-collinearity problem may arise in
the setting of regression analysis. Specifically, this article seeks a solution for situations
where both right-censorship and collinearity appear simultaneously in the data set.
This is because, based on our experience, datasets have frequently contained both
these problems in recent years.

This paper solves the multi-collinearity problem by using the kernel-type ridge
estimator for partially linear models studied by Yüzbaşı et al. (2017). To overcome
censorship, we use two methods: the synthetic data transformation method described
in Koul et al. (1981) and the kNN imputation method studied by Batista and Monard
(2002) and Ahmed et al. (2020). Note also that kernel ridge regression under censored
data has been previously studied by Shim (2005) in a nonparametric setting. As
is known, in ridge-type estimators, the shrinkage parameter plays a crucial role in
accuracy of the estimation. Moreover, the bandwidth parameter of the kernel smoothing
method controls the amount of penalty term in minimization criterion given in equation
(3.1). Determining both the ridge and bandwidth parameters are therefore two addition-
al issues covered in this paper. To achieve improved AICc, the criterion proposed by
Hurvich et al. (1998) is used in the determination of both parameters.

In the context of right-censored data, several authors have studied estimation of
the partially linear model (1.2). Some of these include Orbe et. al. (2003) and Liang
and Zhou (2008). In addition, the estimation of right-censored response values was
proposed by Kaplan-Meier (1958), and later Miller (1976) proposed Kaplan-Meier (K-
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M) weights for the linear regression model estimation using a K-M estimator.

According to given information above, the contributions of this paper can be
summarized as follows:

• A modified kernel-type ridge estimator is introduced to estimate the partially
linear model with right-censored data.

• Two solution techniques with different fundamentals are used to solve the censor-
ship problem. One of these is a synthetic data transformation based on the
Kaplan-Meier estimator of distribution of censoring variable (Koul et al., 1981).
The other is kNN imputation, a machine learning method. It is a fully nonparame-
tric model that provides different perspectives on the estimation process.

The paper is arranged as follows: In section 2, the right-censored data concept, synthetic
data transformation and kNN imputation methods are introduced with their important
aspects. Section 3 presents the ridge-type kernel estimator for a censored, partially
linear model based on both synthetic data and kNN imputation. In Section 4, some
performance evaluation metrics are defined. A detailed Monte-Carlo simulation study
and results are given in Section 5. Finally, concluding remarks are made in Section 6.

2 Right-Censored Data and Solution Techniques

This paper focuses on estimating the vectorβof regression coefficients and the unknown
smooth function g in model (1.2), while the response values of yi are observed incomple-
tely and censored from the right by a random censoring variableci, i = 1, . . . ,n.
However, xi j and zi variables are completely observed. Consequently, right-censored
triplets {xi j, zi, yi} are turned into incomplete observations {xi, zi, ti, δi}

n
(i=1) as follows:

ti = min
(
yi, ci

)
and δi = I

(
yi ≤ ci

)
, 1 ≤ i ≤ n, (2.1)

where ti represents the right-censored response values that are updated according to
existence of the censorship with distribution J, ci denotes the values of the censoring
variable with distribution G and δi values are binary scores of the censoring indicator,
which carries the information of the existence of the censorship. Note also that it is
assumed that yi and ci are independent random variables with unknown distributions
F and G, respectively.

Now, it can be clearly seen that model (1.2) cannot be estimated directly using an
ordinary semiparametric modelling procedure due to incomplete responses. Although
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ti’s are obtained according to censorship, they do not involve the effect of censored
observations which cause biased estimates. In order to overcome this problem, there
are some solution methods in the literature. The most important methods can be
divided into three categories: transformation (Koul et al. 1981), imputation (Batista
and Monard 2002; Yenduri and Iyengar, (2007), and weights (Miller, 1976; Stute, 1993;
Orbe et al. 2003). In this paper, the first two types are considered because, for the
purposes of this paper, synthetic data transformation and imputation techniques are
far easier, in terms of computation and formulation, than a weights-based method.

In the analysis of right-censored data, there are two fundamental assumptions (A1
and A2) which provide consistent and accurate estimates. These assumptions have
previously been described in detail by Stute (1993), Koul et al. (1981) and Miller (1976).
Therefore, they will be introduced only cursorily here:

A1. Completely observed yi’s and ci’s should be independent.

A2. P(yi < ci|yi, xi, zi) = P(yi ≤ ci|yi).

A1 is the ordinary assumption for survival analysis and allows acquisition of a meanin-
gful model. If A1 is broken, then to obtain an accurate model, significantly more
information is needed. On the other hand, A2 means that given time of failure,
values of explanatory variables cannot provide any further information about response
data points. Note that both A1 and A2 cannot assume the independency between
explanatory variables, but in classical regression phenomenon, correlation between
xi’s is not preferred, as explained in the introduction section. It should be emphasized
that this paper’s interests lie in two problems: right-censored responses and multi-
collinearity. This section prepares us to handle censorship problem. Multi-collinearity
under censorship is discussed in Section 3.

