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ABSTRACT The expansion of power systems over large geographical areas renders centralized processing
inefficient. Therefore, the distributed operation is increasingly adopted. This work introduces a new type of
attack against distributed state estimation of power systems, which operates on inter-area boundary buses.
We show that the developed attack can circumvent existing robust state estimators and the convergence-based
detection approaches. Afterward, we carefully design a deep learning-based cyber-anomaly detection mech-
anism to detect such attacks. Simulations conducted on the IEEE 14-bus system reveal that the developed
framework can obtain a very high detection accuracy. Moreover, experimental results indicate that the
proposed detector surpasses current machine learning-based detection methods.

INDEX TERMS Deep learning, cyber-attacks, distributed state estimation, smart grids.

I. INTRODUCTION
Expansion of power systems over large geographical areas
has made it challenging to implement centralized processing
methods [1]. Extending the power system to a wide area
requires a complex and extensive network for centralized
operation and near real-time processing of the collected mea-
surements [2], [3]. This has accelerated the move towards
distributed operation [4]. We specifically focus on distributed
state estimation (DSE) in this work. In DSE, the grid is
divided into many smaller areas, and each area indepen-
dently collects measurements from its nodes and estimates
the per-area system state. The power grid’s overall state is
computed by exchanging the per-area system state through
an iterative process [5]. Given the growing interest in DSE,
understanding its potential vulnerabilities is essential. Cyber-
attacks against DSE can cause serious consequences, e.g.,
cascading failures [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jahangir Hossain .

A. RELATED WORK
A data integrity attack against the DSE was proposed in [6]
wherein the communication infrastructure used to convey
information between different areas is compromised. Authors
of [7] proposed a data integrity attack on the generation units
and the controllable loads. The attacker requires access to
sensors, actuators, and unsecured loads in only one area of
a distributed network. Common cyber vulnerabilities in dis-
tributed power systems were discussed in [8] and the impact
of cyber attacks on microgrids was presented. Reference [9]
focused on time delay attacks against DSE to destabilize the
system.

Several works have been done to detect the cyber-attacks
on DSE to protect them against such attacks. [6] proposes
a denial of service (DoS) attack detection technique based
on the development of mean squared disagreement across
areas and a mitigation mechanism based on individual areas’
opinions about the attack point. The paper [10] focuses on
the distributed state estimation security against DoS attacks.
In [11], the distributed resilient filtering challenge for a dis-
tributed power system subject to DoS attacks is addressed.
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False data injection attack (FDIA) [28] is the most commonly
used attack in the cybersecurity of the power systems. In this
type of attack, some values are added to the measurement
vector so that the bad data detection (BDD) algorithm does
not differentiate between normal and manipulated values.
A novel DSE approach in networked DC microgrids is pre-
sented in [12] to detect the FDIA in the microgrid control
network. In the context of DCmicrogrids, a Kullback-Liebler
divergence-based criterion is proposed in [13] to detect the
attacks to control the unit of distributed energy resource.
A series of papers in this area carried out state estimation
and detection together [14]–[18]. In [14], a fully distributed
dynamic state estimation algorithm using phasor measure-
ments unit (PMU) data, which is jointly designed with a novel
attack detection scheme to limit communication overhead,
is presented. The authors of [15] addressed the challenge of
joint attack detection and state estimation by using hybrid
Bernoulli random set densities to aggregate prior information
about signal attacks and system status. The subject of [16] is
distributed anomaly identification and reliable estimation of
networked cyber-physical systems against FDIAs and jam-
ming attacks. A secure DSE algorithm via consensus-based
distributed non-convex optimization protocols is developed
in [17]. In [18], an optimal filter and graph theory have been
used to develop a distributed state estimation algorithm for
a power distribution system integrating several synchronous
generators, which have been modeled as a state-space frame-
work. In [19], authors proposed a penalty-based adaptive
estimating approach for distributed power systems under
FDIAs that can dynamically modify the penalty parameter
depending on the area and boundary bus errors.The authors
in [20] have used a nonlinear input observer to propose a
distributed detection method against FDIAs. Reference [21]
compares centralized and decentralized detection methods.

