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Abstract

Monitoring oxidative stress biomarkers has become a powerful and common tool to estimate

organismal condition and response to endogenous and environmental factors. In the pres-

ent study, we used round goby (Neogobius melanostomus) from non-native European

populations, as a model species to test sex differences in oxidative stress biomarkers. Con-

sidering sex differences in reproductive investment, we hypothesized that males would dis-

play lower resistance to abiotic stress. Fish were exposed to a heat shock (temperature

elevated by 10˚C) for 1h, 6h, and 12h and catalase activity (CAT), reduced glutathione

(GSH), total antioxidant capacity (TAC) and lipid peroxidation (LPO) were measured in liver

and muscle tissues. Liver of males was significantly more responsive compared to liver of

females in all tested parameters. GSH was found to be the most responsive to heat stress

exposure in both sexes. The results supported our hypothesis that male reproductive invest-

ment (territoriality, courtship, and brood care) and likelihood of only a single spawning period

in their lifetime influenced on higher sensitivity of their antioxidant defence. On the other

hand, for females antioxidant defence is considered more important to survive the environ-

mental changes and successfully reproduce in the next season. Our experiments exposed

fish to acute thermal stress. Further research should determine the effects of exposure to

chronic thermal stress to corroborate our understanding on sex differences in antioxidant

defence in the round goby.

1. Introduction

Temperature is one of the key environmental factors affecting an organism’s physiological pro-

cesses, especially in ectotherms, which adjust their metabolism to the ambient temperature.

Although aquatic organisms are acclimated to daily and seasonal variations in temperature [1],

sudden and unexpected increase can substantially influence their overall performance [2, 3].

This includes long-term challenges arising from climate change but also from human-medi-

ated thermal pollution, such as cooling water in thermal plant stations [4]. Forecasted global
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warming will result in a temperature increase at 1.5 ˚C between 2030 and 2052, however, not

all regions will be faced with the same heat [5]. The temperature increase due to anthropogenic

global warming is a constant, progressive process estimated to enhance the air temperature at

0.2 ˚C per decade [5]. In contrast, extreme unpredictable events such as heat waves, can mod-

ify the thermal regime significantly at short term and persist for approximately 8–11 days [6].

The intensity, duration, and frequency of such events are expected to increase [6]. Freshwater

ecosystems vary in their susceptibility to temperature fluctuations, which is generally related

to their size and depth. Alterations of the river’s temperature regime due to thermal pollution

and global warming impact both native and non-native species, with non-native species

having higher potential to benefit from such changes [7]. In this regard, freshwater ecosystems,

among all waterbodies [8], are one of the most vulnerable to climate change at all latitudes [7,

9, 10].

Exposure of aerobic organisms to environmental changes elicits responses to maintain

homeostasis and biological functions. Adjustments at different stages are involved (e.g.,

genetic, physiological), however, before they reach an observable level (e.g., behavioural, mor-

phological), they can be sensed within the cell. From the set of various environmental stressors,

changes in temperature levels are considered substantial stress factor influencing metabolic

rate and leading to oxidative stress [e.g., 11, 12]. The imbalance between antioxidants and oxi-

dants, in favour of the latter (oxidative stress), may influence cellular constituents’ modifica-

tion and disturbance of cellular metabolism [13]. Organisms respond to such a situation and

develop efficient defence comprising of low and high molecular mass antioxidants as well as

antioxidant enzymes [14]. Although most of them are well known, their level and activity (in

the case of enzymes) are usually species-specific, may differ between populations, ontogenetic

stages, or gender [14, 15]. In recent years, monitoring of oxidative stress parameters became a

powerful tool enabling the evaluation of organism condition, including fish [16]. However,

Rudneva & Skuratouskaya [17] suggested that there was little attention paid to the physiologi-

cal and natural factors in contrast to anthropogenic factors in biomonitoring and environmen-

tal studies. While some of them are easily mitigated, e.g., by collecting samples at the same

time of the season, others (such as sex and age) require further studies [17].