2.1 Synthetic Data Transformation

Synthetic data transformation is a widely used technique to overcome censorship
problem in the data in the modelling context. There are a number of modified synthetic
data transformations in the literature, some of which are mentioned in Section 1.
However, this paper will obtain synthetic responses based on Koul et al. (1981).
Accordingly, data transformation is computed by

tiG =
δiti

1 − G (ti)
=

δiti

Ḡ (ti)
, (2.2)
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where G is the distribution of ci, as explained before. After computation of the synthetic
responses, model (1.2) can be rewritten with synthetic data as follows:

tG = XTβ + g + εG, (2.3)

where εG = (ε1G, . . . , εnG) is a vector of random error terms for known censoring
distribution G and E(εG) = 0 (see, for example, Aydın and Yılmaz, 2018, for a more
detailed discussion). Because G is generally unknown and has to be estimated, G is
replaced by its Kaplan-Meier estimation, as introduced by Koul et al. (1981), below:

Ĝ(s) = 1 −
n∏

i=1

( n − i
n − i + 1

)I[t(i)≤s,δ(i)=0]
, (s ≥ 0), (2.4)

where
{(

t(i), δ(i)

)}n

i=1
denotes ordered data pairs associated with t(i). Note that Koul et al.

(1981) shows that for n → ∞, Ĝ(s) → G(s). Moreover, the main idea of using synthetic
values is that tiG’s have exactly the same expected value as the observed response
variable: E

(
tiĜ

)
� E (tiG) � E

(
yi
)
, as discussed by Aydın and Yılmaz (2018).

2.2 The kNN Imputation Technique

This section has been prepared to introduce the kNN imputation technique to impute
estimated scores instead of censored data points independent of distribution, which
is the most important difference between the kNN imputation from synthetic data
transformation. Advantages and disadvantages of this technique are given as follows:

Advantages
→ Imputed values are derived from actual values not synthetic or constructed values
→ kNN provides additional information using explanatory variables.
→ kNN imputation is a fully nonparametric method and it does not make any assumption
about the relationship between x and y or x and z.
→ kNN can work for both discrete and continuous attributes. For discrete attributes,it uses
the most frequently used value among k-nearest neighbors.
For continuous attributes, it uses mean value of k-nearest neighbors
Disadvantages
→ It cannot be guaranteed to obtain the exact same expected values of imputed dataset (yk

i )
and completely observed response yi
→ It is possible that the technique does not produce consistent results. Thus, estimates do
not always get better when the sample size is larger.
→ Statistical properties such as bias and variance of the obtained estimator cannot be
computed, because it is a fully nonparametric method.
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The kNN is a similarity-based technique, that is, it depends on the distance between
observations. There are various metrics to evaluate these distances. However, in
this paper, the Euclidean norm, which is widely used in the literature, is preferred.
Accordingly, computation of the Euclidean norm is given by

d(a, b) =

√√
n∑

i=1

(ai − bi)
2, (2.5)

where d(a, b) represents the value of the distance. An algorithm is developed to perform
the kNN imputation for right-censored observations and is given in Algorithm 1. This
algorithm is also used in Ahmed et al. (2020).

Algorithm 1 Algorithm of kNN imputation
1: Input: Right-censored dataset ti
2: Censorship indicator δi
3: Number fo nearest neigbours k
4: Values of explanatory variable zi

5: Output: Imputed dataset yknn =
(
yk

1, . . . , y
k
n

)τ
6: begin
7: for(i = 1 to n)
8: if (δi = 0) do Step 4 (if data point is censored)
9: for ( j = 1 to n)

10: Find the Euclidean distances (2.5) between z j and zi for each censored data point
11: end (If statement in Step 3)
12: sort the distances from small to large
13: end (for loop in Step 2)
14: end (for loop in Step 4)
15: for ( j = 1 to k)
16: Take the first uncensored k values of ti associated to sorted distances
17: Calculate the ith imputed value (yk

i ) with average of nearest k records of yi

18: Replace the imputed values (yk
i ) with censored data points (zi, δi = 0) in censored

data set t = (t1, . . . , tn)T

19: end (for loop in Step 10)

20: Return yk =
(
yk

1, . . . , y
k
n

)T

21: end.

See Ahmed et al. (2020) for a more detailed discussion on the kNN imputation
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method based on right-censored data.