In recent years machine learning has become widely used
in all areas, including attack detection algorithms. As a
well-known work, the authors in [22] recontextualized the
intrusion identification issue as a machine learning issue
and analyzed the performance of various learning meth-
ods for various attack scenarios. In [23], a detector based
on the generalized likelihood ratio is established for cyber-
anomalies. [24] proposes an unsupervised method for the
detection of distributed false data injection attacks. However,
it could be used offline and could not be utilized in real-time
mode for power systems.

B. PROBLEM MOTIVATION & CONTRIBUTIONS
Existing work neglect that in an interconnected power sys-
tem composed of several control areas, boundary buses lose
some of the redundant measurements since each area works
more independently than in the centralized mode. This can
negatively affect the security of boundary buses leading to
cyber-attacks. In this work, we take advantage of the reduced
redundancy to propose a coordinated FDIA to disrupt the
DSE. We consider an attacker who can manipulate mea-
surements of different areas simultaneously. Specifically,

by focusing on the boundary buses of neighboring areas,
we introduce a distributed FDIA on the DSE. In the proposed
attack, the attacker targets one of the boundary buses and
injects false data into all measurements of that bus, causing
an error in its estimated state. It is shown that the attack
must be conducted separately in each area but simultane-
ously to bypass BDD methods implemented in a distributed
manner such as the robust DSE [5]. Moreover, it can be
proved that if the injected measurements of each area are
equal, the attack can also circumvent the convergence-based
detection methods (e.g. [6]) (see the illustrative example in
Section III-B). Moreover, to detect the attack, we utilize deep
learning techniques to develop a real-time intelligent attack
detection that captures the temporal correlation in power sys-
tems between consecutive time slots to differentiatemalicious
measurements from the normal ones. The main contributions
of this paper are listed as follows.

1) We design a distributed FDIA that can bypass the
current robust distributed estimator as well as the
convergence-based detection method.

2) We then formulate a deep learning-based algorithm
to capture the temporal correlation in power system
measurements and detect the introduced attack.

3) We provide a comparison between the conventional
classification algorithms and the carefully designed
framework.

The rest of the paper is organized as follows: The model of
multi-area power system and the manner of state estimation
carried out on it are explained in Section II. Section III
presents the conducted distributed FDI attack and how it
circumvents existing detectors. A deep learning-based frame-
work is developed in Section IV to detect the proposed attack.
Section V discusses the numerical results of the attack and the
detection method, and Section VI concludes the paper.

II. SYSTEM MODEL
The power system model used in this paper, along with the
distributed state estimation (DSE), is described in this section.
Assume an interconnected power grid with K area where
in each area, a nonlinear connection between Mk samples
denoted by zk and Nk states denoted by xk exists as shown
in (1). In this equation, hk (.) is the function vector that defines
interconnections between measurements and system states,
and wk represents the vector of measurement error of area k .

zk = hk (xk )+ wk (1)

If the estimation method vector of area k is repre-
sented by fk (xk ; zk ,hk (xk )), the following optimization prob-
lem can be solved to estimate the states of each area
|s|xk fk (xk ; zk ,hk (xk )), that could be expanded to estimate
all network state variables in a centralized mode as fol-

lows. |s|x
K∑
k=1

fk (x) The boundary buses are buses that belong

to more than one area. In other words, their state vari-
ables fall into the set of state variables of at least two
areas, which we call neighboring areas. These areas are
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included in x of (II). It is essential to gain a dependency
on boundary busses in order to achieve a distributed state
estimation. Neighboring areas must thus share the state
variable of their boundary buses. A constraint for bound-
ary buses of each of the two adjacent areas is estab-
lished, and system states of both adjacent areas are made
equivalent to reaching the following optimization problem.

|s|xk
K∑
k=1

fk (xk )xk,k ′ = xk ′,k , ∀k ′ ∈ N k ,∀k, where xk,k ′ (or

xk ′,k ) denotes the system state-variable vector shared by area
k and k ′ andNk represents the adjacent areas of region k . xk,b
denotes the state-variable vector shared between area k and
its neighbouring areas. In order to have a fully DSE, the opti-
mization problem (II) should be arranged so that techniques
for distributed optimization problems like the alternating
direction method of multipliers (ADMM) [26] can be used.
For doing this, Lagrange multipliers vk,k ′ are proposed for
the constraints of (II) [5]. To solve this, an iterative strategy
is introduced as follows.