In accordance with the increase of temperature in Europe in the last decades, the expansion

of non-native gobiids was observed (e.g., in the Danube River; [18]). These fish species, origi-

nating from the Ponto-Caspian region, evolved in the harsh continental climate, which has

most likely shaped their wide tolerance to various environmental factors [7] and contributed

to their rapid dispersion through European waters as well as North America [19]. Among

them, the round goby Neogobius melanostomus was included in the 100 worst invaders in

Europe [20] as well as is regarded as one of the most wide-ranging invasive fish on Earth [19].

Its success results from many features as it displays wide tolerance to abiotic factors, opportu-

nistic diet, aggressive behaviour, and effective reproductive strategy [19]. Given many studies

conducted on its successful establishment in different waterbodies within Europe and North

America makes the species an attractive model to study [19]. Kovyrshina and Rudneva [21–

23] previously demonstrated that round goby displays an adaptive response to oxidative stress

caused by various factors connected with anthropogenic load and seasonality.

In our study, we investigated the acute thermal shock influence on round goby to test inter-

sexual differences in the effectiveness of antioxidant defence. Many oxidative stress studies

conducted on fish have not considered ‘sex’ factor [24–27]. Some studies have not indicated

any differences [e.g., 17], while others have confirmed that it is an important factor affecting

oxidative stress parameters [e.g., 28, 29]. The spawning cycle of the round goby is well known

and was documented under laboratory conditions [30]. In the pre-spawning period, male

searches for a suitable place for reproduction, guards it, and starts building the nest, while
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females appear later to lay eggs [31]. Egg inspection and ventilation, as well as aggressive chas-

ing of intruders, are the main activities of a male until the eggs hatch. During the breeding sea-

son, males usually do not forage [19, 30] and spawn more frequently compared to females (i.e.,

more reproductive acts per individual) [32]. Considering the reproductive activities displayed

by males (territoriality, courtship, and brood care), the burden affecting males during the long

breeding period may be higher than the expenditure of females [32]. It was suggested that

males usually die after their first reproductive season [31]. Thus, we hypothesised that high

and extended reproductive investment of round goby males should translate into weaker

defence mechanisms associated with oxidative stress compared to females. We used elevated

temperature as a stressor, because this factor has high probability to affect gobies due to both

warming climate [7], especially heat waves, and thermal pollution [4]. The 10 ˚C increase was

used to ensure heat shock, which may reflect thermal pollution associated with the release of

cooling water from thermal plant stations [4] or extreme heat waves [33] hitting more often

due to climate warming.

2. Materials and methods

2.1. Fish

Round goby specimens were collected using electrofishing (type EFGI 650, BES Bretschnei-

der Spezialelektornik, Germany) in September 2018 in the Radunia River in Pruszcz

Gdański (permission obtained from water tenant—Polish Angling Association in Gdańsk L.

Dz.611/19), Poland (54˚16‘50“N, 18˚38‘22“E). Mature individuals, ranged between 89–144

mm in total length and weighed 8.14–33.17 g, of both sexes (gender determination is easy to

conduct in the field based on the shape of urogenital papillae, [31]) were collected. Sampled

fish were transported in aerated tanks to the laboratory, and after 24 h of acclimation, they

were divided by sex, placed in 70 L aquaria (4–5 individuals) equipped with halves of PVC

pipes to provide shelter (5 cm long, exceeding the number of fish to avoid competition). To

ensure proper living conditions, all aquaria were connected in a flow-through system (the

same volume exchanged constantly). The light regime was set 12 d:12 n to reflect natural

conditions. The temperature in the laboratory room was maintained at 18–19 ˚C. Fish were

fed every second day with frozen chironomid larvae and kept in such conditions for 4 weeks,

which enabled fish to acclimate to laboratory conditions and level the condition of both

sexes after reproduction. For all procedures, permission from the Local Ethics Committee

was obtained (41/LB102/2018).

2.2. Experimental setup and protocol

Fish were tested in 45 L non-transparent, mildly aerated tanks equipped with a single shelter

(similar to those used in stocking aquaria) and aquarium heater. Before the experimental trials,

each individual was kept for 24 h separately in the tank to acclimate to the experimental condi-

tions (water temperature 18–19 ˚C). Such conditions were also used as a separate, control

treatment (KC; N = 12! 6 females and 6 males). After this period, fish were moved to similar

tanks with heated water (29–30 ˚C) for 1 h, 6 h, or 12 h (KT1, KT2, KT3, respectively—three

separate treatments; in each N = 12! 6 females and 6 males) to mimic acute heat stress.

