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Abstract: In this article, we present an efficient method for solving Abel’s integral 
equations. This important equation is consisting of an integral equation that is modeling many 
problems in literature. Our proposed method is based on first taking the truncated Taylor 
expansions of the solution function and fractional derivatives, then substituting their matrix 
forms into the equation. The main character behind this technique's approach is that it reduces 
such problems to solving a system of algebraic equations, thus greatly simplifying the 
problem. Numerical examples are used to illustrate the preciseness and effectiveness of the 
proposed method. Figures and tables are demonstrated to solutions impress. Also, all 
numerical examples are solved with the aid of Maple. 

Keywords: Integral equations, singular integral equations, generalized Taylor series, 
approximate solutions, collocation method. 

1. Introduction 

Abel’s integral equations provide an essential tool for modeling various phenomena in basic 
and engineering sciences such as physics, chemistry, biology, electronics, mechanics, and 
analyzing laser-induced breakdown spectroscopy [5,13,18,2,27]. Cimatti G. considers Abel’s 
integral equation to solve an inverse problem in thermoelectricity[4].  Abel’s problem is as 
follows: Find a curve in the vertical 𝑋𝑜𝑌 so that a material point which has started its motion 
at a point of the curve with ordinate 𝑥 without initial velocity and moving along the curve 
under the action of gravity without friction, will reach the axis 𝑋 in time 𝑡 = 𝑓(𝑥)/+2𝑔 
where	𝑔 is the acceleration in free-falling.  
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Abel’s equation is an integral equation derived directly from a concrete problem of 
mechanics or physics. In chronological order, Abel’s problem is the first to lead to the study 
of integral equations. 
 Abel’s integral equations often appear in two forms; the first and second kind as follows 
respectively: 

𝑓(𝑥) = ∫ !(#)
√&'#

𝑑𝑡&
(  ,                                                (1) 

and 
𝑦(𝑥) = 𝑓(𝑥) − ∫ !(#)

√&'#
𝑑𝑡&

(  ,                                                (2) 
 

where 𝑓(𝑥) is a continuous function in [0,1]. Also, we can write generalized Abel’s 
integral equation in the following forms: 

𝑓(𝑥) = ∫ !(#)
(&'#)!

𝑑𝑡&
(   ,                                                    (3) 

and 
𝑦(𝑥) = 𝑓(𝑥) − ∫ !(#)

(&'#)!
𝑑𝑡&

(   ,                                                (4) 

 
where 1 > 𝛽 > 0, 𝑓(𝑥) ∈ [0,1], 0 ≤ 𝑥, 𝑡 ≤ 1.[2] 
There are too many applications on Abel’s equation. Brenke W.C. [2] gives an application 
of Abel’s equation. He considers a flow of a stream.  
 

 
Figure 1 The cross-section of a barrage nick [2] 

 
Let the shaded region in Figure 1 demonstrate the cross-section of a barrage nick, and the 
crosscut is symmetrical with respect to the x-axis. Nick flow amount per unit time is given  
 

𝑄 = 𝐶 ∫ √ℎ − 𝑥)
( 𝑓(𝑥)𝑑𝑥,                                            (5) 

 
where the form of nick is determined by 𝑦 = 𝑓(𝑥); 𝑥 ≥ 0.  Here the aim is to find 𝑓(𝑥) 
thereby the amount of flow per unit time will be proportional to a given depth of flow power 
so 𝑄 = 𝑘*ℎ+, 𝑚 > 0. As a result, the main idea here is to find 𝑓(𝑥) from an integral equation 
of the form 
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∫ √ℎ − 𝑥𝑓(𝑥)𝑑𝑥 = 𝑘ℎ+.)
( 	                                     (6) 

 
Let differentiate both sides of the given integral equation with respect to ℎ gives 
 

∫ ,(&)
√)'&

𝑑𝑥 = 2𝑘𝑚ℎ+'-)
( .                                     (7) 