3 Censored Ridge-Type Kernel Estimator (CRK)

We first consider the nonparametric estimation of the unknown function g(z) in (1.1)
based on uncensored data. For simplicity, we assume that β in model (1.1) is known.
Accordingly, the relationship between yi − Σ

p
j xi jβ j and zi can be defined as

yi − Σ
p
j xi jβ j = g (zi) + εi, i = 1, 2, . . . ,n, (3.1)

The purpose here is to approximate g(zi) closely. In this sense, an estimator is discussed
by Nadaraya and Watson (1964), and it is also referred to as the kernel estimator, given
by

g(z) =

n∑
i=1

wih (zi)
(
yi − xiβ

)2 = Wh

(
y − XTβ

)
= ĝ, (3.2)

where h is a bandwidth (or smoothing) parameter, xi = (xi1, xi2, , . . . , xip) are known
p-vectors, as defined in (1.1), and Wh is a kernel smoothing matrix with ith entries whi,
defined by

whi = K
(z − zi

h

)
/

n∑
i=1

K
(z − zi

h

)
=

K(u)∑
K(u)

= Wh, (3.3)

where K(u) is a kernel function satisfying these properties: (i)
∫

K(u)du = 1 ,(ii) K(u) =
K(−u). The main characteristic of the kernel function is that it gives more weight to
observations near z and less weight to observations far from z. Also, K(u) controls the
shape of the estimated nonparametric curve with bandwidth parameter h. For this
study, bandwidth is determined by GCV criterion.

Using the equation (3.2) and the matrix-vector form of model (3.1), we can get the
following partial residual:

ε = y − XTβ − ĝ = (In −Wh)
(
y − XTβ

)
=

(
ỹ − X̃Tβ

)
, (3.4)

where X̃ = (In −Wh) X and ỹ = (In −Wh) y. We thus obtain a transformed data set
based on kernel residuals. Considering the partial kernel residuals given in (3.4), the
estimator of the parameters vector β can be obtained by minimizing the weighted



Kernel Ridge for PLM 9

residual sum of squares:

Ls(β, h) =
[
(In −Wh)

(
y − XTβ

)]T [
(In −Wh)

(
y − XTβ

)]
=

(
ỹ − X̃

T
β
)T (

ỹ − X̃
T
β
)
.

(3.5)

Differentiating with respect to β of (3.1), we obtain the normal equations by

X̃TX̃β = X̃T ỹ. (3.6)

To solve the normal equations for β, we multiply both sides of (3.3) by
(
X̃

T
X̃
)−1

. Thus,

the weighted least square estimator of β is defined as

β̂ =
(
X̃

T
X̃
)−1

X̃
T

ỹ. (3.7)

Using equation (3.2) for the unknown regression function vector g, an updated equation
can be written as follows:

ĝ = Wh

(
y − XTβ̂

)
. (3.8)

It should be emphasized that equations (3.7) and (3.8) are considered as if no perfect or

exact relationship between the columns of the matrix X or the inverse matrix
(
X̃

T
X̃
)−1

exists. As noted in introduction, this paper is designed to overcome these problems.
To this end, the standard remedy is to use a biased estimation method such as ridge
regression, as proposed by Hoerl and Kennard (1970). For linear model y = XTβ + ε.
For k > 0, the ridge estimate of the parameters vector β in a linear regression model is
given by

β̂R =
(
XTX + kIp

)−1
XT y, (3.9)

where Ip is (p×p) dimensional identity matrix and k is a ridge (or shrinkage) parameter
to be selected using plug-in methods or common criteria such as generalized cross
validation (GCV), Akaike information criterion, and so on. In this paper, it is selected
by GCV criterion.

To fit model (1.1) to the data, a ridge procedure can be associated with the idea
of hints due to Speckman (1988), where the ridge estimator is the minimizer of the
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penalized least squares criterion

LR(β, g; k) =

n∑
i=1

(
ỹi − XT

i β − g (zi)
)2

+ k
p∑

j=1

β2
j

=

n∑
i=1

(
ỹi − Xτ

i β − g (zi)
)2

+

p∑
j=1

(
0 − kβ j

)2
. (3.10)

An equivalent way to write the criterion in (3.10) in matrix form is

LR(β, g; k) =
(
ỹ − X̃

T
β − g

)T (
ỹ − X̃Tβ − g

)
+ k‖0 − β‖2. (3.11)

From (3.11), the ridge-type kernel estimator of β and g are defined respectively by

β̂R =
(
X̃TX̃ + kIp

)−1
X̃T ỹ, (3.12)

and
ĝR = Wh

(
y − XT β̂R

)
. (3.13)

See Aydın and Yılmaz (2018) for proofs, the statistical properties of the estimators
given in (3.11), (3.12) and other details about using a ridge-type kernel estimator with
a partially linear model.