According to Lee & Johnson [34], the upper thermal limit for the species was established to be

around 29 ˚C, with a critical temperature above 33 ˚C (reviewed in Kornis et al. [19]). Then,

fish were killed by spinal cord rupture, liver and muscle tissues, which are commonly used and

easy to obtain in relatively high amount, were removed and immediately frozen in a tempera-

ture below -80 ˚C for further analyses.
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2.3. Biochemical analysis

Sampled tissues (liver, muscle) were homogenised using a X-120 knife homogeniser (CAT

Ingenieurbüro GmbH, Germany) in 100 mM sodium phosphate buffer (pH 7.4, 100 mM KCl,

1 mM Na2-EDTA) with 100 μM PMSF dissolved in ethanol (98%). Homogenization was per-

formed on ice at 3500 rpm for 4 min, and the homogenates were then centrifuged at 4 ˚C for

10 min (15 000 rpm). Then, the supernatants were removed for the following estimations. The

total protein determination was based on Lowry et al. [35] method. For each sample, three

technical replicate measurements were taken.

To assess the antioxidant defence, we measured the level of reduced glutathione (GSH) and

the activity of catalase (CAT). To determine the level of GSH, we performed the modified Ell-

man’s method [36], where we added 20% trichloroacetic acid (TCA) to the homogenates (final

concentration 2%) and centrifuged the samples (15 000 rpm, 10 min). To the obtained super-

natant, we added 10 mM DTNB ((5,5’-dithiobis (2-nitrobenzoic acid)) and 500 mM sodium

phosphate buffer. After 20 min of incubation in darkness, due to the formation of yellow

5-thio-2-nitrobenzoate ion corresponding to the GSH concentration, the absorbance of this

ion was measured at 412 nm, calculated and expressed as a μmol GSH/mg protein in homoge-

nate. Molar absorption coefficient (ε) for DTNB is 13.6 x 103 M-1cm-1. The CAT activity was

determined based on the enzyme ability to decompose H2O2 [37]. Homogenates were added

to the solution consisting of 54 mM H2O2 in 50 mM potassium phosphate buffer (pH 7.00).

The degradation of hydrogen peroxide was measured during 1 min at 240 nm. As one unit of

CAT activity, the amount of enzyme is taken, which decomposes 1 μmol of hydrogen peroxide

during 1 min. CAT activity in homogenates was calculated in μmol H2O2/min/mg protein in

the homogenate.

The general activity of the antioxidant mechanism was measured using total antioxidant

capacity (TAC), a method based on the reduction of 2,2’-azino-bis(3-ethylbenzothiazoline-

6-sulphonic acid) (ABTS) [38]. Measurements were performed at 414 nm, and TAC was

expressed in one-electron equivalents of Trolox. Considering that one Trolox molecule reacts

with two ABTS+ molecules, the calculated values were multiplied by two (units per μmol

of Trolox equivalent L–1). Molar absorption coefficient (ε) for ABTS is 36 x 103 M-1 cm-1.

To evaluate the oxidative damage, the concentration of the end product of lipid peroxida-

tion, malondialdehyde (MDA), was measured [39]. Homogenate was added to the solution of

20% TCA, 0,6% thiobarbituric acid (TBA) in HCl (36–38%), shaken, and then centrifuged

(3000 rpm, 5 min). The supernatant was heated in 100 ˚C for 15 min, cooled, mixed with n-

buthanol, and centrifuged (3000 rpm, 5 min). The spectrophotometric measurements of MDA

levels were performed in the buthanol phase at 532 nm, expressed as nmol MDA/mg protein

in the homogenate. Molar absorption coefficient (ε) for MDA is 1.56 x 105 M-1 cm-1.