 
The last integral equation is a form of Abel’s integral equation. 
In the last two decades, many effective and simple methods have been proposed and applied 
successfully to various singular integral equations with a wide range of applications 
[14,7,15,17,1,26,23,20]. 
In this paper, we use fractional calculus properties to solve these singular integral equations. 
There are many fractional derivative definitions in the literature, like Caput-Fabrizio 
derivative [3], M-fractional derivative [16], etc. In this study, we use Caputo fractional 
derivative definition.  
Fractional calculus is used to model real-world problems. Many researchers are studying this 
subject [22,25,11,9,28,24,10,8,12]. 
Fractional calculus can reduce computations and improve solutions. Since the calculation of 
fractional integral and derivative are directly challenging for arbitrary functions and 
fractional differential equation. Because of this reason, we can calculate the approximate 
solution of functions by using the generalized Taylor series [19]. 
In this study, we seek the approximate solution of  Eq. (1) with the fractional Taylor series 
as 𝐷./0𝑦(𝑥) ∈ 𝐶(𝑎, 𝑏]: 
 

𝑦1(𝑥) = ∑ (&'2)"#

3(/04-)
1
/5( (𝐷./0𝑦)(𝑐),                                            (8) 

 
where 0 < 𝛼 ≤ 1. We use the generalized Taylor matrix method. This method transforms 
each part of the equation into matrix form; then, we get the linear algebraic equation. Then 
this equation is solved. We obtain the generalized Taylor coefficients, the approximate 
solutions for various 𝑁. All computations are performed on the computer algebraic system 
Maple 13. 

2. Basic Definitions 

In this section, we provide some basic definitions and then present the properties of fractional 
calculus  [6,21]. 

 
Definition 2.1 The Riemann-Liouville fractional derivative of order 𝛼 to the variable 𝑡 and 
with the starting point at 𝑡 = 𝑎 is 
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𝐷. 0𝑓(𝑡) = M
-

3('04+4-)
6$%&

6#$%& ∫ (𝑡 − 𝜏)+'0
#
. 𝑓(𝜏)𝑑𝜏, 0 ≤ 𝑚 ≤ 𝛼 < 𝑚 + 1,
6$,(#)
6#$

, 𝛼 = 𝑚 + 1 ∈ ℕ,
      (9) 

 
such that 𝐷(𝑓(𝑥) = 𝑓(𝑥). 
Definition 2.2 The Riemann-Liouville fractional integral operator of order 𝛼 ≥ 0, of a 
function 𝑓(𝑥) ∈ 𝐶7, 𝜇 ≥ −1, is defined as 
 

𝐽0𝑓(𝑥) = -
3(0)∫ (𝑥 − 𝑡)0'-𝑓(𝑡)𝑑𝑡&

( ,  𝛼 > 0,  𝑥 > 0,                         (10) 
 
such that 𝐽(𝑓(𝑥) = 𝑓(𝑥). 

  
Definition 2.3 The fractional derivative of 𝑓(𝑥) by means of Caputo sense is defined as 
 

𝐷0𝑓(𝑡) = -
3(8'0)∫ (𝑡 − 𝜏)

8'0'-𝑓(8)(𝜏)𝑑𝜏#
( , 

for 𝑛 -1<α< 𝑛,  𝑛 ∈N 𝑡 > 0, 𝑓 ∈ 𝐶'-8 . 
 

Definition 2.4 Riemann –Liouville fractional derivative 𝐷. #
0𝑓(𝑡) of the power function 

𝑓(𝑡) = (𝑡 − 𝑎)9, where v is a real number is 
 

𝐷!  (t-a)𝑣 = "($%&)
"($(!%&)

)(𝑡 − 𝑎)	$(!, 
 
Some properties of the fractional derivative and fractional integral are listed below [6,21]: 
 
1. 𝐷0(𝜆𝑓(𝑡) + 𝜇𝑓(𝑡)) = 𝜆𝐷0𝑓(𝑡) + 𝜇𝐷0𝑓(𝑡), 𝜆, 𝜇 are constants, 
2. 𝐷0  ((𝐽0𝑓(𝑡)) = 𝑓(𝑡), 
3. U𝐷:𝑓(𝑡)V = 𝐷04:𝑓(𝑡), 
4.𝐷0𝐶 = 0 for any constant 𝐶. 
 
