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Abstract: This paper focuses on the adaptive spline (A-spline) fitting of the semiparametric regression
model to time series data with right-censored observations. Typically, there are two main problems
that need to be solved in such a case: dealing with censored data and obtaining a proper A-spline
estimator for the components of the semiparametric model. The first problem is traditionally solved
by the synthetic data approach based on the Kaplan–Meier estimator. In practice, although the
synthetic data technique is one of the most widely used solutions for right-censored observations, the
transformed data’s structure is distorted, especially for heavily censored datasets, due to the nature
of the approach. In this paper, we introduced a modified semiparametric estimator based on the
A-spline approach to overcome data irregularity with minimum information loss and to resolve the
second problem described above. In addition, the semiparametric B-spline estimator was used as
a benchmark method to gauge the success of the A-spline estimator. To this end, a detailed Monte
Carlo simulation study and a real data sample were carried out to evaluate the performance of the
proposed estimator and to make a practical comparison.

Keywords: adaptive splines; B-splines; right-censored data; semiparametric regression; synthetic
data transformation; time series

1. Introduction

Time series datasets are censored from the right under specific conditions, such as
a detection limit or an insufficient observation process. Consider a device which cannot
measure values above a certain point, which is known as a detection limit. Since the
device cannot determine the real value of an observation above its detection limit, such
observations are recorded as right-censored data points. The hourly observed cloud ceiling
heights data collected by the National Center for Atmospheric Research (NCAR) and
modelled by [1,2] can be used as an example of a right-censored time series. Although
right-censored time series are encountered frequently in the real world, in the literature,
there are truly few studies completed on the estimation of right-censored time series. This
may be because censorship is an unwanted data irregularity for the researchers, and it is
therefore often ignored or solved by outdated techniques.

To solve the censorship problem before modelling the time series, reference [1] used
the Gaussian imputation technique to estimate the series using modified ARMA mod-
els. In a similar manner, references [2,3] solved the censorship problem by using data
imputation techniques. The common ground of these studies is the use of imputation
and data augmentation methods to estimate the regression models with autoregressive
errors for right-censored time series. On the other hand, there is an easier way to handle
the censorship problem called synthetic data transformation. Although data imputation
techniques have some merits, they are generally based on iterative algorithms and their
calculations are costly. Reference [4] estimated the temporally correlated and right-censored
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series by Nadaraya–Watson estimator nonparametrically, solving the censorship problem
using a data transformation technique. Various data transformation (or synthetic data)
methods have been proposed and studied in the literature for independent and identically
distributed (i.i.d.) datasets; for example, see [5–7]. Because synthetic data transformation
manipulates the data structure, which is disadvantageous, this solution method is no longer
the preferred technique for right-censored time series. This paper aims to propose a method
which can overcome the disadvantage of the synthetic data transformation method.

Note that the studies mentioned above consider the modeling of time series data using
parametric or nonparametric methods. The data structure of a time series in the real world
is generally not suitable for parametric modelling, because it requires rigid assumptions
to reach reasonable estimates. Single-index nonparametric models, on the other hand,
are very flexible, which is an important advantage over parametric methods and there
are valuable studies on the subject [2,8,9]. However, nonparametric approaches lose their
statistical efficiencies, when the number of covariates increases. In addition, it should be
noted that, when a time series dataset is right-censored, the weaknesses of both methods
are further increased.

Considering the issues mentioned above, this paper adopts semiparametric regression
model for estimating right-censored time series. Although several researchers have intro-
duced different types of semiparametric estimators for time series data, such as [10,11],
there remains a significant gap in the research regarding the modelling of right-censored
time series data. To address this absence, our paper proposes a modified semiparametric
A-spline (AS) estimator based on synthetic data transformation. Thus, the bidirectional
flexibility of the semiparametric model will be used, and the censorship problem will be
effectively solved.

The paper is designed as follows: the methodology and fundamental ideas about right-
censored semiparametric time series model with autoregressive errors and the synthetic
data transformation method are given in Section 2. Section 3 introduces a modified AS
estimator for parametric and nonparametric components of the right-censored time series
model, and a semiparametric B-spline (BS) is given as a benchmark. Section 4 involves the
statistical properties and evaluation criteria for both the modified AS and benchmark BS
methods. Section 5 introduces some additional information about the penalty term of the
semiparametric AS approach. Sections 6 and 7 contain a detailed Monte Carlo simulation
study and a real-world data example, respectively. Conclusions are presented in Section 8.

2. Background

The classical semiparametric model can be defined as a hybrid model with a finite
dimensional parametric component and a nonparametric component having an infinite
dimensional nuisance parameter. See [12–15] for additional information. In both theory
and practice, the semiparametric model brings a new perspective to data modeling, since
it includes both parametric and nonparametric components. As mentioned in the previ-
ous section, it is well-suited to time series data, because it brings the advantages of the
semiparametric model to time series analysis.

Suppose that a time series dataset {Zt, xt, st, t = 1, 2, . . . , n } satisfies an uncensored
semiparametric time series model of the form:

Zt = xtβ+ f (st) + εt, a = s1 < . . . < sn = b, (1)

where Zt
′s are the observations of stationary time series, xt =

(
xt1, . . . , xtp

)
and x1, . . . , xn

are known p-dimensional vectors of the explanatory variables, β =
(

β1, β2, . . . , βp
)′ is

an unknown p-dimensional vector of the regression coefficients to be estimated, f (.) is
an unknown smooth function that describes the relationship between Zt and a nonpara-
metric temporal covariate st, and finally, εt’s are the stationary autoregressive error terms
generated by:

εt = ρ1εt−1 + . . . + ρkεt−k + ut, (2)
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where ρ1, . . . , ρk are the autoregressive coefficients, and ut denotes the independent and
identically distributed random error terms with mean zero and a constant variance.
Model (1) does not include lagged Zt

′s and has auto-correlated errors. This expression
makes it a suitable model for the semiparametric regression analysis of certain kinds of
time series.

A common problem in practice is that dependent observations Zt
′s cannot be perfectly

collected due to limitations including the detection limit of an evaluation tool or the end
time for the study. To express this situation algebraically, we assume that Zt

′s are censored
from the right by a non-negative random variable representing detection limit Ct. Therefore,
instead of observing the values of Zt, we now observe:

Yt = min(Zt, Ct) and δt =

{
1 i f Zt ≤ Ct (uncensored)
0 i f Zt > Ct (censored)

, (3)

where δt’s denote the censoring information. Suppose that we are interested in estimating
the mean semiparametric regression function. The distribution of the observable random
variables does not identify the mean regression function uniquely. However, this problem
can be solved as follows.

Let FZ(α) = P(Z ≤ α), GC(α) = P(C ≤ α), and HY(α) = P(Y ≤ α) for α ∈ R
be cumulative distribution functions of non-negative random variables Zt, Ct, and Yt,
respectively. If random variables Zt and Ct are independent, then the survival function
HY(α) for observed response variable Yt can be defined from the basic relationship between
FZ and GC: {

HY(α) = 1− HY(α)
}

= [(1− FZ(α))·(1− GC(α))]. (4)

Given a random sample from the distribution of (Yt, Xt, st, δt), it is of interest to ex-
amine the explanatory variables’ effect on the observations of time series (i.e., response
variable) by estimating the survival function HY(α) = P(Y > α), which is the regression
function E(Yt|xt, st) = xtβ+ f (st), the conditional mean of time series Yt. However,
because of the censoring, ordinary methods cannot be applied directly to estimate the
regression function. To overcome censored observations, a data transformation technique
should be used. One of the most widely used techniques is the synthetic data transforma-
tion, detailed in the section below.

Synthetic Data

To extend the penalized sum of squares approach to right-censored semiparametric
regression analysis, we updated the synthetic data approach developed by [5]. The first
step is to create an unbiased synthetic response variable of which the expectation is equal to
the original and then to obtain the penalized squares estimator by means of this synthetic
variable. The main goal of this transaction is to consider the censoring effect on the
distribution of response variable. In the case of censored data, the authors of [16,17] used
the synthetic data approach.

In the synthetic approach, we replace observed variable Yt with transformed data YtG;
a transformation maintains the conditional expectation of original variable Zt. To describe
this situation, it is easier to proceed directly using the cumulative distributions given in
Lemma 1 below. Note also that if GC is known then it is possible to transform observed
data {(Yt, δt), t = 1, . . . , n} into unbiased synthetic data, given by:

YtG =
δtYt

1− GC(Yt)
, (5)
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where GC(.) is the distribution function of the censoring time Ct, as defined before. It
should be noted that the distribution of GC is rarely known. In this case, we use the
Kaplan–Meier estimator defined by:

1− Ĝc(y) = ∏n
t = 1

(
n− t

n− t + 1

)I[Y(t)≤y, δ(t) = 0]
, y ≥ 0, (6)

where Y(1) ≤ . . . ≤ Y(n) are the sorted values of Y1, . . . , Yn and δ(t) is the δt related to Y(t).
Equation (5) has the following properties: (a) if distribution GC is selected arbitrarily, some
Y(i) can be identical. In this case, the ranking of Y1, . . . , Yn into Y(1) . . . Y(n) is not unique.
However, the Kaplan–Meier estimator allows us to define the ranking of Yt uniquely;
(b) ĜC(.) has jumps only at the censored observations of the time series (see [18]).