2.4. Statistics

The obtained data were calculated per total protein concentration. The outliers were deter-

mined using +/- two standard deviations and removed, which in some cases decreased the

number of replicates from six to three. Differences in oxidative stress parameters between tis-

sue, treatment and sex were examined by permutational univariate analysis of variance (PER-

ANOVA) using PERMANOVA+ v.1.0.1 for PRIMER version 6.1.11 (PRIMER-E LTD,

Plymouth, UK). Data analysis was based on a three-way (fully-crossed) design, which included

the fixed factors (Tissue, Treatment, and Sex). Using an Euclidean distance measure following

normalisation of the data, these were used to obtain a distance matrix, which was subjected to

9,999 permutations of the raw data and tested for significance, with a posteriori pairwise com-

parisons evaluated at α = 0.05. Briefly, the advantage of PERANOVA compared with

PLOS ONE Sex biased response of round goby to acute heat shock

PLOS ONE | https://doi.org/10.1371/journal.pone.0260641 December 16, 2021 4 / 12

https://doi.org/10.1371/journal.pone.0260641


traditional parametric analysis of variance is that the stringent assumptions of normality and

homoscedasticity in the data, which prove very often unrealistic when dealing with ecological

datasets, are significantly relaxed [40], and has widely been used in several previous similarly

designed studies [41–43].

3. Results

3.1. GSH

Significant Tissue × Treatment × Sex interaction (F# = 4.7906, P# = 0.0052; # = permutational

value) indicated differences in the level of GSH between sexes depending on tissue and treat-

ment. In liver, along with the time of heat exposure, the GSH level in male tissues increased up

to 6h with sharp reduction in the 12h treatment (KT2 > KC; t# = 5.9168, P# = 0.0016 and

KT2< KT3; t# = 4.022, P# = 0.0085; Fig 1). GSH levels in female livers were similar in all heat

shock treatments. Comparison of sex showed that after 6 and 12 hours of heat exposure, GSH

level in male livers was significantly higher compared to females (t# = 10.233, P# = 0.0002 and

t# = 3.8682, P# = 0.0084, respectively). The opposite pattern was observed in muscle where dif-

ferences between sexes were recorded after 1h and 6h of heat exposure (t# = 3.3204, P# =

0.0197 and t# = 6.838, P# = 0.0003, respectively; Fig 1). On the contrary to the pattern observed

in the liver, male muscle tissues showed that it decreased from KC to KT2 (t# = 6.7964,

P = 0.0004) and from KT1 to KT2 (t# = 4.5692, P# = 0.0035) with a sudden increase in value in

the 12h treatment (KT3 > KT2, t# = 4.9291, P# = 0.0017). Female muscles were more respon-

sive to heat shock than liver. After a sharp decrease of GSH level from KC to KT1 (t# = 4.7978,

P# = 0.0016), GSH increased in the subsequent treatments KT2 and KT3 (KT1< KT2, t# =

5.59, P# = 0.001; KT1 < KT3, t# = 6.0002, P# = 0.0005).

3.2. CAT

The level of CAT differed between sexes in Tissue × Sex interaction (F# = 35.932, P# = 0.0001)

but only in the liver (t# = 5.493, P# = 0.0001; Fig 2).

Fig 1. Levels of reduced glutathione GSH (mean +/- SE) measured in tissues of males and females of round goby

exposed to heat shock (+10˚C) for 1h, 6h and 12h (N = 3–6). Significant differences between males and females

within the same tissues were marked with letters (a-d) and significant differences between treatments were marked

with numbers (1–8) (p < 0. 005).

https://doi.org/10.1371/journal.pone.0260641.g001
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3.3. TAC

Significant Tissue × Treatment and Tissue × Sex interaction (F# = 3.0272, P# = 0.0358; F# =

34.815, P# = 0.0001; respectively) indicated differences in total antioxidant capacity between

sexes and treatments depending on the tissue. Posteriori pairwise comparisons confirmed dif-

ferences between sexes in the liver (t# = 4.9432, P# = 0.0001), but not in the muscle (t# =

1.2298, P# = 0.2209). In the male liver, the level of TAC increased just after 1h, was kept high

up to 6h, then sharply decreased after 12h of heat exposure. However, this pattern was not sta-

tistically significant (Fig 3). The general differences among treatments in liver tissue were sig-

nificant in comparison with KC versus KT2 (t# = 2.4265, P# = 0.0328) and KT2 versus KT3 (t#

= 2.6342, P# = 0.0226).