Theorem 1. (Generalized Taylor Formula)  Suppose that 𝐷./0𝑓(𝑥) ∈ 𝐶(𝑎, 𝑏] for 𝑘 =
0,1,… , 𝑛 + 1 where 0 < 𝛼 ≤ 1 then we have [19] 
 

𝑓(𝑥) = ∑ (&'.)'#

3(;04-)
8
;5( U𝐷;0𝑓V(𝑎) +

<=()%&),>(?)

3@(84-)04-A
U𝑥 − 𝑎 V

(84-)0
  ,       

 
with 𝑎 ≤ 𝜉 ≤ 𝑥, ∀𝑥 ∈ (𝑎, 𝑏], where  
 

𝐷.80 = 𝐷.0 . 𝐷.0 . 𝐷.0 . …𝐷.0   (𝑛 times). 
  

aD
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3. Description of the method 

In this method, we use the generalized Taylor series through the fractional calculus to reach 
the approximate solution of Abel’s integral equations. The first and the second kind of Abel’s 
integral equation should be considered at this point. According to Equations (3), (4), and (9), 
Abel’s integral equations of the first and second kind can be written as follows: 

                 
𝑓(𝑥) = 𝛤(1 − 𝛽)𝐽-':𝑦(𝑥),                                        (11) 

 
and 

 
𝑦(𝑥) = 𝑓(𝑥) − 𝛤(1 − 𝛽)𝐽-':𝑦(𝑥).                                        (12) 

 
We apply the operator 𝐷-': on both sides of Eq. (11) and (12), we obtain the fractional 
differential equation  

𝐷0𝑓(𝑥) = 𝛤(𝛼)𝑦(𝑥),                                          (13) 
and 

𝐷0𝑦(𝑥) = 𝐷0𝑓(𝑥) − 𝛤(𝛼)𝑦(𝑥),                                       (14) 
where 𝛼 = 1 − 𝛽 ∈ (0,1). 
Since calculating 𝐷0𝑦(𝑥) is directly cost and inefficient, we use generalized Taylor series 
for approximating𝑦(𝑥). We first consider the solution 𝑦(𝑥) of Eq. (13) and Eq. (14) defined 
by a truncated generalized Taylor series (8). Then, we have the matrix form of the solution 
𝑦1(𝑥): 
 

[𝑦1(𝑥)] = X𝑀(𝐴 ,                                                 (15) 
where 
 

𝑋 = [1 (𝑥 − 𝑐)0 (𝑥 − 𝑐)B0 ⋯ (𝑥 − 𝑐)10], 
 

𝑀( =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
-

3(-)
0 0 ⋯ 0

0 -
3(04-)

0 ⋯ 0

0 0 -
3(B04-)

⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ -

3(104-)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 , 𝐴 =

⎣
⎢
⎢
⎢
⎡𝐷∗

(0𝑦(𝑐)
𝐷∗-0𝑦(𝑐)
𝐷∗B0𝑦(𝑐)

⋮
𝐷∗10𝑦(𝑐)⎦

⎥
⎥
⎥
⎤

, 

 
where 𝐷(𝑦1(𝑥) = 𝑦1(𝑥). 
Now, we consider the differential part of 𝐷-0𝑦(𝑥) Eq. (13) and Eq. (14) 𝑖 = 𝑛, 𝑛 − 1,… ,0. 
For 𝑖 = 1, we obtained the matrix representation of the function 𝐷∗-0𝑦1(𝑥)  
 

𝐷∗-0𝑦1(𝑥) = 𝐷∗-0XM(𝐴,                                          (16) 
and we compute the 𝐷∗-0𝑋, then 
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𝐷∗-0𝑋 = [𝐷∗01 𝐷∗0(𝑥 − 𝑐)0 𝐷∗0(𝑥 − 𝑐)B0 ⋯ 𝐷∗0(𝑥 − 𝑐)10]