Substituting ĜC(.) for GC(.) in Equation (5), we construct the following synthetic data,
given by:

YtĜ =
δtYt

1− ĜC(Yt)
. (7)

Then, one practical consequence of the following Lemma is that synthetic data YtĜ
and completely observed response times Zt have the same conditional expectations, as
claimed in before.

Lemma 1. Consider time series data Zt denoted as a response variable. If the data is censored by
random censoring variable C with distribution GC, transform observed series Yt = min(Zt, Ct) to
YtG = δtYt/1−GC(Yt) in an unbiased form, as defined in Equation (4). Based on the information,
it can be easily verified that E[YtG|xt, st] = E[Zt|xt, st] = xtβ + f (st). However, generally,
GC is unknown as mentioned before. Therefore, YtĜ is used which is defined in Equation (7),
instead of YtG. Because of Ĝc → G when n→ ∞ , (see [5]), it is ensured that E

[
YtĜ

∣∣xt, st
] ∼=

E[YtG|xt, st] = xtβ + f (st).

Let us consider that τHY = sup{α : HY(α) < 1}, where HY(.) is defined right after
Equation (3). In the literature, the convergence rate of the Kaplan–Meier estimator is
examined in two classes: (i) restriction of time-interval as [0, α] with α < τHY ; (ii) extension
of time-interval

[
0, τHY

]
(see [19] for more detailed discussions). Here, the convergence

rate of the Kaplan–Meier estimator is inspected with regard to case (ii). However,
[
0, τHY

]
cannot be used without some strong conditions that can be given by:

(i) G
(
τHY

)
< 1 = F

(
τHY

)
;

(ii) τHY < ∞;

(iii)
∫ τHY

0
1

1−G(α)
dF < ∞.

Details about conditions (i)–(iii) were studied by [20]. The convergence of Ĝ → G
over the interval

[
0, τHY

]
can be provided. Reference [19] clearly shows both strong and

weak convergences at the rate n−ϑ where 0 ≤ ϑ ≤ 1/2.
The proof of Lemma 1 is given in Appendix A.
The major concern of this paper is to overcome the censoring problem and to estimate

the semiparametric time series model efficiently. To achieve this goal, we used two different
approaches, BS and modified AS estimators. In the following section, we applied these
approaches to the transformed data to estimate time series observations under random
right-censorship.

3. Estimating the Semiparametric Model Based on the BS Estimator

We first introduce the BS considered for estimating the components of model (1). A
univariate B-spline is constructed by a piecewise polynomial function of degree q such that
its derivatives up to order (q− 1) is continuous at each knot point r1, . . . , rk. The set of BSs
of degree q over the real numbers (r1, . . . , rk) = r is a vector space of dimension q + k + 1.
In addition, note that k denotes the number of interior knots, while q ≥ 0 indicates the
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polynomial order. For example, the polynomials of order q = 0, 1, 2, and 3 are defined
as constant, linear, quadratic, and cubic BS basis functions, respectively. If the knots are
equally spaced (i.e., separated by same distance h = (rk+1 − rk)), the knot points and the
corresponding BSs are called uniform.

Definition 1. Given an ordered knot vector r = {r1 ≤ r2 ≤ . . . ≤ rk} in the domain of covariate
st, then ith BS basis functions

{
Bi,q(st), i = 1, 2, . . . , q + k + 1

}
of degree q = 0 and q > 0

can be defined in recursive series, respectively, as:

Bi,0(s) =

{
1 i f ri ≤ s ≤ ri+1

0, otherwise
, (8)

Bi,q(s) =
s− ri

ri+q − ri
Bi,q−1(s) +

ri+q+1 − s
ri+q+1 − ri+1

Bi+1,q−1(s). (9)

Note that if the denominator of Equation (9) is equal to zero, then the BS basis function is
assumed to be zero. From Equations (8) and (9), a set of (q + k + 1) basis functions have the
following important properties:

(a) The BS basis functions form a partition of unity,∑
q+k+1
i = 1 Bi,q(s) = 1;

(b) For all values of covariate st, Bi,q(s) ≥ 0; and
(c) Bi,q(s) is realized in the interval [rk, rk+q+1].

Reference [21] proposes an algorithm to solve equation (9). See also the work of [22]
for more detailed discussions on the BS approximation. Note also that the BS curve can be
uniquely represented as a linear combination of the BSs basis functions in Equation (9), as
given in the next section. Note that references [23,24] could be counted as recent studies
about BSs.

3.1. BS Estimator

As previously noted, in this paper, we fit semiparametric time series model (1) with
right-censored data. For this purpose, the BS estimator can be used as an approximation
method. Using the synthetic data in Equation (7), we estimated the parametric and non-
parametric components of model (1). Therefore, the sum of the squares of the differences
between the censored time series values YtĜ and (xtβ+ f (st)) are minimum. Assume that
f (.) is a smooth function that can be approximated by a linear combination of the BSs basis
functions in Equations (8) and (9):

f (s) ∼= ∑m = q+k+1
i = 1 αiBi,q(s) = Bα , (10)

where m = (q + k + 1) is the total number of BS basis functions being used, α̂i
′s are

estimated coefficients (or control points) for each BS, B is an (n×m)-dimensional matrix
which includes BSs as defined by Equation (9) and α = (α1, . . . ,αm)′ is a parameter
vector of the BS function. Note also that the autoregressive errors in model (1) follow an
n-dimensional multivariate normal distribution with a zero mean and stationary (n× n)
covariance matrix Σ, that is, (ε1, . . . , εn)

T ∼ Nn(0, Σ ), where the covariance matrix Σ is a
symmetric and positive definite matrix with elements:

Σ =
σ2

u
1− ρ2 R, R(t, j) = ρ|t−j|, 1 ≤ (t, j) ≤ n. (11)

Throughout the paper, the notation is used as Σ−1 = V. Note that V is generally
unknown. However, its elements can be obtained by the generalized least squares (GLS)
based on an iterative process. Then, as in [25] which is a penalized BS study combining
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BS and difference penalties, the estimates of the components of semiparametric model (1)
were obtained by minimizing the penalized sum of squares (PSS) criterion:

PSS = ∑n
t = 1 V

{
YtĜ −∑p

j = 1 xtjβ j −∑m
i = 1 αiBi,q(s)

}2
+ λ ∑m

i = q+1(∆
qαi)

2, (12)

where ∆αi = (αi − αi−1) is the first-order difference penalty on the coefficients of the BSs. The
other differences can be defined as follows:

∆2αi = ∆(∆αi) = (αi − αi−1)− (αi−1 − αi−2) = αi − 2αi−1 + αi−2, (13)

and similarly:
∆qαi = ∆

(
∆q−1αi

)
. (14)

Note that if degree q = 0 in Equation (12), we obtain semiparametric ridge regression
based on BSs. When λ = 0 in Equation (12), we have the minimization equation of
ordinary least squares regression with a correlated error. If λ > 0, the penalty only
influences the main diagonal and q sub-diagonals (on both sides of the main diagonal
elements) of the banded structure system due to the limited overlap of the BSs.

We rewrite the minimization criterion described as Equation (12) in a matrix and
vector notation:

PSS =
(
YĜ − Xβ− Bα

)′ V
(
YĜ − Xβ− Bα

)
+ λ‖Dα‖2, (15)

where ‖.‖ denotes Euclidean norm, X = (x1, . . . , xn)′, YĜ =
(
Y1Ĝ, . . . , YtĜ

)′ is the
synthetic response vector defined in Equation (7), λ > 0 is a smoothing parameter, and
D denotes the matrix notation of the difference operator (∆q) defined in Equation (13).
For example, D is an (n− 2) × n-dimensional banded matrix that corresponds to the
second-order difference penalty, given by:

D =


1 −2 1 · · · 0
...

. . . . . . . . .
...