3.4. Oxidative damage—Lipid peroxidation

The oxidative damage was also different between sexes, demonstrated by significant

Tissue × Sex and Treatment × Sex interaction (F# = 25.647, P# = 0.0001, F# = 3.2654; P# =

0.0288; respectively). These differences were significant in posteriori pairwise comparisons

between males and females in the liver (t# = 4.5762, P# = 0.0001), but not in the muscle (t# =

1.8475, P# = 0.0767). Lipid peroxidation in the liver was on a constant level in all heat shock

treatments, whereas in males, the level of LPO increased up to 6h and returned below the con-

trol value after 12h of heat exposure (Fig 4). In the Treatment × Sex interaction posteriori pair-

wise test, sex comparisons were significant in the treatment KC (t# = 3.2625, P# = 0.0049) and

KT2 (t# = 3.0896, P# = 0.0082) only.

The general pattern indicated that after 12h of heat exposure, measured antioxidant param-

eters returned to the initial (control) stage.

4. Discussion

The present study suggests diverse responses of males and females of round goby to the oxida-

tive insult evoked by a heat shock. In all tested parameters (CAT, LPO, GSH, TAC), liver of

Fig 2. Levels of catalase activity CAT (mean +/- SE) measured in tissues of males and females of round goby

exposed to heat shock (+10˚C) for 1h, 6h and 12h (N = 4–6). Groups with CAT levels significantly different are

marked (p< 0. 005).

https://doi.org/10.1371/journal.pone.0260641.g002
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males displayed greater responsiveness compared to females, which did not exhibit substantial

changes during the whole experimental procedure. The oxidative defence was measured via

catalase activity and reduced glutathione levels, commonly used oxidative stress biomarkers

(reviewed in Birnie-Gauvin et al. [15]). Although the fluctuation of CAT activity in females in

both tested tissues was recorded, the differences among different times of heat exposure were

not significant. Similar situation was indicated for males, despite even up to two-fold increase

(after 1 h in liver) or decrease (after 6 h in muscle) of catalase activity in heated water.

Fig 3. Levels of total antioxidant capacity TAC (mean +/- SE) measured in tissues of males and females of round

goby exposed to heat shock (+10˚C) for 1h, 6h and 12h (N = 4–6). Groups with TAC levels significantly different are

marked (p< 0.005).

https://doi.org/10.1371/journal.pone.0260641.g003

Fig 4. Levels of lipid peroxidation LPO (mean +/- SE) measured in tissues of males and females of round goby

exposed to heat shock (+10˚C) for 1h, 6h and 12h (N = 3–6). Groups with LPO levels significantly different are

marked (p< 0. 005).

https://doi.org/10.1371/journal.pone.0260641.g004
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Bagnyukova et al. [25] suggested high sensitivity and thermoinactivation of catalase in Perccot-
tus glenii Amur sleeper (in liver tissue), but the results of our study showed activity of the

enzyme, which did not decrease more than 15% below the control level. Due to the high meta-

bolic rate of the liver, it could be expected that CAT activity would be enhanced, especially

considering that the enzyme is the most effective, dealing with oxidative stress, when the level

of H2O2 is highly elevated [44]. Other studies, where fish were exposed to the temperature

beyond their thermal optimum evidenced the significant effect on catalase activity [e.g., 45,

46]. However, small concentrations of H2O2 are supposed to be controlled by glutathione per-

oxidases [44], a group of enzymes which use reduced glutathione as a substrate to decompose

hydrogen peroxide and display a higher affinity for H2O2 [47]. In our study, GSH level turned

out to be the most responsive to heat stress exposure. The main supplier of GSH is liver [44,

47], which in this case showed an enhanced value, however, not significant in females. Increase

in GSH in the liver as a response to heat shock corresponded with the decrease of this parame-

ter in muscle tissue (both sexes). It is possible that via the transport network GSH demands in

muscle were met by liver supply, which can be evidenced in males by the increased values of

GSH in 12 h treatment in muscle with a simultaneous decrease in liver. Female round goby tis-

sues responded in a different pattern with enhanced values observed after 6 h of heat exposure

(muscle); however, without substantial changes in GSH level in liver. The reduced glutathione

level is also the first line in ROS inactivation, involved in the detoxification of many endoge-

nous compounds and xenobiotics [47]. This feature enables conjugation with GSH, which

may be frequent in accelerated metabolism due to elevated temperature. Total antioxidant

capacity was used as a general parameter, exhibiting the antioxidant potential of homogenates.