= i0
𝛤(𝛼 + 1)
𝛤(1)

𝛤(2𝛼 + 1)
𝛤(𝛼 + 1) (𝑥 − 𝑐)

0 ⋯
𝛤(𝑁𝛼 + 1)

𝛤((𝑁 − 1)𝛼 + 1) (𝑥 − 𝑐)
(1'-)0j	

									= XM&, 
where 

𝑀- =

⎣
⎢
⎢
⎢
⎢
⎢
⎡0

3(04-)
3(-)

0 ⋯ 0

0 0 3(B04-)
3(04-)

⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 3(104-)

3((1'-)04-)
0 0 0 ⋯ 0 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

 
Afterward, the matrix representation of 𝐷∗-0𝑦1(𝑥) as 
 

𝐷∗0𝑦1(𝑥) = 𝐷∗-0𝑦1(𝑥) = XM-𝑀(𝐴 .                                        (17) 
 

Substituting Eq. (15) and Eq. (17) into Eq. (13) and Eq. (14), we obtain the fundamental 
matrix relation of the Eq. (13), and Eq. (14) are 
 

𝛤(𝛼)𝑋(𝑥)𝑀-𝑀(𝐴 = 𝑔(𝑥),                                                   (18) 
and 
 

(𝑋(𝑥)𝑀-𝑀( + 𝛤(𝛼)𝑋(𝑥)𝑀-𝑀()𝐴 = 𝑔(𝑥),                                    (19) 
 

where 𝑔(𝑥) = 𝐷0𝑓(𝑥). 
 
4. Method of solution 

The collocation points are defined by 
𝑥; =

;
1

,  𝑖 = 0,1, . . . , 𝑁, 
 
we can write the Eq. (18) and Eq (19)   
 
 

𝛤(𝛼)𝑋(𝑥;)𝑀-𝑀(𝐴 = 𝑔(𝑥;),                                              (20) 
and 

(𝑋(𝑥;)𝑀-𝑀( + 𝛤(𝛼)𝑋(𝑥;)𝑀-𝑀()𝐴 = 𝑔(𝑥;),                                (21) 
 

in short, the fundamental matrix equation 
 

BXM-𝑀(𝐴 = 𝐹                                                      (22) 
and 

(XM-𝑀( + BXM-𝑀()𝐴 = 𝐹,                                         (23) 
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where  

𝑋 =

⎣
⎢
⎢
⎢
⎡1 (𝑥( − 𝑐)0 (𝑥( − 𝑐)B0 ⋯ (𝑥( − 𝑐)10

1 (𝑥- − 𝑐)0 (𝑥- − 𝑐)B0 ⋯ (𝑥- − 𝑐)10

1 (𝑥B − 𝑐)0 (𝑥B − 𝑐)B0 ⋯ (𝑥B − 𝑐)10
⋮ ⋮ ⋮ ⋱ ⋮
1 (𝑥1 − 𝑐)0 (𝑥1 − 𝑐)B0 ⋯ (𝑥1 − 𝑐)10⎦

⎥
⎥
⎥
⎤

 , 𝐹 =

⎣
⎢
⎢
⎢
⎡
𝑔(𝑥()
𝑔(𝑥-)
𝑔(𝑥B)
⋮

𝑔(𝑥1)⎦
⎥
⎥
⎥
⎤

        

 

𝐵 =

⎣
⎢
⎢
⎢
⎡
𝛤(1 − 𝛼) 0 0 ⋯ 0

0 𝛤(1 − 𝛼) 0 ⋯ 0
0 0 𝛤(1 − 𝛼) ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝛤(1 − 𝛼)⎦

⎥
⎥
⎥
⎤

. 