0 · · · 1 −2 1

. (16)

From simple algebraic operations, it follows that the solution to the minimization
problem in Equation (15) satisfies the following block matrix equation:(

X
′
V X X

′
V B

B
′
V X

(
B′V B + λD

′
D
) )( β

α

)
=

(
X
′

B
′

)
VYĜ. (17)

Given a parameter λ > 0, the corresponding estimators based on BSs for vectors β
and α can be easily obtained by:

α̂BS =
[
B
′
VB + λD

′
D
]−1

B
′
V
(
YĜ − Xβ̂BS

)
, (18)

and:
β̂BS =

[(
X
′
V−ABS

)
X
]−1(

X
′ −ABS

)
VYĜ, (19)

where ABS = X
′
VB
[
B
′
VB + λD

′
D
]−1

B
′
V. It should be noted that the estimates of the

unknown regression function in a censored semiparametric model are obtained by:

f̂BS = Bα̂BS =
[

f̂ (s1), . . . , f̂ (sn)
]
′. (20)
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From Equations (19) and (20), we see that the fitted values of dependent time series
data can be written as:

µ̂BS =
(

Xβ̂BS + f̂BS

)
= HBSYĜ = E[Y | X, s], (21)

where HBS is a hat matrix for BSs and computed as follows:

HBS =

[
X
[(

X
′
V−ABS

)
X
]−1(

X
′ −ABS

)
V(I−MBS) + MBS

]
, (22)

where MBS = B
[
B
′
VB + λD

′
D
]−1

B
′
V.

3.2. AS Estimator

The adaptive spline (AS) applies an adaptive ridge penalty to the BS method, which
makes it more flexible for knot determination. The AS concept is explained in [26] in a
nonparametric context. However, in this paper, we generalized this estimation concept to
the semiparametric environment based on synthetic response observations. It should be
noted that the location and number of knots have crucial importance in terms of synthetic
data transformation. This issue is discussed in detail in Section 4.3. The point here is that a
more efficient estimator based on synthetic responses is needed, as most of the existing
smoothing techniques (spline smoothing, kernel smoothing, etc.) cannot properly handle
synthetic data. This article aims to solve this issue with the AS estimator.

When a BS is defined on the knots r1 ≤ r2 ≤ . . . ≤ rk such that ∆qαi = 0 for some ith

knot, it may be reparametrized as a BS on the knots r1, r2, . . . , ri−1, ri+1, . . . , rk. Accordingly,
when m = (q + k + 1), we want to put a penalty on the number of non-zero differences
indicated as below:

λ
m

∑
i = q+1

‖∆qαj‖0 , (23)

where ∆qαi is the qth-order difference operator and ‖∆qαi‖0 is the L0-norm of the differ-
ences, that is, ‖∆qαi‖0 = 0 if ∆qαj = 0, otherwise, ‖∆qαi‖0 = 1, and λ is a positive penalty
parameter that ensures the tradeoff between the goodness of fit to the data and the smooth-
ness of the fitted curve. This penalty enables us to remove knot ri that is not related to the
smoothing problem, to join the neighbor intervals [ri−1, ri) and [ri, ri+1), and to carry on
fitting with a BS described over the remaining knot points. Note also that when λ→ 0 ,
the fitted curve becomes a BS with knots ri, i = 1, 2, . . . , k and when λ→ ∞, the fitted
function becomes a polynomial of degree q.

It should be emphasized that one of the important points about the adaptive ridge
penalty is that Equation (23) cannot be differentiated due to the L0-norm. As a result,
the fitting process is made numerically untraceable. An approximate solution to dealing
with the L0-norm is provided by [27,28]. Following the studies of these authors, we
approximate the L0-norm by using an iterative process referred to as an “adaptive ridge”
based on synthetic data. The new criterion function is expressed by the following weighted
penalized sum of squares:

WPSS =
(
YĜ − Xβ− Bα

)′V(YĜ − Xβ− Bα
)
+ λ ∑m

i = q+1 wi( ∆qαi)
2, (24)

where wi’s denote the positive weights. It should be noted that the penalty is close to the
L0-norm of the differences when the weights are iteratively calculated from the parameter
vector α of BS following the equation:

wi =
[
(∆qαi)

2 + γ2
]−1

, γ > 0, (25)

where γ is a constant properly determined by the researcher.
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Remark 1. There are a few important points to know about the selection of γ. If (∆qαi) < γ,
then the magnitudes of wi’s might be quite large, resulting in (∆qαi) ∼= 0 and the penalty term
turning into wi(∆qαi)

2 ∼= 0. Furthermore, if (∆qαi) � γ , then wi(∆qαi)
2 ∼= ‖∆qαi‖0. This

convergence gives us a measure of how relevant the ith knot point is. In practice, one possible choice,
suggested by [28], is γ = 10−5. They select the knots (denoted as ri∗ ) with a weighted difference
bigger than 0.99. The number of parameters of the chosen BS is mλ = q + kλ + 1, where kλ

denotes the number of selected knot points.

Note that reference [28] provides a figure to show the effects of different norm degrees
(q) on the quality of estimation. It is seen from that the performance of estimation does not
change for different values of γ when norm degree is zero (q = 0). However, it affects the
performance seriously if q > 0.

For some λ > 0 and non-negative weights, the WPSS of Equation (26) can be rewritten as:

WPSS =
(
YĜ − Xβ− Bα

)′V(YĜ − Xβ− Bα
)
+ λα′Kα, (26)

where K is a penalty matrix and written as K = D′WD, where W = diag
(
wq+1, . . . , wm

)
and D is the matrix form of the difference operator ∆q, as defined in Equation (13). Sim-
ple algebraic operations show that the solution to the minimization problem WPSS in
Equation (26) satisfies the block matrix equation:(

X
′
VX X

′
VB

B
′
VX

(
B
′
VB + λK

) )( β

α

)
=

(
X
′

B
′

)
VYĜ. (27)

By similar arguments as in the case of the BS approach, the corresponding estimators
α̂AS and β̂AS of α and β, based on the right-censored semiparametric time series model (1)
with correlated data, can be easily obtained, respectively, as:

α̂AS =
[
B
′
VB + λK

]−1
B
′
V
′(

YĜ − Xβ̂AS
)
, (28)

and:
β̂AS =

(
(X
′
V−AAS)X

)−1(
X
′ −AAS

)
VYĜ, (29)

where AAS = X
′
VB
[
B
′
VB+ λK

]−1
B
′
V
′
. The proofs and derivations of Equations (28) and (29)

are given in Appendix B. Notice that the estimates corresponding to the nonparametric
part of the semiparametric model (1) are obtained using Equation (28) as described in the
following equation:

f̂AS = Bα̂AS =
[

f̂ (s1), . . . , f̂ (sn)
]
′. (30)

From Equations (29) and (30), we can see that the fitted values of the dependent time
series data can be obtained as:

^
µAS =

(
Xβ̂AS + f̂AS

)
= HASYĜ = E[Y|X, s], (31)

where HAS denotes the hat matrix, given by:

HAS =

[
X
[(

X
′
V−AAS

)
X
]−1(

X
′ −AAS

)
V(I−MAS) + MAS

]
, (32)

with MAS = B
[
B
′
VB + λK

]−1
B
′
V
′
.

To make the computation process efficient, all penalty terms
(
DTWD

)
are calculated

by using the iteration process instead of finding matrix D and knot set individually. The
iterative algorithm is given in Algorithm 1 below.
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Algorithm 1. Iterative algorithm process for the modified A-spline (AS) estimator α̂AS.

Input: X, s, YĜ.

Output: β̂(i)AS =
(

β̂
(i)
1 , β̂

(i)
2 , . . . , β̂

(i)
p

)
α̂
(i)
AS =

(
α̂
(i)
1 , α̂

(i)
2 , . . . , α̂

(i)
q+k+1

)′
1: Begin
2: Give initial values, β(0) = 1p, α(0) = 0q+k+1 and W(0) = I to start iterative process
3: do until converges weighted differences to L0-norm

4: β̂(i)AS = (
(

X
′
V−A)X

)−1(
X
′ −A

)
VYĜ

5: α̂(i)
AS =

[
B
′
VB + λK

]−1
B
′
V
′
(

YĜ − Xβ̂(i)AS

)
6: Determine γ = 10−5

7: w(i)
i =

[(
∆qα

(i)
i

)2
+ γ2

]−1

8: β̂AS = β
(i)
AS, α̂AS = α̂

(i)
AS, W = diag

(
w(i)

i

)
9: end

10: Calculate r(i∗) by the criterion of
(

∆qα
(i)
AS

)2
W(i) > 0.99

11: Return β̂(i)AS =
(

β̂1, β̂2, . . . , β̂p
)
, α̂(i)

AS =
(

α̂1, α̂2, . . . , α̂q+k+1

)′
12: End

Remark 2. For the constant value of γ = 10−5, the iteration process repeats between
step 3 and step 9 until the pre-determined tolerance value δ = 10−4 is obtained where
δ = ∑n

i = 1 n−1
∣∣Yi − ŶiĜ

∣∣. From our experience, the expected number of iterations is observed as
no.iteration = 20 to achieve the convergence.