In this section, a ridge-type kernel estimator is introduced to estimate right-censored
responses under collinear data. As stated in Section 2, the problem of censored response
observations is solved using two different techniques. We therefore have two new
response variables, tiĜ and yk

i , obtained by synthetic data and imputation techniques,
respectively. The core idea presented here is to replace the response vector y with
the vector tiĜ from synthetic data and the vector yk obtained by kNN imputation
method. Thus two different ridge-type kernel estimators will be obtained for partially
linear model (1.2). With this context in mind, the following theorems establishes these
procedures:

Theorem 3.1. (CRK with synthetic data tiĜ): Let tḠ = X̃Tβ + ε̃ where ε̃ = g̃ + ε̃Ĝ, g̃ =
(In −Wh) g and ε̃G = (In −Wh) εĜ Also, X̃ is a n× p matrix and t̃Ĝ = (In −Wh) tĜ in which
tĜ is a n × 1 synthetic data vector replaced with y. If Wh is an arbitrary smoother matrix then
the ridge regression estimates may be calculated by augmented data

X =

(
X̃
√

kIp

)
and tḠ =

(
t̃Ĝ
0p

)
. (3.14)
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Then kernel-type ridge estimator for β is denoted as β̂Ĝ and given by

β̂Ĝ =
(
X̃TX̃ + kIp

)−1
X̃τtĜ. (3.15)

Proof of the Theorem 3.1 is given in Appendix A1.

It should be noted that because of tiĜ → tiG and E (tiG) � E
(
yi
)

when n→∞. Thus,
assumption of E

(
εiĜ

)
� E(ε) = 0 will be ensured. Note also that when k = 0, the ridge-

type estimate reduces to the estimate problem in the equation (3.7) (see Speckman,
1988). Also, it is seen that there is a formal similarity between the equation (3.11) and
ridge estimator of the linear regression model. Combining equations (3.11) and (3.13)
we get the estimator of the vector g as

ĝĜ = Wh

(
t̃Ĝ − XT β̂Ĝ

)
. (3.16)

Theorem 3.2. (CRK with imputed yk): Similar to Theorem 3.1, if yi is replaced by imputed
values yk

i ’s using kNN imputation, then ridge-type estimator for β and g in a partially linear
model can be defined, respectively, as follows:

β̂k =
(
X̃TX̃ + kIp

)−1
X̃

T
ỹk, (3.17)

and
ĝk = Wh

(
ỹk
− XT β̂R

)
, (3.18)

where X̃ = (In −Wh) X, andỹk = (In −Wh) yk. Proof of equations (3.17)-(3.18) are given in
Appendix A2.

Theoretically, E
(
yk

)
� E(y) for n → ∞ cannot be proven for Theorem 3.2, because,

kNN has a fully nonparametric nature. However, in practice, it can be seen that the
larger the sample size, the better the results, although this improvement in the estimates
cannot be guaranteed. For our results, see Section 5.

4 Performance Measures

This section prepared to introduce evaluation metrics of the proposed modified estimat-
ors. Bias and variance of the regression coefficients β j, j = 1, 2, . . . , p, variance of errors
(σ̂2
ε), mean square error (MSE), and relative efficiencies (RE) are considered to determine

the superiority of the estimators from the parametric and nonparametric components
of the partially linear model. Note that in calculation of the metrics, for simplicity, we
use only notation yi to present response variable. One can use tiĜ or yk

i , instead of yi,
for synthetic data and kNN imputation methods, respectively.
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4.1 Measures for Parametric Component

Equations (3.14)-(3.17) are rewritten as follows for yiG equivalently:

β̂r =
[
Ip + k

(
X̃TX̃

)−1
]−1
β. (4.1)

It can be seen from (4.1) that the ridge-type estimator β̂r is an obviously biased estimator

because of
[
Ip + k

(
X̃

T
X
)−1

]−1

, Ip. Note that shrinkage parameter k ≥ 0 controls the

size of estimated coefficients β̂r and, consequently, the bias of the estimates (See Hoerl

and Kennard, 1970). From that, we can surmise that if Rr =
[
X̃TX̃ + kIp

]−1
, then the

expected value, mean, and variance of β̂r can be obtained as follows:

E
(̂
βr

)
= Rr

(
X̃TX̃β + X̃T g̃

)
= β − kRrβ + RrX̃

T
, (4.2)

Bias
(̂
βr

)
= B

(̂
βr

)
= RrX̃

T g̃ − kRrβ, (4.3)

Variance
(̂
βr

)
= V

(̂
βr

)
= σ2RrX̃

T (In −Wh)T (In −Wh) X̃Rr. (4.4)

Note that the given equations are obtained using joint notation β̂r. To compute moments
(4.2)-(4.4) for β̂Ĝ in (3.14) or β̂k in (3.17), β̂r should be replaced by those notations.