 
Hence, the fundamental matrix equation (22) and (23) corresponding to Eq. (13) and Eq. (14) 
can be written in the form of 
 

WA = 𝐹 or  [W;F],  𝑊 = [𝑤];,E, 	𝑖, 𝑗 = 0,1, . . . , 𝑁.                 (24) 
 

If rank𝑊 = 𝑁 + 1we obtain the coefficient matrix 𝐴: 
 

𝐴 = 𝑊'-𝐹.                                                       (25) 
 
We can quickly check the accuracy of the method. Since the truncated Taylor series (3) is an 
approximate solution of Eq. (1), when the solution 𝑦1(𝑥) and its derivatives are substituted 
in Eq. (1), the resulting equation must be satisfied approximately; that is, for 𝑥 = 𝑥F ∈, [0,1], 
𝑞 = 0,1,2, … 	∞	. 

𝐸-1(𝑥F) = {𝑦(𝑥F) + ∫
!(#)

(&+'#)!
𝑑𝑡&+

( − 𝑓(𝑥F){ ≅ 0,  

 
𝐸B1(𝑥F) = {∫ !(#)

(&+'#)!
𝑑𝑡&+

( − 𝑓(𝑥F){ ≅ 0. 

5. Examples 

To illustrate the effectiveness of the method we proposed in this paper, several numerical 
examples are carried out in this section. In the following computations, absolute errors 
between the-order approximate values and the corresponding exact values and maximum 
error are determined for convenience. All of the calculations have been performed using 
Maple 13. 
 
Example 1: Abel’s integral equation of the second kind is considered as follows [1]: 
 

𝑦(𝑥) = 𝑥 + G
H
𝑥
,
- − ∫ !(#)

√&'#
𝑑𝑡&

( .                                 (26) 
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Now, we can apply our technique described in Section 4 in Eq. (26) for 𝑁 = 6, 𝑐 = 0, that 
is: 

𝑦I(𝑥) = ∑ &"#

3(/04-)
(𝐷∗/0𝑦(𝑥))&5(I

/5( , 
with collocation points  
 

𝑥( = 0, 𝑥- = 1/5, 𝑥B = 2/5, 𝑥H = 3/5, 𝑥G = 4/5, 𝑥J = 1. 
 

Firstly, Eq. (26) transform a fractional differential equation with Eq. (14) 
 

𝐷
&
-𝑦(𝑥) = 𝐷

&
-(𝑥 + G

H
𝑥
,
-) − 𝛤(-

B
)𝑦(𝑥),                                        (27) 

and 
𝐷
&
-𝑦(𝑥) + 𝛤(-

B
)𝑦(𝑥) = 3(B)

3(-.J)√𝑥 +
G3(B.J)
H3(B)

𝑥   .                               (28) 
 

Then, the fundamental matrix relation of this equation is 
 

(XM-𝑀( + BXM()𝐴 = 𝐹,                                          (29) 
where the matrices are 
   

𝑀( =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0
0 2/√𝜋 0 0 0 0
0 0 1 0 0 0
0 0 0 4/3√𝜋 0 0
0 0 0 0 1/2 0
0 0 0 0 0 8/15√𝜋⎦

⎥
⎥
⎥
⎥
⎥
⎤

,𝑀- =

⎣
⎢
⎢
⎢
⎢
⎡
0 1 0 0 0 0
0 0 2/√𝜋 0 0 0
0 0 0 1 0 0
0 0 0 0 4/3√𝜋 0
0 0 0 0 0 1/2
0 0 0 0 0 0 ⎦

⎥
⎥
⎥
⎥
⎤

 

 

𝐹 =

⎣
⎢
⎢
⎢
⎢
⎡

0
0.859117
1.422631
1.937511
2.427216
2.900833⎦

⎥
⎥
⎥
⎥
⎤

 ,  𝑋 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0 0
1 √5/5 1/5 √5/25 1/25 √5/125
1 √5√2/5 2/5 2√5√2/25 4/25 4√5√2/125
1 √5√3/5 3/5 3√5√3/25 9/25 9√5√3/125
1 √5√4/5 4/5 4√5√4/25 16/25 16√5√4/25
1 1 1 1 1 1 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