Notice that the complexity and efficiency of Algorithm 1 is analyzed from different
aspects that are given by:

(i) Number of local searches: algorithm does not involve a local search procedure
which is an advantage for the speed of Algorithm 1;

(ii) Number of nested loops: due to the fact that there is only an iteration loop (without
nested loops), if an algorithm does not include nested loops, its “order of growth” will be O(n);

(iii) Asymptotic behaviors: as the former inference mentioned, Algorithm 1 has O(n)
which means that the limiting case of its convergence speed is considerable when it is
compared with its alternative BS method on this issue.

As mentioned at the beginning of this section, the choice of an optimum smoothing
parameter λ is required for both semiparametric BS and AS estimators. In this context,
the improved Akaike information criterion (AICc) proposed by [29] is used, which is
computed with the following equation:

AICc(λ) = log
(

σ̂2
)
+ 1 +

2{tr(H) + 1}
n− tr(H)− 2

, (33)

where σ̂2 is the estimate of the model variance, which is estimated for both methods
separately in the next section, and H denotes the hat matrix for any of two methods. It is
replaced by HAS for the AS method and HBS for the BS method, respectively.

4. Statistical Properties of the Estimators

In this paper, we introduced the semiparametric AS and BS estimators for the estima-
tion of the right-censored time series model. It should be noted that these two methods
were used for the first time in the setting of a time series estimation procedure. Inferences
were therefore carried out about their statistical properties. For example, among these, the
error terms obtained from the estimates of both methods and the estimators of parametric
and nonparametric components were inspected and their properties were extracted.
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4.1. Properties of the Semiparametric BS Estimator

Firstly, the parametric component was inspected. As is known, in a parametric context,
errors can be decomposed into the bias and the variance terms that provide the quality
of the estimator. Accordingly, the estimator β̂BS of the parametric coefficients vector is
expanded as follows:

β̂BS =
[
(X′V−ABS)X

]−1
(X′V−ABS)YĜ = β+

[
(X′V−ABS)X

]−1
(X′V−ABS)f, (34)

where V, ABS and MBS matrices are as defined in Section 3.1 and f = [ f (s1), f (s2), . . . , f (sn)]
′.

From here, bias B
(
β̂BS

)
and variance-covariance V

(
β̂BS

)
of estimator β̂BS can be computed

as follows:

B
(
β̂BS

)
= E

(
β̂BS

)
−β =

[
(X′V−ABS)X

]−1
(X′V−ABS)f, (35)

V
(
β̂BS

)
= σ2[(X′V−ABS)X

]−1
(X′V−ABS)X

[
(X′V−ABS)X

]−1, (36)

where σ2 is the variance of the fitted semiparametric model. Since the variance is not
generally known, instead of σ2, the estimation (denoted by σ̂2

BS) based on the BS is used. It
can be computed from the residuals sum of squares (RSS) using error terms:

σ̂2
BS =

RSS

tr(I−HBS)
2 =

‖(I−HBS)ŶĜBS
‖2

tr
[
(I−HBS)

′(I−HBS)
] , (37)

where tr(I−HBS)
2 = n− 2tr(HBS) + tr

(
H′BSHBS

)
denotes the degrees of freedom. In

addition, tr
(
H′BSHBS

)
needs O(n) algebraic operations. In the context of the BS, if the data

have a normal distribution, σ̂2
BS is asymptotically unbiased.

Secondly, the properties of estimated nonparametric component α̂BS =
(

α̂1, α̂2, . . . , α̂q+k+1

)′
are given here. The bias of α̂ is one of the quality measurements for the estimated model.
The bias is denoted as conditional expectation E[α̂|st], given by:

E[α̂BS|st] =
(

B
′
VB + λD

′
D
)−1

B
′
VBα. (38)

From that, the bias is given by:

Bias(α̂BS) = E[α̂BS|st]−α = [(B
′
VB + λD

′
D)]−1B

′
V
′
f− [(B

′
VB+

λD
′
D)]−1B

′
V
′
X[(X′V−ABS)X]−1(X′V−ABS)− [(B

′
VB + λD

′
D)]−1B

′
V
′
=

[(B
′
VB + λD

′
D)]−1B

′
V
′
X[(X′V−ABS)X]−1(X′V−ABS).

(39)

Accordingly, the covariance of α̂BS can be computed as:

Cov(α̂BS) = σ̂2
BS

1
n

(
B
′
VB + λD

′
D
)−1(

B
′
VB
)(

B
′
VB + λD

′
D
)−1

, (40)

where σ̂2
BS is defined by Equation (36). In addition, to reveal the performance of f̂BS = Bα̂BS,

the root square of mean squared error RMSE
(

f, f̂BS

)
is used:

RMSE(f, f̂BS) = n−1 ∑n
t = 1 [ f (st)− f̂BS(st) ]

2
= n−1(f− f̂BS)

′
(f− f̂BS). (41)

4.2. Properties of the Semiparametric AS Estimator

Similar to in Section 4.1, the same properties for parametric and nonparametric com-
ponents are given for the AS estimator here. The necessary expansion is written as follows
to derivate the bias and variance of β̂AS:
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β̂AS =
[
(X′V−AAS)X

]−1
(X′V−AAS)YĜ = β+

[
(X′V−AAS)X

]−1
(X′V−AAS)f, (42)

where AAS and MAS are given in Section 3.2. Now, the bias and the covariance matrix of
the estimator β̂AS can be provided by:

B
(
β̂AS

)
= E

(
β̂A
)
−β =

[
(X′V−AAS)X

]−1
(X′V−AAS)f, (43)

V
(
β̂AS

)
= σ2[(X′V−AAS)X

]−1
(X′V−AAS)X

[
(X′V−AAS)X

]−1, (44)

where σ2 is the variance of the fitted semiparametric model. Similar to Equation (40),
instead of the model variance, σ̂2

AS is obtained as follows:

σ̂2
AS =

RSS

tr(I−HAS)
2 =

‖(I−HAS)ŶĜAS
‖2

tr
[
(I−HAS)

′(I−HAS)
] . (45)

The properties of estimated nonparametric component α̂AS =
(

α̂1, α̂2, . . . , α̂q+k+1

)′
for the AS method are described below. The bias and the variance of the AS estimator α̂AS
can be given, respectively, as:

Bias(α̂AS) = E[α̂AS|st]−α = [(B
′
VB + λD

′
WD)]−1B

′
V
′
f− [(B

′
VB+

λD
′
WD)]−1B

′
V
′
X[(X′V−AAS)X]−1(X′V−AAS)− [(B

′
VB+

λD
′
WD)]−1B

′
V
′
f = [(B

′
VB + λD

′
WD)]−1B

′
V
′
X[(X′V−AAS)X]−1(X′V−AAS),

(46)

and
Cov(α̂AS) = σ̂2

AS
1
n

(
B
′
VB + λD

′
WD

)−1(
B
′
VB
)(

B
′
VB + λD

′
WD

)−1
. (47)

Thus, the value of RMSE
(

f, f̂AS

)
for f̂AS = Bα̂AS, similar to Equation (41), is

calculated as follows:
RMSE(f, f̂AS) = n−1 ∑n

t = 1 [ f (st)− f̂AS( st)]
2
= n−1(f− f̂AS)

′
(f− f̂AS). (48)

4.3. Quality Measures for the Fitted Model

After assessing the parametric and nonparametric components of the model in
Sections 4.1 and 4.2, several measurements are introduced in this section to evaluate the
overall model performance. In the literature on time series modelling, mean absolute
percentage error (MAPE), mean absolute error (MAE), and mean squared error (MSE)
are the most commonly used performance criteria. To represent these criteria, MAPE
is preferred in this study. In addition, median absolute error (MedAE) was used, which
allowed us to account for missing or censored data. Generalized MSE (GMSE) and the
ratio of GMSE (RGMSE) proposed by [30] and [2], respectively, were used to measure
the quality of the fitted time series model. The aforementioned criteria can be defined
as follows:

MAPE(YtĜ, ŶtĜ) =
n−1 ∑n

t = 1 |Yt−ŶtĜ |
YtĜ

, MedAE(YĜ, ŶĜ) = Median(|YĜ − ŶĜ|),

GMSE(YĜ, ŶĜ) = (YĜ − ŶĜ)
′E(YĜY′Ĝ )(YĜ − ŶĜ),

where ŶtĜ and ŶĜ denote the fitted dependent variable values and vector for any estimation
method. Here, ŶtĜ and ŶĜ are replaced by ŶtĜBS

and ŶĜBS
for the BS, and ŶtĜA

and ŶĜA
for the AS. In addition, to make a more considerable comparison between the AS and BS
estimators, RGMSE is defined below.
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Definition 2. The ratio of GMSE can be defined as follows:

RGMSE(YĜBS
, ŶĜAS

) =
GMSE(ŶĜAS

)

GMSE(ŶĜBS
)

. (49)

Regarding the RGMSE criterion, if RGMSE (YĜBS
, ŶĜAS

) < 1, then it can be seen that
the fitted model by the AS method shows better performance then the BS method.