4.2 Measures for Nonparametric Component

The performance of the nonparametric component of the partially linear model is
evaluated here by using mean squared error (MSE), which is a widely used metric in
the nonparametric literature. MSE can be obtained for the synthetic data and the kNN
imputation methods as follows:

MSEĜ

(
ĝĜ, g

)
= E

[{
ĝĜ (zi) − g (zi)

}2
]

=
1
n

n∑
i=1

[
gĜ (zi) − g (zi)

]2
, (4.5)

and

MSEk

(
ĝk, g

)
= E

[{
ĝk (zi) − g (zi)

}2
]

=
1
n

n∑
i=1

[
ĝk (zi) − g (zi)

]2 , (4.6)

where MSEĜ and MSEk denote the synthetic data and kNN methods, respectively.
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4.3 Measures for the Model

In order to show the performance of the all estimated models using the mentioned
methods, error variance of the models should be calculated. In this context, let σ2

ε and
y be the joint notations. Accordingly, to estimate σ2

ε, the residual sum of squares (RSS)
are generally used. For the partially linear models, this can be obtained as follows:

RSS(ŷ) = (ŷ − y)T(ŷ − y) where
(
ŷ = XTβ̂ + ĝ = Hhy

)
=

(
y −Hhy

)T (
y −Hhy

)
= yT (In −Hh) y, (4.7)

where Hh is known as a hat or smoother matrix, depending on bandwidth parameter
h ≥ 0, which is idempotent and used in the acquisition of fitted values for the linear
models. Computation of Hh is given by

Hh = Wh +
(
Ip −Wh

)
X̃RrX̃

T
. (4.8)

To obtain an estimation of σ2
ε from that, the expected values of (4.7) are needed. This

can be written as

E[RSS(ŷ)] = σ2
ε

[
n − tr

(
2Hh −HT

h Hh

)]
+ E

(
yT

)
(In −Hh)2 E(y), (4.9)

whereσ2
ε

[
n − tr

(
2Hh −HT

h Hh

)]
denotes the variance and E

(
yT

)
(In −Hh)2 E(y) represents

the squared-bias of the model. In many applications, σ2
ε is unknown. Because its

estimate σ̂2
ε is used instead of σ2

ε, it is calculated similar to OLS regression:

σ̂2
ε =

E(RSS)

tr
[
(In −Hh)2

] =
1
n

∥∥∥(In −Hh) y
∥∥∥2

n − p
, (4.10)

where tr
[
(In −Hh)2

]
= (n − p) and p is the number of parameters. Note that (n − p) is

the degree of freedom and it therefore should be obvious that (4.10) fits the classical
variance definition. In this context, it can be said that σ̂2

ε is the bias estimate of σ2
ε. This

is a very common metric to evaluate the quality of estimated regression models.

As mentioned before, this paper considers two different estimators and equation
(4.10) is therefore rearranged according to the kNN imputation and synthetic data
methods with respect their response variables (yk and tĜ) and corresponding hat
matrices. Also note that, in order to compare the two mentioned methods in the ridge-
type estimators under censored data context, a relative measure is needed. Therefore,
associated with equation (4.10), a new measurement is introduced in Definition 4.1.
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Definition 4.1. The relative efficiency based on the model variances σ̂2
εG

and σ̂2
εk

is
specified as follows:

RE
(
tĜ, ŷ

k
)

=

∥∥∥∥(In −HhĜ

)
tĜ

∥∥∥∥2

∥∥∥∥(In −Hhk

)
yk

∥∥∥∥2 =
σ̂2
εG

σ̂2
εk

. (4.11)

Note that if RE
(
tĜ, ŷ

k
)
< 1, then it can be said that fitted model based on the synthetic

data technique is better than that of the kNN imputation.

5 Simulation Study

This section prepared to see behaviors of the introduced two CRK estimators under
different conditions and scenarios. A detailed simulation experiments has been design-
ed accordingly. Note that this paper has two main purposes: (i) to estimate right-
censored data by partially linear models when multi-collinearity exists by using two
different approaches, and (ii) to decide which approach is better under certain conditions
and making inferences.

In order to obtain simulated data sets, a partially linear model is used and the values
of the response variable are obtained using the following model:

yi = β1x1i + β2x2i + β3x3i + β4x4i + g (zi) + εi, i = 1, 2, . . . ,n, (5.1)

where yi represents completely observed values, (x1, x2, x3, x4) are correlated explan-
atory variables, β =

(
β1, β2, β3, β4

)T = (4, 2, 0.5,−1)T and ε ∼ N
(
0, σ2I

)
. Here, the

simulation experiment is repeated 1000 times for σ2 = 0.3 and σ2 = 1 in three sample
sizes: n = 30, 100 and 250. In addition, to add censorship to the response variables, the
censoring variable is generated randomly by using distribution of yi’s as ci ∼ N(µy, σ2

y).
I(ci > yi) where µy and σ2

y are the mean and variance of completely observed response
variable y. Using equation (2.1), censored responses ti’s are obtained. Note that
censoring levels are decided as CL=(5%, 35%). The nonparametric component of the
model is generated as follows:

g (zi) = −0.1812 − 0.3221zi + 4 sin
(
z2

i

)
+ exp (zi) , (5.2)

where zi = −2.4(i − 0.5)/n uniformly produced on interval [0, 1]. The covariates are
obtained from normal distribution with two correlation levels. In this study, the level
of multicollinearity (ρ) is set as ρ = 0.85 and ρ = 0.99. Note that we check existence of
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the multicollinearity using a condition index (CI), which provides the mightiness of ρ
between variables. CI is widely used to measure collinearity (see Belsley et al., 1980).
The formulation of CI is given by