x(t+1)k = (H(t)T
k H(t)

k + cDk )−1(H
(t)T
k zk + cDkp

(t)
k ) (2a)

s(t+1)k = Uxk .
∑
∀k ′∈Nk

Yk,k ′ .x
(t+1)
k ′,k (2b)

p(t+1)k = p(t)k + s(t+1)k −
1
2
(Yk,b.YT

k,b.x
(t)
k − s(t)k ), (2c)

where c > 0 is a predetermined value, H(t)
k is the Jacobian of

function vector fk , Dk represents a diagonal matrix in which
element di,i counts the regions sharing state i of xk , Uxk is a
diagonal matrix in which element ui,i is inverse of di,i, and
non-diagonal elements are zero. In addition,Yk,k ′ defines the
dependencies between xk and xk,k ′ and yi,j element of Yk,k ′

equals to one if state variable i of xk conforms to the element
j of xk,k ′ ; otherwise, yi,j will be zero. Similarly,Yk,b (orYb,k )
is a matrix that depicts the relationships between xk and xk,b
(xb,k ) vectors. Elements of matrix Yk,b are similar to those
of Yk,k ′ .

The DSE converges when the difference between the pre-
dicted values of two consecutive iterations of the ADMM
algorithm is less than a predetermined threshold. Then we
have ∀k ∈ K, ‖x(t

∗
+1)

k − x(t
∗)

k ‖∞ ≤ ε when t∗ + 1 is
the stopping iteration and ε is known as the convergence
threshold. For more information about the application of
the ADMM method on nonlinear models of power systems,
interested readers can refer to [27].

III. ATTACK DESCRIPTION
This section begins with a quick overview of the detection
methods for attacks on the distributed estimators is presented.
After that, the proposed distributed false data injection (FDI)
attack is explained.

A. CYBERSECURITY OF DSE
Amongst attacks on DSE, the technique presented in [6]
is chosen for description and analysis. The intruder in [6],
by hampering the DSE from converging, reaches his or her

goal for disabling theDSE. For this, the intruder compromises
the telecommunications systems of zone ka ∈ K so that
he/she can manipulate some of the inputs to the DSE (e.g.
system states x(t)k,ka and x(t)ka,k exchanged among ka and its

neighboring areas k ∈ Nka ). Vector a
(t)
k,ka (equals to a

(t)
ka,k ) rep-

resents the attack on the state variables exchanged between
areas in k ∈ Nka and area ka (specifically, from ka to set k) at
iteration t . Then, the consequent debased state variables can
be denoted as a vector x̃(t)k,ka

x̃(t)k,ka = x(t)k,ka + a(t)k,ka . (3)

As stated in [26, Appendix A, p. 106-110], ADMM con-
verges when the following conditions are met: ∀k ∈ K,
fk (xk ; zk ,hk (xk )) function be acceptable, convex, closed and
also the augmented Lagrangian

L =
∑
∀k∈K

fk (xk )
+

∑
k ′∈Nk

(
vTk,k ′ (x

(t)
k,k ′ − x(t)k ′,k )+ c‖

x(t)k,k ′ − x(t)k ′,k
2

‖
2
2

)
(4)

is possessed a saddle point, where ‖
x(t)
k,k′
−x(t)

k′,k
2 ‖

2
2 → 0 as

t → ∞. By considering the conditions, when the iteration
counter t is increased and the DSE gets closer to the saddle
point (i.e. solution), it is expected that the difference in the
systems states of different regions k and k ′ (and all the
other neighbors) is reduced. Regarding this, a convergence-
based algorithm to catch cyber-anomalies on the DSE can be
extended by calculating mean squared disagreement (MSD)
for regions k and k ′ at the tth step as follows

d (t)k,k ′ =
‖(x(t)k,k ′ − x(t)k ′,k )/2‖

2
2∣∣∣x(t)k,k ′ ∣∣∣ , (5)

in which, number of component in x(t)k,k ′ vector is represented

by
∣∣∣x(t)k,k ′ ∣∣∣. When the ADMM convergence requirements are

met, a convergence issue (an attack) occurs, but for large
values of t , there exists some k and k ′ ∈ Nk where sup{d