5. Further Information for Adaptive-Ridge Penalty

The semiparametric AS estimator proposed for the right-censored time series model,
with its adaptive nature, aims for qualified estimations despite the censorship. To approach
the L0-norm given in Equation (23), the most suitable knot locations can be chosen due to
the weighted penalty term. Thus, the model avoids the disadvantages of synthetic data
transformation, which gives higher magnitudes to uncensored observations.

This section is designed to inspect some of the large sample properties of the modified
AS estimator under right-censored data. It should be noted that adaptive ridge penalty
in the setting of regression has been studied by many authors; see for example [25,26,28].
However, the aforementioned studies consider adaptive ridge penalty individually, not as
a part of a semiparametric time series model. This section provides basic information for
the large sample properties of the proposed AS estimator in the context of a semiparametric
time series model.

As previously stated, the AS approximation is a modified version of the P-splines
(penalized BSs) estimator proposed by [31]. Note also that the AS method diverges from
BSs with a significant difference of the L0-norm in the penalty term. The AS estimator is
obtained by an iterative process with determining weights, as expressed in Section 3.2. In
addition, apart from the usage of the AS method in the literature, it is also used for mod-
elling censored time series. For these reasons, we can make several important assumptions.
The large sample properties are written based on the assumptions given below:

Assumption 1. The minimization problem for the semiparametric AS is given in Equation (26).
To make this expression more general, it can be rewritten as follows:

PSS(α; λ) =
n

∑
t = 1

V

{
YtĜ −

p

∑
l = 1

xtl βl −
v

∑
j = 1

αjBj,q(st)

}2

+ λ
q+k+1

∑
j = q+1

‖∆qαj‖τ
, (50)

where ‖∆qαj‖τ
represents the τ-norm of the penalty term. The first assumption is τ → 0 , which

allows approximation to the L0-norm with the acquisition of weights via the iterative process. Oth-
erwise, the L0-norm needs overly complex calculations, which leads to the loss of practicality when
using the method. From our knowledge of the literature, when τ → 0, such as in Equation (26),
the minimization of Equation (50) works by penalizing the non-zero coefficients αj’s, as shown
by [32].

Assumption 2. When α̂AS is examined asymptotically, the objective function of Equation (26)
may not have a global minimum, since it is not clearly convex. However, if we assume that:

Rn =
1
r ∑r

i BiB.′
i → R, (51)

then it is possible to point out some important aspects of asymptotic consistency. Therefore, it should
be presumed that R is a non-negative definite matrix and:

1
q + k + 1

max
1≤i≤r

B′iBi → 0, (52)

where elements of diag(Ri) = 1.
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Assumption 3. BT
j Bj,

(
BT

j Bj

)−1
, and R are assumed to be full rank matrices. Under the

assumptions given above, to see asymptotic consistency of α̂AS and β̂AS, an equation can be
obtained from Equation (50) as follows:

Mn

(
α̂ASn, β̂ASn

)
= ∑n

t = 1
V
{

YtĜ −∑
p
l = 1 xtl β̂ASnl −∑r

j = 1 α̂ASnjBj,q(st)
}2

+λn ∑
q+k+1
i = q+1 ‖∆

qα̂ASni‖τ

, (53)

where
(

α̂ASn, β̂ASn

)
denote the limiting case of the estimators for λn = O(n). Note that

Equation (52) is ensured by following Theorem 1.

Theorem 1. Based on Assumptions 1–3, and λn → λ ≥ 0 , then
(

β̂ASn , α̂ASn

)
d→ argmin(Mn)

where:

Mn

(
β̂ASn , α̂ASn

)
=

[(
β̂ASn α̂ASn

)′
− (β α)′

]′
R
[(

β̂ASn α̂ASn

)′
− (β α)′

]
+

λn ∑
m = q+k+1
i = q+1 ‖∆qαi‖τ .

(54)

Therefore, for optimal λn = O(1), pair (β̂ASn , α̂ASn) can be counted as a consistent AS
estimator of (β, α). In this context, when n→ ∞ then |β̂ASn , α̂ASn | → (β, α) .

For the proof of Theorem 1, see Appendix C.
To clearly indicate the place of Assumptions 1–3 in the estimation process, the follow-

ing explanations are given for each assumption.

• Assumption 1 is independent from the data. We assume that to provide a practical
solution when minimizing Equation (50). Therefore, in both empirical and real data
studies, this assumption does not impose anything to the dataset, but it is necessary to
reduce the computational complexity.

• In real data studies, to ensure Assumption 2, “B” matrix obtained by using the non-

parametric covariate needs to have independent columns. Because
(

B
′
B
)

should be

identifiable and avoid the ill-posed problem,
(

B
′
B
)

must be a full-ranked matrix.

• Assumption 3 confirms Assumption 2. Thus, it can be seen that asymptotic consistency
can be confirmed by Assumption 3. From that it can be said that Assumption 3 is
indirectly depended on the dataset.

5.1. Asymptotic Distribution and Consistency of the Proposed Estimator

In this section, the estimate of parametric component β̂AS is inspected in terms of
asymptotic consistency and asymptotic distribution.

Assume the following regularity conditions:

(i) Fn = n−1
(

XT
i V−A

)
Xi → F for non-negative matrix F;

(ii) n−1 max
1≤t≤n

(
XT

i V−A
)

Xi → 0;

(iii) Autoregressive errors εt’s given in Equation (2) are stationary with independent
and identically distributed random error terms ut’s that have zero mean and finite
variance 0 < σ2 < ∞;

(iv) F−1
n = n−1

[(
XT

i V−A
)

Xi

]−1
exists.

Here, condition (ii) indicates that the diagonal elements of F and Fn are identical
and one, because the covariates are scaled. To obtain the asymptotic distribution of β̂AS,
“nearly-singular” designs are performed due to τ → 0 for Fn. Thus, it can be ensured
that Fn → F asymptotically. On the other hand, Fn and F are assumed as non-singular in
Section 5.1.
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To show the consistency and asymptotic normality of the semiparametric AS estimator
when conditions (i), (ii), and (iii) are ensured with non-singular F, first the case of τ ≥ 1 is
considered, followed by the case of τ < 1.

Let β̂ASn be an asymptotic estimator. The consistency of β̂ASn can be reached by using
following minimization function:

ψn

(
β̂ASn , f̂ (st)

)
= n−1 ∑n

t = 1

[
Yt − Xtβ̂ASn − f̂ (st)

]2
+ λnn−1 ∑p

j = 1

∣∣∣β̂(j)ASn

∣∣∣τ . (55)

The following theorem shows the consistency of β̂ASn for validated additional as-
sumption λn = O(n).

Theorem 2. Assume that F is non-singular, f̂ (st) behaves stable, and λnn−1 → λ0 ≥ 0 . It can
then be said that as n→ ∞ :

β̂ASn
d→ β, (56)

where β̂ASn is a consistent estimator of β. The proofs of this theorem are given in Appendix D. For
λn = O(n), argmin(ψ) = β and therefore β̂ASn is a consistent estimator.

It should be emphasized that the consistency of β̂ASn is sufficient to show that
λn = O(n). However, this depends on the magnitude of growth of λn. When λn
grows more slowly, then a limiting distribution

√
n
(
β̂ASn −β

)
exists. It is clear from

Theorem 2 that the mean of the limiting distribution of
√

n
(
β̂ASn −β

)
converges to zero

for the consistency of β̂ASn . In addition, its asymptotic variance can be obtained based on
conditions (i) and (iv) as σ2F−1. Accordingly, the asymptotic distribution of the semipara-
metric AS estimator is written as:

θ =
√

n
(
β̂ASn −β

) d→ N
[
0, σ2F−1

]
. (57)

However, the limiting distribution depends on whether τ < 1 or τ ≥ 1. In the context
of this paper, Theorem 3 is given for the limiting distribution of β̂ASn when τ < 1.

Theorem 3. Assume that τ < 1 if λn/n
τ
2 → λ0 ≥ 0 . Then:

θ =
√

n
(

β̂ASn − β
)

d→ argmin(ξ), (58)

where ξ(θ) = −2θT F + θTFθ+ λ0 ∑
p
j = 1 ‖θj‖τ I

(
β j = 0

)
. The proofs of Theorem 3 are given

in Appendix E.

6. Simulation Study

In this section, a simulation study was conducted to inspect the finite-sample behaviors
and performances of the two semiparametric estimators

(
α̂BS, β̂BS

)
and

(
α̂AS, β̂AS

)
under

right-censored time series. These estimators were then compared through the quality
measurements given in Section 4. The simulation scenarios are designed as follows:

(a) We use the model Zt = Xtβ+ f (st) + εt, t = 1, 2, . . . , n to generate datasets in the
simulation experiments.