CI =

√[
λmax

(
XTX

)
/λmin

(
XTX

)]
. (5.3)

In addition, to evaluate the performances of the models and their components, measure-
ment tools given in Section 4 are used; these include bias, variances for parametric
components, MSEs for nonparametric components, variance of the model, and REs for
the all models. Results are given following tables and figures

Figure 1: Correlation plots for correlation levels ρ = 0.85 and ρ = 0.99 for three sample
sizes.

Figure 1 depicts correlation values between covariates that are possessed by the
parametric component of the model. Also, condition index (CI) values are added to
each panel of the figure. As can be seen, all CI values are larger than 10, which indicates
serious multicollinearity. It is ensured that the two correlation levels (ρ = 0.85, ρ = 0.99)
for explanatory variables are seen clearly in the sixth panel of the figure.
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Table 1: Outcomes for the parametric components when ρ = 0.85

ρ = 0.85
σε 0.3 1
Method SDT kNN SDT kNN
CL n Var(β) Bias(β) Var(β) Bias(β) Var(β) Bias(β) Var(β) Bias(β)

5%
30 1.5299 0.2340 2.1735 0.2346 1.9954 0.2165 2.5834 0.2281
100 0.8309 0.2013 1.2315 0.1732 1.2610 0.2009 0.8845 0.1763
250 0.4075 0.1555 0.3626 0.1277 0.3794 0.1657 0.3156 0.1325

35%
30 1.2576 0.2813 1.2207 0.2641 2.1904 0.2825 1.7777 0.2636
100 0.2500 0.2580 0.4861 0.2027 0.2765 0.2582 0.7216 0.2046
250 0.2900 0.1989 0.2525 0.1445 0.2885 0.1841 0.2435 0.1421

Performance scores of methods on estimating parametric component of the model
are presented Tables 1 and 2 for ρ = 0.85 and ρ = 0.99, respectively. The best scores are
indicated with bold font. It can be observed that the quality of estimations gets worse
when censoring level and error variance increase, which is an expected situation. This
case is also true of the correlation level. It is obvious that correlation level affects the
performance of estimates, which can be monitored by Figures 3 and 4.

An interesting result from these tables is that it can be concluded that the kNN
based model gives less bias than the synthetic data transformation (SDT) based model.
Although both methods provide close scores in terms of Var(β), kNN dominates the
SDT method in Bias(β), especially for high censoring levels. The reason for that can
be explained by the nature of SDT, which causes spatial variation in the data. Because
kNN works with data points individually, it manipulates data structure less than the
SDT method.

Figures 2 and 3 are drawn to emphasize the bias of the regression coefficients. S1
and K1 in the x-axes in each panel represent SDT and kNN based biases for n = 30.
Similarly, S2 and K2 denote biases for n = 100, S3 and K3 for n = 250. It can be seen
from an examination of these figures that the boxplots are similar for both methods.
In some cases, such as σ = 0.3, the SDT based estimated values of β are slightly better
than those of kNN, but when variation in the generated data increases, creates better
estimates. This can be seen in bottom panels of both figures. It can therefore be said
that Figures 3 and 4 verify the results given in Tables 1 and 2.
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Table 2: Outcomes for the parametric components when ρ = 0.99

ρ = 0.99
σε 0.3 1
Method SDT kNN SDT kNN
CL n Var(β) Bias(β) Var(β) Bias(β) Var(β) Bias(β) Var(β) Bias(β)

5%
30 9.0435 0.2978 10.6518 0.315 10.2537 0.2974 11.1486 0.3018
100 4.1748 0.2255 4.9727 0.1889 5.8733 0.2143 5.0571 0.1799
250 2.1894 0.1538 1.9546 0.1169 2.6385 0.1524 2.7314 0.1137

35%
30 15.0880 0.3115 15.6767 0.3461 11.7627 0.3155 12.5868 0.3144
100 6.8527 0.3042 6.2235 0.2010 6.7189 0.3074 6.7090 0.2060
250 4.1108 0.2050 4.0858 0.1274 5.5155 0.2044 3.1370 0.1279

Figure 2: Boxplots for bias of regression coefficients
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Figure 3: Boxplots for bias of regression coefficients

In Table 3, outcomes for the nonparametric component g(z) are given. As noted
above, MSE is commonly used as an evaluation metric for g(z). From obtained MSEs in
the Table 3, it can be seen that in most combinations, the scores are the same or close to
each other. This can be confirmed from Figures 4-5. However, for different correlation
levels and error variances, the outcomes change in favor of kNN based estimations.
Differences between the methods become clear under hard conditions, such as heavy
censoring or high correlation levels. From this, it can be said that although both methods
provide satisfying performances on estimation of the nonparametric component, the
kNN based model is more resistant to difficult conditions.