(t ′)
k,k ′ :

t ′ > t} > 0, ‖(x(t+1)k − x(t)k )‖∞ > ε, and @n ∈ N so that

sup{d (t
′)

k,k ′ : t
′ > t} > sup{d (t

′)
k,k ′ : t

′ > t + n}, (6)

then there is a convergence issue (an attack).

B. THE PROPOSED DISTRIBUTED FDIA
This subsection presents the theoretical explanation of the
developed distributed FDIA. The attack vector is designed to
prevent the convergence of DSE to the correct estimation. The
goal is accomplished utilizing neighboring areas’ boundary
buses. The FDIA proposed in this section is implemented
such that, in addition to the centralized ones, it passes decen-
tralized bad data detectors. Meanwhile, it can be unidenti-
fiable after applying the convergence-based attack detection
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methods. The attacker is expected to have full information on
the power system which means that ∀k ∈ K areas, measure-
ments vector zk and the measurements to states mapping vec-
tor function hk (xk ) are known to the attacker. To implement a
nonlinear attack, the attacker must know the estimated value
of each state variable. Let us assume that the set of boundary
buses targeted by the attacker is represented by Ba. This set is
the joint of all neighbors shown as Ka. If the attacker aims to
orchestrate an attack by injecting a value into the target buses’
state, she/he must simultaneously launch Ka = |Ka| separate
FDI attacks (one attack in each area). More specifically, if the
boundary buses targeted by the attacker via area i ∈ Ka are
represented as xa and the vector added to the corresponding
system state vectors is denoted as ci, ai represents the attack
vector injected into the measurements of area i. Using this
definition, x̂i denotes the estimated values of state variables
of area i under attack. The distributed FDIA can, therefore,
be carried out as the following, which is consistent with
the [29]

ai = hi(x̂i + ci)− hi(x̂i), ∀i ∈ Ka (7)

zai = zi + ai, ∀i ∈ Ka. (8)

It must be emphasized that while in each area i, the vectors
ai are injected separately to the vector of measurements zi,
this happens simultaneously and on a unified observation of
samples. If procedures of [29] are followed, it can be proved
that the proposed FDIA can pass the bad data detectors. For
this purpose, first and foremost, a look at the robust DSE [5] is
taken as a distinguished instance of detectors of these types.
For each area k ∈ K, unknown vectors ok are required to
denote possible bad data in zk . In each area k , ok variable vec-
tors alter the estimation function fk (xk , ok ; zk ,hk (xk )); since
these vectors only belong to region k (not shared with the
neighbors) and conform to themeasurements, zk−ok notation
is used for them in DSE equations. Two other equations are
required to update ok in the robust DSE as follows [5].

o(t+1)k =

[
zk −H(t)

k x(t+1)k

]+
λ

(9)
x + λ x < −λ
0 | x |≤ λ
x − λ x > λ

(10)

Variable x in (10) also equals to zk −H(t)
k x(t+1)k . After refor-

mulating (1) as explained before, we have

zk = hk (xk )+ ok + wk , (11)

which is solved by using the iterative normal equationmethod
with the first order optimality condition

−2H(T )
k (x̂k )(zk − ok − hk (x̂k )), (12)

in whichHk is the Jacobian matrix derived from the function
vector hk that its m× nth entry is equal to ∂hm

∂xn
.