(b) The unknown smooth regression function f (st) is constructed by combining the functions{
Sj, j = 1, . . . , 5

}
that denote seasonal effects on the data, that is, f (st) = U5

j = 1Sj(si),

where Sj(si) = si sin2(si) with si = (i−0.5)
n
5

, i = 1, . . . , (n/5).

(c) The design matrix is generated from a normal distribution: Xt ∼ N
(
µx = 5, σ2

x = 1
)
,

where Xt is the (n× p) dimensional matrix for p = 3. Note also that the distribution
may not be normal, and that one can thus consider a uniform or other distributions.
The vectors of the regression coefficients are β = (3, 0.5,−1).
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(d) The autoregressive error terms are generated from a one-lagged process εt = ρεt−1 +
ut with ρ = 0.5 and ut ∼ N(0, 1).

(e) Thus, as stated in (a), completely observed dependent time series Zt’s are generated
from the sum of the parametric, nonparametric, and error terms using (b), (c), and (d).

(f) To produce the right censored variable Yt, as specified in Equation (3), we generate the
censoring variable Ct from the binomial distribution with proportions or censoring
levels (CLs) at 5%, 20%, and 40%. The Algorithm 2, given below, demonstrates how
the censoring variable is created.

Algorithm 2. Generation of censoring variable Ct.

Input: Completely observed Zt
Output: Right-censored dependent variable Yt
1: For given censoring level (CL), produce δt = I(Zt ≤ Ct) from the binomial distribution
2: for (t in 1 to n)
3: If (δt = 0)
4: while (Zt ≤ Ct)
5: generate Ct ∼ N

(
µZ, σ2

Z
)

6: Else
7: Ct = Zt
8: end (for loop in step 2)
9: for (t in 1 to n)
10: If (Zt ≤ Ct)
11: Yt = Zt
12: Else
13: Yt = Ct
14: end (for loop in Step 9)

(a) To deal with censored observations in Yt obtained with Algorithm 2, we use synthetic
data values YtĜ obtained through the Kaplan and Meier estimator [18], as described
in Equation (6).

(b) AR(1) model is used as a naïve model to estimate the right-censored time-series as
in [1,2]. Thus, the finite sample performance of the introduced methods can be made.

For each CL in the simulation experiments, we generated 1000 random samples for
size n = 50, 100, and 200.

The results of the simulation study were divided into three parts for parametric
components, nonparametric components, and overall model performance. Accordingly,
the outcomes of the estimated models, comparative results, and corresponding comments
are given together in the following tables and figures. To understand the simulated datasets
and the scenarios, examples of some of the simulation configurations are given in Figure 1.
Panel (a) shows the dataset for small sample size and low censorship. Panel (b) is drawn to
show the case when the censoring level is really high. Panels (c)–(d) indicates the cases for
medium and large sample sized data with censoring levels 20% and 40% respectively.

6.1. Assessing the Parametric Component

In this section, the performances of the two methods were compared in terms of the
parametric components of the right-censored semiparametric linear models generated
by the simulation. It should be also noted that in this simulation study, 54 different
configurations were analyzed to provide a broad perspective of the adequacy of each
method. The results from the parametric components in the simulation study are displayed
in Table 1 and Figure 2. Note that bold colored scores indicate the best (minimum) scores.

From the careful inspection of Table 1, it can be demonstrated that the behaviors of the
BS and AS change noticeably in different scenarios. Let us look at low and medium CLs for
n = 50; under these conditions, the BS has remarkable superiority over the AS. This can
be interpreted as the BS fitting the data better when the data’s structure is distorted less by



Entropy 2021, 23, 1586 16 of 26

censorship. However, for CL = 40%, which means the data are heavily censored, the AS
method gives better scores.

As the sample size increases, although the bias and variance values from the methods
are obtained more closely, the AS provides more efficient performance in estimating the
parametric component. Regarding the parametric component, it should be emphasized
that the AS behaves as expected and gives the best scores for cases of heavy censorship.

In general, the best scores for each method can be evaluated in terms of bias and
variance results. When we examined the bias results of the regression coefficients, the
AS method gives the best score in only 12 out of 27 configurations while the BS method
gives the best score in 15. However, regarding the variances, the AS gives the best score
in 18 of 27 configurations, while the BS is superior in only 9 configurations. In Figure 2,
Panels (a–c) shows the calculated biases for each simulation repetition for all cases when
sample size is small, medium, and large.
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Figure 1. Some of the datasets generated using Algorithm 2 including both fully observed and
censored data points for different censoring levels and sample sizes.

Table 1. Estimated regression coefficients from the AS and the B-spline (BS) with values of variance
and bias.

β1 = 3 β2 = 0.5 β3 = −1

Bias(β̂1) Var(β̂1) Bias(β̂2) Var(β̂2) Bias(β̂3) Var(β̂3)

n C.L. AS BS AS BS AS BS AS BS AS BS AS BS

50
5 0.887 0.870 0.936 0.842 0.809 0.786 0.922 0.845 0.867 0.837 0.884 0.804
20 0.852 0.895 1.180 1.290 0.888 0.892 1.210 1.358 0.963 0.949 1.191 1.336
40 0.999 1.172 1.455 1.641 0.916 1.108 1.431 1.657 0.946 1.145 1.453 1.674

100
5 0.510 0.470 0.440 0.425 0.539 0.434 0.433 0.422 0.515 0.467 0.439 0.431
20 0.514 0.610 0.583 0.609 0.538 0.579 0.583 0.609 0.527 0.599 0.590 0.618
40 0.535 0.433 0.619 0.689 0.525 0.622 0.619 0.689 0.535 0.610 0.629 0.692

200
5 0.285 0.271 0.260 0.253 0.290 0.272 0.255 0.255 0.294 0.271 0.252 0.254
20 0.310 0.324 0.333 0.355 0.311 0.300 0.325 0.351 0.304 0.296 0.328 0.353
40 0.314 0.333 0.338 0.352 0.321 0.337 0.332 0.356 0.307 0.336 0.332 0.363

The bolded values indicate the best scores.
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6.2. Evaluating the Nonparametric Component

As in the case of parametric components, we constructed 1000 estimates of the regres-
sion function f (.), which is the nonparametric component of model (1). For each method,
1000 replications were carried out, and the estimated bias, variance and RMSE values were
computed for each estimator. This section is designed to show the simulated results related
to the nonparametric component.

The results in Table 2 showed that the AS method proves its efficiency for the esti-
mation of the nonparametric component when time series data are moderately to heavily
censored. On the other hand, for CL = 5%, the BS method gives better results for all
sample sizes according to our evaluation metrics. One of the main reasons for this is that
the BS adapted to the knots more than the AS. Consequently, when the data points are
manipulated by censorship, these knots force the BS to make inefficient estimates. At
this point, the knot determination of the AS based on the weights given in Equation (24)
diminishes the effect of the censorship. That is why the AS method performs better under
moderately and heavily censored time series data.
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Table 2. Outcomes from the fitted nonparametric components.

Bias(α̂) Var(α̂) RMSE(f, f̂ )

n CLs AS BS AS BS AS BS

50
5 1.085 0.629 0.048 0.022 1.135 0.883

20 1.128 1.498 0.066 0.075 1.099 2.061
40 1.287 2.510 0.079 0.095 2.511 3.127

100
5 0.961 0.851 0.022 0.025 0.824 0.664

20 1.040 1.217 0.030 0.041 1.255 1.779
40 1.070 1.302 0.037 0.070 1.815 2.331

200
5 0.891 0.813 0.009 0.008 0.670 0.435

20 0.928 0.959 0.013 0.021 1.547 1.871
40 0.995 1.070 0.017 0.028 2.397 2.882

The bolded values indicate the best scores.

Figure 3, consisting of four panels (a), (b), (c), and (d), is drawn to illustrate the
performance of the AS and BS methods in nonparametric curve estimation and to present
different simulation configurations. Panel (a) show the estimated curves for small sample
size and medium censoring level. Similarly, Panel (b) shows the case when medium sample
size and high censoring level. Panel (c) indicates the estimated curves for small sample size
and low censoring level. Finally, Panel (d) shows the estimated curves when sample size is
large and censoring level is medium. When panels (a) and (c) are analyzed comparatively,
the effect of the censorship level can be seen. At the first glance, the distortion of both
curves is noticeable. However, the BS method is insufficient to represent censored time
series compared to the AS method. In addition, panel (b) shows that when data are heavily
censored, the BS curve is drawn towards the x = 0 line, due to the presence of zero values
in the synthetic response variable. Finally, panel (d) indicates that although the time series
contains censored data points, the qualities of the estimates for both the AS and BS methods
become better as the sample size increases.
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model shows poor performance, which depends on its parametric and linear structure. 
However, for the large sample size (n = 200), the scores of models obtained are close to 
each other. However, it is clearly seen that the AS and BS methods are much better on the 
estimation of right-censored time series. 