Figures 4 and 5 depict the fitted curves of SDT and kNN based estimators. Note that,
because there are too many combinations to show, only some selections are presented.
Figure 4 shows the estimated nonparametric functions for low correlation level ρ = 0.85
and Figure 5 is obtained from ρ = 0.99.



Kernel Ridge for PLM 19

Table 3: Outcomes for the nonparametric components

ρ = 0.85 ρ = 0.99
σ 0.3 1 0.3 1

CL n SDT kNN SDT kNN SDT kNN SDT kNN

5%
30 0.0735 0.0735 0.0736 0.0736 0.0818 0.0818 0.0866 0.0865
100 0.0718 0.0718 0.0768 0.0768 0.0853 0.0853 0.0903 0.0903
250 0.0777 0.0776 0.0771 0.0776 0.0864 0.0862 0.0914 0.0914

35%
30 0.0920 0.0915 0.1052 0.1046 0.0981 0.0973 0.1131 0.1123
100 0.0960 0.0957 0.1097 0.1094 0.1024 0.1020 0.1182 0.1178
250 0.0971 0.0970 0.1110 0.1108 0.1036 0.1034 0.1195 0.1193

Figure 4: Fitted curves for synthetic data transformation (blue line), kNN imputation
technique (red line) and real function (black line) when ρ = 0.85.
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Figure 5: Fitted curves for synthetic data transformation (blue line), kNN imputation
technique (red line) and real function (black line) when ρ = 0.99.

In the top-right panel of Figure 4, one can observe that the "weird" curve obtained
by kNN seems to contradict the simulation experiments, because kNN has a better
performance compared to SDT. This is because at this point, the nonparametric nature
of the kNN method comes into play. Because of kNN’s nature, it has the potential to
give some outlier results. The plot given in top-right panel of Figure 4 can be counted as
an example of such an outlier. The remaining plots in Figures 4-5 support the results in
Table 3, depicting close-fitted curves and better kNN results under difficult conditions,
as can be seen in the bottom-left of Figure 5.
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Table 4: The REs and estimated model variances

ρ = 0.85
σ 0.3 1
Method SDT kNN SDT kNN
CL n σ2

ε RE σ2
ε RE σ2

ε RE σ2
ε RE

5%
30 0.9124 1.4067 0.6486 0.7109 0.6159 0.9583 0.6427 1.0435
100 0.9020 1.4277 0.6318 0.7004 0.6420 1.0436 0.6152 0.9583
250 0.9059 1.4282 0.6343 0.7002 0.6503 1.0448 0.6224 0.9571

35%
30 0.8906 1.4139 0.6299 0.7073 0.8840 1.4023 0.6304 0.7131
100 0.8895 1.4347 0.6200 0.6970 0.8937 1.4391 0.6210 0.6949
250 0.9037 1.4471 0.6245 0.6910 0.9001 1.4452 0.6228 0.6919

ρ = 0.99
σ 0.3 1

Method SDT kNN SDT kNN
CL n σ2

ε RE σ2
ε RE σ2

ε RE σ2
ε RE

5%
30 0.6467 1.0534 0.6139 0.9493 0.6196 0.9487 0.6531 1.0541
100 0.6459 1.0595 0.6096 0.9438 0.6065 0.9888 0.6134 1.0114
250 0.5817 0.9632 0.6039 1.0382 0.5743 1.0058 0.5710 0.9943

35%
30 0.8971 1.3913 0.6448 0.7188 0.9124 1.2188 0.7486 0.8205
100 0.8763 1.3927 0.6292 0.7180 0.9020 1.2326 0.7318 0.8113
250 0.8335 1.3763 0.6056 0.7266 0.8959 1.2369 0.7243 0.8085

Finally, Table 4 involves the model outcomes that are REs and estimated model
variances. Note that because the nonparametric results are close to each other, and
kNN has better scores in terms of parametric component of the model, in the model
performance, the kNN method is indirectly given better model scores. Here, it can
once more be seen that kNN reveals its difference for high correlation levels and high
censoring levels. Otherwise, SDT has an acceptable performance for the estimation of
a semiparametric model under censored multicollinear data. For this study, the kNN
method demonstrates important success on modeling multicollinear censored data,
which can be clearly seen in Table 4.