It also confirmed the higher sensitivity of male’s liver to thermal stress compared to females,

while muscles of both sexes did not show any substantial changes. All antioxidant defences

measured returned close to the basal level, which suggests enhanced tolerance of the species to

thermal stress [11, 26].

To assess the oxidative damage, MDA content was determined, despite many objections, a

method commonly used and relevant in lipid peroxidation evaluation (Hermes-Lima 2004).

Again, sex differences were observed in the liver with male tissues being more sensitive com-

pared to females. The muscles of both sexes responded in a similar pattern, a decrease in LPO

in the first hour of heat exposure and then an increase in the following treatments. The applied

experimental procedure was inspired by the work of Lushchak & Bagnyukowa [48] and Bag-

nyukowa et al. [25], who tested other fish species also displaying wide tolerance to environ-

mental factors: goldfish Carassius auratus and invasive Amur sleeper. In both cases, TBARS

levels expressing lipid peroxidation, measured in the liver increased. Muscle tissue showed

different pattern in goldfish and Amur sleeper, where in the former increase in TBARS was

observed and in the latter enhance after the first hour of heat exposure with a decrease below

the control level in the following treatments. In mentioned studies, sex was not determined

[25, 48]. Liver of round goby males showed a similar pattern to goldfish and Amur sleeper,

while muscles of both sexes exhibited the opposite one. Other studies, where fish species were

exposed to gradual increasing water temperature indicate general enhance in LPO, when tem-

perature rose by 10˚C [27, 49].

The aim of our study was to confirm that the male antioxidant mechanisms are less efficient

compared to females in round goby. We conducted the experiments at the end of the repro-

ductive period to avoid the direct impact of spawning on oxidative stress parameters. Addi-

tionally, the acclimation time was long enough to compensate the reproductive effort and

balance condition of both sexes. Conducted studies confirmed our hypothesis that males of

round goby will display higher sensitivity to oxidative stress. It is not obvious which sex carries

the heavier burden of reproductive effort. In the pre-spawning period, females most of the
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energy invest in ovaries and oocyte development. The energy expenditure for egg production

increases with female age from 20% in the first year up to 50% in the third [31]. Although

reproductive activity requires high resources allocation, after laying their eggs, females return

to deeper waters, e.g., to avoid predation [19]. Testes and all the associated structures represent

much smaller proportion of male body weight compared to female ovaries; however, the sec-

ondary reproductive effort could be greater than the primary one in gobies [32]. Round goby

males precede females in moving into shallow waters to seek for and prepare the nest, where

they remain and guard it throughout the reproductive season [19, 31]. They also display a

higher growth rate (with even 1.5 times greater increments than females) leading to sexual

dimorphism [31, 32]. Males’ investment in the secondary characters such as visual (body col-

ouration), auditory, and olfactory cues, is greater than females and is linked to territoriality,

courtship, and brood care [32]. The number of spawning during the lifetime may be of key

importance. It is suggested that males’ high expenditures during reproduction contribute to

their mortality after the first reproductive season [31, 32], while females reproduce approxi-

mately over three years [32]. This could partially explain the difference in both sex response to

environmental stress, which in the case of this study was elevated temperature (heat shock).

Long activity in most of the year, starting in early spring when males migrate to nearshore

waters and finishing in mid-autumn, as well as food deprivation for most males is fatal. Thus,

additional investment in oxidative defence might be of low importance and had limited effects

on male reproductive success. The opposite refers to females, which enhance their energy

expenditure with age and reproduce more than once [32].

5. Conclusions

The efficiency of handling oxidative stress is critical for a range of key life-history traits, includ-

ing reproduction, because the associated physiological processes lead to reactive oxygen spe-

cies (ROS) generation [50]. The adequate response to an oxidative insult might turn out to be

crucial for survival under environmental changes such as seasonality or food availability.