Figure 3. Data points, real regression functions, and curves fitted by two methods. In the legend of the
plots, f(A) and f(B) represent function estimates obtained from the AS and BS methods, respectively.

6.3. Assessing the Performances of Methods

This section involves the results for overall model estimations obtained from the AS
and BS methods. Although results are given for parametric and nonparametric components
in the previous sections, a separate review for the whole model estimation is required for a
healthy comparison. Accordingly, the performance scores for MAPE, MedAE, and GMSE
are given in Table 3, and Figure 4 is drawn to illustrate the RGMSE values.
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Table 3. The values of performances from the AS and BS methods.

MAPE MedAE GMSE

n CLs AS BS AR(1) AS BS AR(1) AS BS AR(1)

50
5 0.166 0.157 0.322 0.419 0.383 0.999 3.119 3.510 4.915

20 0.358 0.348 0.388 0.737 0.896 1.052 4.468 4.920 5.142
40 0.584 0.688 1.980 1.030 1.519 1.971 7.762 9.542 10.751

100
5 0.154 0.186 0.303 0.323 0.320 0.860 1.001 0.928 3.614

20 0.333 0.336 0.365 0.668 0.750 0.914 1.870 1.988 4.147
40 0.514 0.528 1.476 1.025 1.831 1.891 3.663 4.182 6.798

200
5 0.111 0.096 0.283 0.264 0.251 0.717 0.983 0.761 1.935

20 0.312 0.332 0.364 0.552 0.606 0.847 2.065 2.497 3.411
40 0.499 0.508 0.654 1.008 1.086 1.501 2.759 2.816 3.131

The bolded values indicated the best scores.
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When Table 3 is examined, it can be seen that the results obtained for the model
estimates are slightly different from the previous results, as expected. The total error
obtained from the estimation of parametric and nonparametric components is one of the
reasons for this discrepancy. In addition, considering the situations where the two methods
produce extremely similar scores, this difference can be understood better. Note that AR(1)
model shows poor performance, which depends on its parametric and linear structure.
However, for the large sample size (n = 200), the scores of models obtained are close to
each other. However, it is clearly seen that the AS and BS methods are much better on the
estimation of right-censored time series.

As can be seen from the bolded scores, the AS method generally performs better.
From Table 3, it can be seen that the MAPE values obtained by BS are better for n = 50.
However, as mentioned earlier, in this study, the MedAE criterion, which is not frequently
used for time series data, is used to measure the durability of the predictions. When the
scores of this criterion are examined, it is understood that, as stated from the beginning of
the study, the BS method has more successful estimates under low censorship levels, but
the AS method is superior for medium and high censorship levels.

Figure 4 includes the RGMSE scores for both the AS and BS methods that are formed
by the ratio of the GMSE values of each method. In Figure 4, the difference between the
qualities of the estimates is clearly very small for CL = 5%. However, the difference
becomes more significant for CL = 20% and CL = 40%. Note that for CL = 5%, the BS
method gives smaller ratio values, which confirms the results given in Table 3. As stated
before, the AS method is demonstrably superior at higher censorship levels, which can be
seen in Figure 4 for all sample sizes.



Entropy 2021, 23, 1586 20 of 26

7. Real-World Data

This section is designed to show how the newly introduced semiparametric estima-
tor AS and benchmark BS method behave with a real right-censored time series dataset.
For this purpose, we consider unemployment duration data involving the monthly un-
employment period rates years between 2004 and 2019 for Turkey; this dataset is avail-
able at https://ec.europa.eu/eurostat/databrowser/view/UNE_RT_M__custom_163512
7/default/table?lang=en. In the dataset, the last three months of 2004 and the last three
months of 2019 cannot be observed correctly. Therefore, these data points can be censored
from the right by the detection limit zero, because none of the data points are negative
values. Accordingly, the introduced semiparametric methods, AS and BS, can be used
for this time series analysis. In addition, as in the simulation study, the results of the AR
model are given in the following tables. However, different from the simulation study,
AR(2) model was used for the real data study, because the optimal lag values is determined
as lag = 2 from Table 4. Before the modelling procedure, the stationarity of the time
series data was tested with the augmented Dickey–Fuller (ADF) test, the suitable lag is
determined under null hypothesis H0 : yt is non− stationary. The test results are given in
Table 4 below:

Table 4. Augmented Dickey–Fuller (ADF) test results for the stationarity of time series data and the
determination of the appropriate lag.

No. Lag ADF Test Results p-Value

0 −2.61 0.318
1 −3.27 0.077
2 −3.52 0.041
3 −3.33 0.066
4 −3.30 0.072

Bold scores are significant score for the 95% confidence level.

Table 4 shows that the second lag for this time series is suitable for the modelling.
From this information, the semiparametric time series model can be given by:

UEDt = β1UED(t−1) + β2UED(t−2) + f (st) + εt, t = 1, . . . , 186, (59)

where UEDts represent the dependent time series of the unemployment duration ratio,
UED(t−1) and UED(t−2) denote the first and second lags of the dependent series UEDt that

are used as covariates, respectively, st = (1, . . . , n)T denotes the seasonality, and finally,
εt’s are the stationary autoregressive error terms as given in Equation (2). The estimation
of model (6.1) is realized by both the AS and BS methods, and then, results are presented
in Tables 5 and 6 and Figure 5.

Table 5. The performances of the BS and AS methods for the estimation of both parametric and
nonparametric components.

Measurement Bias Variance

AS BS AS BS

β̂1 1.941 2.682 1.272 1.703
β̂2 0.915 1.139 1.562 1.624
α̂ 3.628 4.566 0.067 0.058

The bolded values indicate the best scores.

https://ec.europa.eu/eurostat/databrowser/view/UNE_RT_M__custom_1635127/default/table?lang=en
https://ec.europa.eu/eurostat/databrowser/view/UNE_RT_M__custom_1635127/default/table?lang=en
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Table 6. Scores of performance measures for the AS and BS methods obtained from the whole
model estimation.

Method MAPE MedAE GMSE RGMSE RMSE
(

f,f̂
)

AS 0.623 0.510 1.275 0.824 1.154
BS 1.315 1.166 1.546 1.212 1.385

AR(2) 1.856 4.506 3.702 2.775 -
The bolded values indicate the best scores.
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• As expected, the estimation qualities for both the AS and BS methods change for dif-
ferent CLs and sample sizes. The performances of the methods are affected nega-
tively by increasing CLs, and they give better results for larger sample sizes. This 
claim is seen clearly from Tables 1–3.  

• When unemployment duration data were analyzed, it can be seen that the results 
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tion study. 

Figure 5. Estimated curves for the seasonality f (st) obtained from the AS and BS methods.

Table 5 involves the bias and variance values for estimated regression coefficients

β̂ =
(

β̂1, β̂2
)

and α̂ =
(

α̂1, α̂2, . . . , α̂q+k+1

)T
. Accordingly, the AS method gives smaller

bias and variance values than the BS method regarding β̂. Moreover, the AS method has
better bias values for α̂, but the BS method gives smaller variance values for α̂ than the
AS method. In overview, the AS and BS methods give similar values, because the data
properties are n = 186 and CL = 8.1%. Thus, it can be seen that the results of the
unemployment duration data ensure the simulation outputs.

In addition, it should be noted that the outcomes obtained from estimated model (7.1)
are given in Table 6 with RMSE scores for the estimated nonparametric function f (st).
Upon close inspection, it is obviously seen from the results that the AS method produces
the best scores. It should be emphasized that the largest difference between the methods
regarding performance criteria is in MedAE, which indicates the strength of the AS method
under censorship. Table 6 indicates the results of AR(2) model that are worse than the
results of the other two as in the simulation study. Note that because of the sample size of
the real data of n = 186 which is close to the simulation configurations when n = 200,
scores are relatively close to each other. Figure 5 is given to compare the AS and BS methods
in representing data under censorship.

As can be seen in Figure 5, the estimated curves are quite similar due to the data
properties of a large sample size and a low CL. The effect of synthetic data manipulation is
obvious in the figure with zero values. Like the simulation study, the BS method is affected
by these zero values more than the AS method. The reason for this is that the knots of the
AS method are determined by iteratively calculated weights. Therefore, the optimal knot
sequence diminishes the effect of censorship.