From the information obtained from the simulation experiments, it can be said that
kernel ridge estimators based on SDT and kNN methods can handle multicollinear
datasets. In addition, this study shows that kNN imputation gives more satisfying
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results than SDT, which is an important conclusion. Details about the results are given
in Section 6.

6 Conclusion

This paper considers the estimation of a partially linear model under multicollinear
censored data. The aim of the paper is realized using a kernel-type ridge estimator
based on two different censorship solution techniques: synthetic data transformation
(SDT) and kNN imputation, respectively. This study therefore adds two main contribut-
ions to the literature. To show the behaviors of the introduced estimators, a detailed
simulation study was designed and performed. From the results obtained from this
simulation study (presented in Section 5), concluding remarks are given as follows:

• Tables 1 and 2 represent the outcomes of the parametric component of the model.
It can be said that both methods, SDT and kNN, have satisfying results for
estimating semiparametric models under data irregularities. On the other hand,
the kNN based kernel ridge-type estimator performs better than the SDT based
model, especially under heavy censoring levels and high correlation levels. This
is because SDT manipulates the data set.

• Figures 2 and 3 show boxplots for the biases of the regression coefficients and
confirm the results of Tables 1 and 2. The figures also demonstrate the effects
of sample size, censoring level, correlation level, and error variance on the
estimating of regression coefficients.

• Table 3 includes MSE values for the nonparametric component of the model
for both estimators, kNN and SDT. The simulation study shows that, on the
estimation of nonparametric function, the methods give highly similar results
except for under high censoring and high correlation levels. The kNN method is
more resistant to irregularities than SDT. Figures 4 and 5 show the fitted curves
and clearly illustrate the inferences which can be drawn from Table 3.

• Finally, Table 4 shows the performance scores for model variance and relative
efficiencies (RE) for the estimated models. The kNN based model has better
estimates than SDT, although it should be noted that, for low censoring and
correlation levels, SDT has also satisfying results. Thus, both estimators can be
used under appropriate conditions.
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Appendix

A1. Proof of Theorem 3.1

As mentioned before, Wh is the kernel smoother matrix and X̃ in (3.14) are the variables
obtained by using Wh, as mentioned in Speckman (1988). From that, let us consider
the weighted minimization problem to obtain (3.14)-(3.16) as follows:

LĜ(β) =

n∑
i=1

(
εiĜ

)2
=

n∑
i

(
t̃iĜ − X̃iβ

)2
+

n∑
j=1

(
0 − kβ j

)2

=
(
t̃Ĝ − X̃β

)T (
t̃Ĝ − X̃β

)
+ k‖0 − β‖2. (A1.1)

In order to minimize (A1.1), augmented data sets are used. This can be shown as

XA =

 X̃n×p(√
kIp

)  and tA =

(
t̃Ĝn×1

0P

)
, (A1.2)

where Ip is the (p× p) dimensional identity matrix and 0P is the (n× 1) zero matrix. For
details of (A1.2), see Aydın et al. (2018). It should be differentiated with respect to β
and set the equation to zero, which is given by

∂
∂β

LĜ(β) = −2
(
X̃t̃Ĝ

)
+ 2X̃

T
X̃β = 0,

X̃
T

X̃β = X̃Ĝ,

β̂Ĝ =
(
X̃

T
X̃ + kIp

)−1
X̃TtĜ.

(A1.3)

From (A1.3), ĝĜ is obtained as follows easily as in equation (3.16):

ĝĜ = Wh

(
t̃Ĝ − XT β̂Ĝ

)
. (A1.4)

Proof of Theorem 3.2

Similar to Appendix A1, replacing synthetic response variable t̃Ĝ by the kNN based
response variable yk minimization criterion is written as follows:

LkNN(β) =

n∑
i=1

(εi)
2 =

n∑
i

(
ỹk

i − X̃iβ
)2

+

n∑
j=1

(
0 − kβ j

)2

=
(
ỹk
− x̃β

)T (
ỹk
− x̃β

)
+ k‖0 − β‖2. (A2.1)
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Then, as in A1, augmented data sets are given by

XA =

(
X̃n×p(√

kIp
) )

and tA =

(
ỹk

n×1
0P

)
, (A2.2)

where Ip is the (p × p) dimensional identity matrix and 0P is the (n × 1) zero matrix.
According to (A2.2), derivation of β is given as

∂
∂β

LkNN(β) = −2
(
X̃ ỹk

)
+ 2X̃

T
X̃β = 0,

X̃
T

X̃β = X̃ ỹk,

β̂k =
(
X̃

T
X̃ + kIp

)−1
X̃

T
ỹk.

(A2.3)

Thus equation (3.17) is derived. From (A2.3), ĝĜ is obtained as follows easily as in
equation (3.18):

ĝk̂ = Wh

(
ỹk
− XT β̂k

)
. (A2.4)