Results of our study have ecological relevance from the viewpoint of stress tolerance, which

appears to be greater in females. However, we acknowledge that in our study we measured

only a part of commonly used oxidative stress parameters (reviewed in Brine-Gauvin et al.

[15]) and exposed fish only to acute but not chronic stress. Superoxide dismutase (SOD), glu-

tathione peroxidase (GPX), and glutathione reductase (GR), DNA damage, or protein car-

bonyl measurements, along with measurement of responses to chronic stress, could

substantially enrich our understanding of the complexity of the response to environmental

stresses in round goby.
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33. Leicht K, Jokela J, Seppälä O. An experimental heat wave changes immune defense and life history

traits in a freshwater snail. Ecol Evol. 2013; 3(15): 4861–4871. https://doi.org/10.1002/ece3.874 PMID:

24455121

34. Lee VA, Johnson TB. Development of a bioenergetics model for the round goby (Neogobius melanosto-

mus). J Great Lakes Res. 2005; 31: 125–134. https://doi.org/10.1016/S0380-1330(05)70244-6

35. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with Folin phenol reagent. J

Biol Chem. 1951; 193: 265–275. PMID: 14907713

36. Ellman GL. Tissue sulfhydryl groups. Arch Bioch Bioph. 1959; 82: 70–77. https://doi.org/10.1016/0003-

9861(59)90090-6 PMID: 13650640

37. Aebi H. Catalase in vitro, in: Methods in enzymology. 1984; Vol. 105, pp. 121–126, Academic Press.

https://doi.org/10.1016/s0076-6879(84)05016-3 PMID: 6727660

38. Bartosz G. 2003. Cookbook for novice researchers, reactive oxygen species, in Second face oxygen:

free radical in nature. 2nd ed. Warsaw: Wydawnictwo Naukowe PWN, pp. 376–89, 2003.

39. Rice-Evans CA, Diplock AT, Symons MR. Techniques in free radical research. Laboratory techniques

in biochemistry and molecular biology. 1991; 22: 1–278.

40. Anderson MJ. Permutation tests for univariate or multivariate analysis of variance and regression. Can

J Fish Aquat Sci. 2001; 58(3): 626–39. https://doi.org/10.1139/f01-004

PLOS ONE Sex biased response of round goby to acute heat shock

PLOS ONE | https://doi.org/10.1371/journal.pone.0260641 December 16, 2021 11 / 12

https://doi.org/10.1111/j.1095-8649.2011.03157.x
http://www.ncbi.nlm.nih.gov/pubmed/22268429
http://www.europe-aliens.org/speciesTheWorst.do
https://doi.org/10.1134/S0032945212020099
https://doi.org/10.1134/S1063074016010132
https://doi.org/10.1016/s0304-4165%2800%2900098-2
https://doi.org/10.1016/s0304-4165%2800%2900098-2
http://www.ncbi.nlm.nih.gov/pubmed/11099856
https://doi.org/10.1016/j.jtherbio.2007.01.014
https://doi.org/10.1016/j.ecolind.2017.04.042
https://doi.org/10.1016/j.ecolind.2017.04.042
https://doi.org/10.1016/j.marenvres.2014.01.007
http://www.ncbi.nlm.nih.gov/pubmed/24534436
https://doi.org/10.1016/j.cbpc.2019.108676
http://www.ncbi.nlm.nih.gov/pubmed/31783175
https://doi.org/10.1016/j.pestbp.2005.11.001
https://doi.org/10.1016/j.jglr.2009.08.012
https://doi.org/10.1002/ece3.874
http://www.ncbi.nlm.nih.gov/pubmed/24455121
https://doi.org/10.1016/S0380-1330%2805%2970244-6
http://www.ncbi.nlm.nih.gov/pubmed/14907713
https://doi.org/10.1016/0003-9861%2859%2990090-6
https://doi.org/10.1016/0003-9861%2859%2990090-6
http://www.ncbi.nlm.nih.gov/pubmed/13650640
https://doi.org/10.1016/s0076-6879%2884%2905016-3
http://www.ncbi.nlm.nih.gov/pubmed/6727660
https://doi.org/10.1139/f01-004
https://doi.org/10.1371/journal.pone.0260641