 
Then, we have 
 

[𝑊 ; 𝐹] =

⎣
⎢
⎢
⎢
⎢
⎡1.772453 1 0 0 0 0
1.772453 1.894442 0.859117 0.319256 0.102732 0.029540
1.772453 2.264911 1.422631 0.737309 0.332102 0.133969
1.772453 2.549193 1.937511 1.219677 0.668657 0.328722
1.772453 2.788854 2.427216 1.754055 1.105453 0.625297
1.772453 3 2.900833 2.333333 1.638479 1.033333

;
;
;
;
;
;

0
0.859117
1.422631
1.937511
2.427216
2.900833⎦

⎥
⎥
⎥
⎥
⎤

. 
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and solving this equation, we obtained the coefficients of the generalized Taylor series 
𝐴 = [0 0 1 0 0 0]L. 

 
Hence, for 𝑁 = 5, the approximate solution of Example 1 is 
 

𝑦J = 𝑥, 
 

which is the exact solution to this problem. Since the exact solution’s degree of the 
polynomial is 1, this method gives the exact solution for 𝑁 ≥ 2. 
 
Example 2: The first type, Abel’s integral equation [1,26], is considered as  
 

∫ !(#)
√&'#

𝑑𝑡 = B
-(J

(105 − 56𝑥B + 48𝑥H)&
( ,                                  (30) 

 
with the exact solution 𝑦(𝑥) = 𝑥H − 𝑥B + 1. We applied the generalized Taylor series with 
the collocation method and solved Eq. (30). We have approximate solutions for 𝑁 = 7:   
 
𝑦M(𝑥) = 1 − 0.758𝐸 − 11√𝑥 + 0.725𝐸 − 10𝑥 − 0.282𝐸 − 9𝑥

,
- − 𝑥B − 0.641𝐸 − 9𝑥

.
- +

𝑥H − 0.902𝐸 − 10𝑥
/
- ; 

for 𝑁 = 8: 
 

𝑦N(𝑥) = 1 − 0.352𝐸 − 16√𝑥 + 0.288𝐸 − 15𝑥 − 0.940𝐸 − 13𝑥
H
B − 𝑥B − 0.141𝐸 − 13𝑥

J
B

+ 𝑥H − 0.281𝐸	
−13𝑥

/
- + 0.568𝐸 − 14𝑥G. 

 
We say that approximate solutions and exact solutions are the same. 
  
Example 3: We consider Abel equation [15] as 
 

∫ !(#)
(&'#)&/,

𝑑𝑡 = 𝑓(𝑥)&
(                                          (31) 

 
with 𝑓(𝑥) = 𝑥

.
, and its exact solution is 𝑦(𝑥) = -(

O
𝑥. Eq. (31) turn into a fractional 

differential equation with Eq. (14) 
 

𝛤(B
H
)𝑦(𝑥) = 3(N/H)

3(B)
𝑥.                                        (32) 

 
We seek the approximate solutions 𝑦1 by Taylor series, for 𝑐 = 0, 𝑁 = 4: 
 

𝑦G(𝑥) =�
𝑥/0

𝛤(𝛼𝑘 + 1)
(𝐷∗/0𝑦(𝑥))&5(

G

/5(

 

with collocation points are  
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𝑥( = 0, 𝑥- = 1/4, 𝑥B = 2/4, 𝑥H = 3/4, 𝑥G = 1. 
Then, the fundamental matrix relation of this equation is 
 

BXM(𝐴 = 𝐹,                                            (33) 
where   

 

𝑀( =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1 0 0 0 0
0 H

B
√H
Q
𝛤(B

H
) 0 0 0

0 0 H
B
√H
Q
𝛤(B

H
)'- 0 0

0 0 0 1 0
0 0 0 0 O

N
√H
Q
𝛤(B

H
)⎦
⎥
⎥
⎥
⎥
⎥
⎤

, 𝐹 =

⎣
⎢
⎢
⎢
⎡

0
0.376143
0.752287
1.128431
1.504575⎦

⎥
⎥
⎥
⎤
, 

 

𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝛤(

B
H
) 0 0 0 0

0 𝛤(B
H
) 0 0 0

0 0 𝛤(B
H
) 0 0

0 0 0 𝛤(B
H
) 0

0 0 0 0 𝛤(B
H
)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

 
Substituting these matrices in Eq. (33), we have an algebraic linear equation system with five 
unknowns: 
 
[𝑊 ; 𝐹] =

⎣
⎢
⎢
⎢
⎡
1.35411793 0 0 0 0
1.35411793 0.95527482 0.59517539 0.33852948 0.17911402
1.35411793 1.20357086 0.94494078 0.67705896 0.45133907
1.35411793 1.37774470 1.23822718 1.01558845 0.77498139
1.35411793 1.51640426 1.5 1.3541179 1.13730319

;
;
;
;
;

0
0.37614387
0.75228774
1.12843161
1.50457548⎦

⎥
⎥
⎥
⎤
, 

 
and so we solve the linear algebraic equation with five unknowns and obtain the coefficients 
of the Taylor series 
 

𝐴 = [0 0.442𝐸 − 7 −0.171𝐸 − 6 1.111111 −0.115𝐸 − 6]. 
 

Hence, for 𝑁 = 4, the approximate solution of Example 3 is as follows: 
 

𝑦G(𝑥) = 0.495𝐸 − 7𝑥
&
, − 0.189𝐸 − 6𝑥

-
, + 1.1111111𝑥 − 0.972𝐸 − 7𝑥

1
,. 

 
We compare the absolute errors, 𝐸1 and 𝑒1 for 𝑁 = 4	𝑎𝑛𝑑	6 in Table 1. 
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Table 1. The numerical results of Example 3 

𝑥 𝑁 = 4 𝐸G 𝑁 = 6 𝐸I 
0.0 0.000E-0 0.000E-0 0.000E-0 0.000E-0 
0.2 0.309E-9 0.700E-9 0.125E-14 0.282E-13 
0.4 0.303E-10 0.500E-10 0.392E-15 0.240E-13 
0.6 0.286E-9 0.400E-9 0.842E-16 0.240E-13 
0.8 0.542E-9 0.600E-9 0.684E-15 0.220E-13 
𝑒1 0.238E-6 0.203E-14 

 
                              
Example 4: We consider Abel equation [1,15] 
 

∫ !(#)
(&'#)&/-

𝑑𝑡&
( = 𝑒& − 1. 

 
The exact solution to this problem is 𝑦(𝑥) = 𝑒&𝑒𝑟𝑓(√𝑥)/√𝜋. A comparison between the 
exact solution and the generalized Taylor series solutions is given in Table 2. Table 3 shows 
a comparison 𝐸1(𝑥) for some 𝑁. Moreover, in table 4, we compare the present method with 
several numerical methods. Figure 2 and Figure 3 display the approximate solutions-exact 
solution and absolute errors for various 𝑁, respectively. In Figure 4, we focus on the absolute 
error for 𝑁R = 9.  Also, we display comparisons of some numerical results in Figure 5. 
 

Table 2.  The numerical result for Example 4 

x Exact 
Solution 

 
N=4 

 
Ne=4 

 
N=7                 

 
Ne=7 

 
N=9 

 
Ne=9 

0.0 0.000000 0.000000 0.000E-
0 

0.000000 0.000E-
0 

0.000000 0.000E-
0 

0.2 0.325884 0.324725 0.115E-
2 

0.325880 0.362E-
5 

0.325884 0.255E-
7 

0.4 0.529333 0.529823 0.489E-
3 

0.529333 0.216E-
6 

0.529333 0.204E-
8 

0.6 0.747040 0.746743 0.296E-
3 

0.747040 0.938E-
7 

0.747040 0.709E-
9 

0.8 0.997089 0.997306 0.216E-
3 

0.997089 0.228E-
6 

0.997089 0.781E-
9 

𝑒1  10'B 10'J 10'M 
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Table 3. Comparison of 𝐸1(𝑥) for some 𝑁 for Example 4 