8. Concluding Remarks

This paper demonstrated the estimation of right-censored time series data using a
newly introduced semiparametric AS estimator and making a comparison with the BS
method as a benchmark. The results obtained from both a simulation study and a real data
example proved that the introduced method (AS) achieves the superior modelling of right-
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censored time series data in a semiparametric context. Comparative outcomes also support
that the AS method provides better performance scores over the BS method in most simula-
tion configurations and the real data example. The most important factor in the success of
the AS method is the adaptive nature of the method based on iteratively calculated weights.
In the AS method, weights are responsible for determining and controlling the penalty
term and for dependently obtaining the optimal knot points. Accordingly, our findings
showed that the proposed method provides an advantage in modelling right-censored
time series over the benchmark.

The simulation study examined the performance of the methods in three parts:
the outcomes for the estimated parametric component (Table 1 and Figure 2), the non-
parametric component (Table 2 and Figure 3), and the whole semiparametric model
(Table 3 and Figure 4). The unemployment data estimation was evaluated for bias and
variance (Table 5) using the criteria of MAPE, MedAE, GMSE, and RGMSE (Table 6).
Given the outcomes of the simulation study and the real data example, our general and
detailed conclusions are as follows:

• As expected, the estimation qualities for both the AS and BS methods change for dif-
ferent CLs and sample sizes. The performances of the methods are affected negatively
by increasing CLs, and they give better results for larger sample sizes. This claim is
seen clearly from Tables 1–3.

• When unemployment duration data were analyzed, it can be seen that the results agreed
with the corresponding configuration (n = 200; CL = 20%) of the simulation study.

• One of the striking results of this paper is that, as Tables 1–3 demonstrate, while the AS
method gives worse results at low censorship levels than the BS method, it provides
significantly better results at medium and high censorship levels. This conclusion
proves the claim of the paper, which is that using the AS method reduces the effect of
the data manipulation of synthetic data transformation.

• When all the results obtained from simulation and real data studies were inspected,
the AS method gives better results than the BS method, except in the configurations
for low CLs, which supports the targeted conclusion.

• Unemployment duration data were modelled by the BS and AS methods using two
lagged parametric components and the seasonal effect as a nonparametric component.
Tables 5 and 6 show each method’s scores using four evaluation metrics, which
indicate the superiority of the AS method. Figure 5 shows the estimated curves for
both methods, which are similar. However, the estimated curves show that the AS
method is less affected by zero values of synthetic data and thus gives more satisfying
estimates for the right-censored time series model than the BS method.

Finally, as can be understood from the whole paper, the AS method is superior for
estimating right-censored time series over the BS method in both theory and practice.
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Appendix A

Proof of Lemma 1. Lemma 1 can be ensured based on the common censorship assumption
that Zt and Ct are independent. From that, the proof can be written as follows:

E[YtG|x, s] = E
[

δt Zt
1−G(Zt)

| x, s
]

= E
[

δt Zt
G(Zt)

|x, s
]

= E
[

I(Zt≤Ct)min(Zt ,Ct)

G[min(Zt ,Ct)]
|x, s

]
=

E
[

I(Zt ≤ Ct)
Zt

G(Zt)
|x, s

]
= E

[
E
[

Zt
G(Zt)

I(Zt ≤ Ct)|x, s
]
|x, s

]
= E

[
Zt

G(Zt)
G(Zt)|x, s

]
=

E[Zt|x, s] = xtβ+ f (st)

(A1)

Thus, Lemma 1 is proven. Here, G(.) = 1− G(.). Generally, distribution G(.) is unknown.
Therefore, its Kaplan–Meier estimator Ĝ(.) is used instead of G(.), which is given in
Equation (5). �

Appendix B

Derivations of Equations (29) and (30).
To show the derivations of Equations (29) and (30), two equations obtained from

Equation (27) are written as:(
X
′
VX
)
β+ X

′
VBα = X

′
VYĜ B′VXβ+

(
B
′
VB + λK

)
α = B

′
VYĜ (A2)

From Equation (B1), α̂AS can be acquired by the algebraic operations:(
B
′
VB + λK

)
α = B

′
VYĜ − B

′
VXβ

(
B
′
VB + λK

)
α = B′V

(
YĜ − Xβ

)
. (A3)

Thus, if β is replaced by β̂AS, then α̂AS can be written as:

α̂AS =
[
B
′
VB + λK

]−1
B
′
V
′(

YĜ − Xβ̂AS
)
. (A4)

Therefore, Equation (27) can be derived. Accordingly, the derivation of β̂AS can be obtained
by using (B1):(

X
′
VX
)
β+ X

′
VB
[[

B
′
VB + λK

]−1
B
′
V
′(

YĜ − Xβ
)]

= X
′
VYĜ,(

X
′
VX
)
β+ X

′
VB
[
B
′
VB + λK

]−1
B
′
V
′
YĜ − X

′
VB
[
B
′
VB + λK

]−1
B
′
V
′
Xβ = X

′
VYĜ,[(

X
′
VX
)
− X

′
VB
[
B
′
VB + λK

]−1
B
′
V
′
X
]
β = X

′
VYĜ − X

′
VB
[
B
′
VB + λK

]−1
B
′
V
′
YĜ.

(A5)

To simplify the calculations, let AAS = X
′
VB
[
B
′
VB + λK

]−1
B
′
V
′
. Therefore,[(

X
′
V−AAS

)
X
]
β =

(
X
′ −AAS

)
VYĜ, β̂AS = (

(
X
′
V−AAS)X

)−1(
X
′ −AAS

)
VYĜ. (A6)

The derivations of Equations (29) and (30) are thus completed.

https://ec.europa.eu/eurostat/databrowser/view/UNE_RT_M__custom_1635127/default/table?lang=en
https://ec.europa.eu/eurostat/databrowser/view/UNE_RT_M__custom_1635127/default/table?lang=en
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Appendix C

Proof of Theorem 1. To validate the Theorem 1, necessary equations are given by:

sup
α̂ASn∈Q

∣∣∣Mn(α̂n)−M(α̂ASn)− σ2
ε

∣∣∣ p→ 0, (A7)

where σ2
ε is the variance of the model defined in Equation (7), Q is a compact set in a metric

space and by using Equations (54)–(57), it can be seen that:

|α̂ASn| → α, as n→ ∞. (A8)

See [33] for more details. �

Appendix D

Proof of Theorem 2. For ensured regularity conditions (i)–(iv), plim(β̂ASn) is written
as follows:

plim(β̂ASn ) = β+ plim(n−1[(X′V−AAS)X]−1(X′V−AAS)f) + plim(n−1[(X′V−
AAS)X]−1(X′V−AAS)ε)

plim(β̂ASn ) = β+ plim
{

n−1 [(X′V−AAS)X]−1}plim
{

n−1(X′V−AAS)[f + ε]
}

.
(A9)

Because f can be counted as a nuisance parameter, and from assumptions (i) and (ii),
plim

{
n−1 [(X′V−AAS)X

]−1
}

= F−1
n and plim

{
n−1(X′V−AAS)[f + ε]

}
= o(1). There-

fore, the expression at the right side in (D1) goes to zero. Thus, from that, it is obtained that:

argmin(ψn)
p→ argmin(ψ), β̂ASn

d→ β. (A10)

Note that the results obtained above are for τ ≥ 1, which means ψn has a convex structure
(see [34,35]). However, the proposed AS estimator includes the case of τ < 1, so that ψn is
not convex. In this matter, Equation (D2) is processed differently as:

ψn

(
β̂ASn , f̂ (st)

)
> n−1

n

∑
t = 1

[
Yt − Xtβ̂ASn − f̂ (st)

]2
= ψ

(0)
n

(
β̂ASn , f̂ (st)

)
(A11)

Note that Equation (D3) is validated for all β̂ASn . Moreover, argmin(ψn) = Op(1), because(
ψ
(0)
n

)
= Op(1). �

Appendix E

Proof of Theorem 3. To show the proof of Theorem 3, due to the non-convex structure of
τ < 1, some complex expressions are needed for minimization criterion ξ. These are given by:

ξn(θ) = ∑n
t = 1

[(
εt −

θTXt

n−1

)2

− εt

]
+ λn ∑p

j = 1

[∣∣∣∣β j +
θj

n−1

∣∣∣∣τ − ∣∣β j
∣∣τ]. (A12)

Due to λn = O
(

nτ/2
)

= o
(√

n
)
, the following expression is obtained similar to Theorem 3:

λn ∑p
j = 1

[∣∣∣∣β j +
θj

n−1

∣∣∣∣τ − ∣∣β j
∣∣τ] d→ λ0 ∑p

j = 1

∣∣θj
∣∣τI
(

β j = 0
)
. (A13)

Then the convergence is realized as follows:

argmin(ξn)
d→ argmin(ξ). (A14)
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Thus, the proof is finished. It is important to note that, for τ < 1, the non-zero regression
coefficients of the model can be estimated without asymptotic bias if zero ones are shrunk
to the zero with a positive probability. �
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