41. Almeida D., Merino-Aguirre R., Vilizzi L., Copp G. H. 2014. Interspecific Aggressive Behaviour of Inva-

sive Pumpkinseed Lepomis gibbosus in Iberian Fresh Waters. PlosOne 2014; 9: e88038. https://doi.

org/10.1371/journal.pone.0088038 PMID: 24505367

42. McCarthy B., Zukowski S., Whiterod N., Vilizzi L., Beesley L., King A. Hypoxic blackwater event

severely impacts Murray crayfish (Euastacus armatus) populations in the Murray River, Australia. Aus-

tral Ecol. 2014; 39: 491–500. https://doi.org/10.1111/aec.12109

43. Weber S., Traunspurger W. Effects of juvenile fish predation (Cyprinus carpio L.) on the composition

and diversity of free-living freshwater nematode assemblages. Nematology. 2016; 18: 39–52. https://

doi.org/10.1163/15685411-00002941

44. Hermes-Lima M. Oxygen in biology and biochemistry: role of free radicals. Functional metabolism: Reg-

ulation and adaptation. 2004; 1: 319–66.

45. Madeira D, Narciso L, Cabral HN, Vinagre C, Diniz MS. Influence of temperature in thermal and oxida-

tive stress responses in estuarine fish. Comp Biochem Phys A. 2013; 166: 237–243. https://doi.org/10.

1016/j.cbpa.2013.06.008 PMID: 23774589

46. Vinagre C, Madeira D, Narciso L, Cabral HN, Diniz M. Effect of temperature on oxidative stress in fish:

lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax. Ecol

Indic. 2012; 23: 274–279. https://doi.org/10.1016/j.ecolind.2012.04.009

47. Lushchak VI. Glutathione homeostasis and functions: potential targets for medical interventions. J

Amino Acids 2012. https://doi.org/10.1155/2012/736837 PMID: 22500213

48. Lushchak VI, Bagnyukova TV. Temperature increase results in oxidative stress in goldfish tissues. 1.

Indices of oxidative stress. Comp Biochem Phys C. 2006; 143: 30–35. https://doi.org/10.1016/j.cbpc.

2005.11.017 PMID: 16423562

49. Madeira D, Vinagre C, Diniz MS. Are fish in hot water? Effects of warming on oxidative stress metabo-

lism in the commercial species Sparus aurata. Ecol Indic. 2016; 63: 324–331. https://doi.org/10.1016/j.

ecolind.2015.12.008

50. Monaghan P, Metcalfe NB, Torres R. Oxidative stress as a mediator of life history trade-offs: mecha-

nisms, measurements and interpretation. Ecol Lett. 2009; 12: 75–92. https://doi.org/10.1111/j.1461-

0248.2008.01258.x PMID: 19016828

PLOS ONE Sex biased response of round goby to acute heat shock

PLOS ONE | https://doi.org/10.1371/journal.pone.0260641 December 16, 2021 12 / 12

https://doi.org/10.1371/journal.pone.0088038
https://doi.org/10.1371/journal.pone.0088038
http://www.ncbi.nlm.nih.gov/pubmed/24505367
https://doi.org/10.1111/aec.12109
https://doi.org/10.1163/15685411-00002941
https://doi.org/10.1163/15685411-00002941
https://doi.org/10.1016/j.cbpa.2013.06.008
https://doi.org/10.1016/j.cbpa.2013.06.008
http://www.ncbi.nlm.nih.gov/pubmed/23774589
https://doi.org/10.1016/j.ecolind.2012.04.009
https://doi.org/10.1155/2012/736837
http://www.ncbi.nlm.nih.gov/pubmed/22500213
https://doi.org/10.1016/j.cbpc.2005.11.017
https://doi.org/10.1016/j.cbpc.2005.11.017
http://www.ncbi.nlm.nih.gov/pubmed/16423562
https://doi.org/10.1016/j.ecolind.2015.12.008
https://doi.org/10.1016/j.ecolind.2015.12.008
https://doi.org/10.1111/j.1461-0248.2008.01258.x
https://doi.org/10.1111/j.1461-0248.2008.01258.x
http://www.ncbi.nlm.nih.gov/pubmed/19016828
https://doi.org/10.1371/journal.pone.0260641