𝑥 𝐸G 𝐸M 𝐸O 
0.0 0.000E-0 0.000E-0 0.000E-0 
0.2 0.422E-2 0.447E-4 0.239E-5 
0.4 0.200E-2 0.305E-4 0.165E-5 
0.6 0.181E-2 0.244E-4 0.133E-5 
0.8 0.150E-2 0.209E-4 0.115E-5 

                          

Table 4. The comparison of some numerical methods 

   𝑥 Exact  
solution 

Huang[15] 
𝑁 = 3 

Avazzadeh[1] 
𝑁 = 20 

Present 
met. (𝑁 = 4) 

0.1 0.21529 0.21629 0.21520 0.20881 
0.2 0.32588 0.37727 0.32593 0.32472 
0.3 0.42756 0.42925 0.42779 0.42808 
0.4 0.52933 0.53126 0.52927 0.52982 
0.5 0.63503 0.63715 0.63491 0.63503 
0.6 0.74704 0.74933 0.74719 0.74674 
0.7 0.86718 0.86962 0.86718 0.86700 
0.8 0.99708 0.99963 0.99692 0.99730 
0.9 1.13829 1.14091 1.13760 1.13879 

 
 

 
                 Figure 2.    The comparison of exact and approximate solution 
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Figure 3.  The comparison of the error function 

 
Figure 4.    The absolute errors for 𝑁 = 9 

 

 
Figure 5  The comparisons of some numerical methods 
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Example 5: Considering the Abel integral equation of the first kind as follows [19] 
𝑥 = ∫ !(#)

√&'#
𝑑𝑡&

( . 

The exact solution to this problem is𝑦(𝑥) = B
Q√𝑥. We approximately solve this problem for 

various N, and we obtain the exact solution for 𝑁 ≥ 1. 
 
Example 6: Considering the Abel integral equation of the second kind as follows [1]: 
 

𝑦(𝑥) = 𝑥B + -I
-J
𝑥
.
- − ∫ !(#)

√&'#
𝑑𝑡&

( . 
The exact solution is	𝑦(𝑥) = 𝑥B. Numerical results are given in Table 5, and absolute errors 
are displayed in Figure 6. 

Table 5. The numerical results for Example 6 

𝑥 𝑁 = 4 𝐸G 𝑁 = 5 𝐸J 
0.0 0.940E-12 0.940E-12 0.549E-13 0.549E-13 
0.2 0.458E-12 0.932E-12 0.269E-13 0.584E-13 
0.4 0.371E-12 0.935E-12 0.217E-13 0.548E-13 
0.6 0.320E-12 0.934E-12 0.188E-13 0.548E-13 
0.8 0.285E-12 0.929E-12 0.169E-13 0.548E-13 
1.0 0.255E-12 0.915E-12 0.154E-13 0.548E-13 

 
 

                                   
Figure 6.  The comparison of absolute errors for 𝑁 = 4,5. 

 

6. Conclusion      

Abel’s integral equation is fundamental in literature. The present study aims to develop an 
efficient and accurate method for solving singular Volterra integral equations. The problem 
has been reduced to solving a system of linear algebraic equations.  We note that this method 
is easy for computation and running. The numerical examples demonstrate that the accuracy 
of lower-order approximations is very satisfactory. We have demonstrated the accuracy and 
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efficiency of the present method. The convergence of our method can be seen in Figures2-6. 
Tables 1-2 and 5 showed that the error decreased as N increased. In Table 3, we determined 
the comparison of errors for different N values.  In table 4, we compared the method we 
presented with the values found by different methods. The examples show that the Taylor 
collocation method has been successfully applied to finding the approximate solutions Abel 
integral equation.  Also, the method can be expanded to solve a fractional system of Abel’s 
integral equation. 
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