After the attack was carried out, the unchanged value of oi
vector holds if the following is met:∣∣zi − hi(x̂i)

∣∣ = ∣∣zai − hai (x̂ai )
∣∣ . (13)

So, with replacing (7) and (8) in the equation (13) and some
simplifications, we have:∣∣zi − hi(x̂i)

∣∣
=
∣∣zai − hai (x̂ai )

∣∣⇒∣∣zi − oi − hi(x̂i)
∣∣

=
∣∣zai − oai − hai (x̂ai )

∣∣
=
∣∣zi + ai − oai − hi(x̂i + ci)

∣∣
=
∣∣zi + (hi(x̂i + ci)− hi(x̂i))− oai − hi(x̂i + ci)

∣∣⇒
|oi| =

∣∣oai ∣∣ (14)

where attacked oi is represented by oai . Above equations
demonstrate that ok will not alter after the attack, so the FDIA
proposed here can circumvent the robust DSE. However,
additional conditions explained in [6] are required for this.
These conditions are as follows.
Proposition: Assume that the distributed FDI attack

described above is carried out successfully. When the dis-
tance between the items with non-zero values of ci vectors,
corresponding to the system states of buses in Ba, is lower
than the predetermined value ε, the FDIA can circumvent the
convergence-based detection technique proposed in [6].

Proof: Let us show the MSD between every two regions
i and j ofKa in iteration t prior to the conduction of attack as:

d (t)i,j =
‖(x(t)i,j − x(t)j,i )/2‖

2
2

|Ba|
. (15)

Now suppose an attack is injected in such a way that the
distance between the non-zero elements of ci and cj for every
distinct {i, j} ∈ Ka is lower than ε (i.e. the predetermined
threshold of convergence). Thus, after the attack, the MSD
equation could be shown as

d (t)i,j =

∣∣∣∣∣∣((x(t)i,j + ci)− (x(t)j,i + cj)
)
/2
∣∣∣∣∣∣2
2

|Ba|

=

∣∣∣∣∣∣((x(t)i,j − x(t)j,i )+ (ci − cj)
)
/2
∣∣∣∣∣∣2
2

|Ba|
, (16)

accordingly, if for each pair {i, j} ∈ Ka, x
(t)
i,j and x(t)j,i rep-

resenting xa satisfy the MSD conditions before the FDIA,
then considering (ci − cj) < ε, d (t)i,j value remains unchanged
after this attack and consequently, FDIA can get through the
method proposed in [6]. A point needs to be made clear here:
∀i ∈ Ka, it is not required that the non-zero elements of ci
vectors have the same value, but only, the distance between
the elements of ci vectors, ∀i ∈ Ka which correspond to a
determined bus in Ba have to be lower than ε. As one will
see in Section V, 10% incremental and decremental attacks
are simulated.
Illustrative Example: Assume that z1 and z2, the normal

measurements for areas 1 and 2, respectively, bypass the
distributed BDD (robust DSE) in [5]. The manipulated mea-
surements za1 = z1 + a1 and za2 = z2 + a2 for the
areas 1 and 2, respectively, can bypass the distributed BDD if
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FIGURE 1. The IEEE 14-bus test system divided into 4 zones [5].

a1 = h1(x̂1 + c1) − h1(x̂1) and a2 = h2(x̂2 + c2) − h2(x̂2),
in which x̂1 and x̂2 are the estimated values of state vectors of
area 1 and 2, respectively. Now, if the distance between the
components of vectors c1 and c2 be lower than the threshold
value introduced in [6], the FDIA will get through the detec-
tionmethod proposed in [6]. This description can be extended
to boundary buses with over two adjacent areas.

For the bus number 5 in the system presented in Fig. 1 and
for attack size α, c1 and c2 are vectors of size 6 × 1 and
12× 1 where the non-zero vectors relevant to bus number
5 equal to α. Vector a1 has size 10× 1 where its components
representing the voltage value of bus number 5 and line
currents (1,5) and (2,5) are not zero. In addition, a2 is a
14× 1 vector which its elements corresponding to the line
current (4,5) is non-zero. The size of other vectors of test
system are brought in Table 1. If we obtain the average of esti-
mates, the distance between the estimated values for the volt-
age of bus 5 calculated based on area 1 is 1.062018326 and
through area 2 is 1.062018324which is much lower than the ε
in [5] (10−3). This case is also observed for the voltage angle
of 5th bus over the zones 1 (0.109613) and 2 (0.109614).

IV. DEEP LEARNING-BASE DETECTION METHOD
Decentralized bad data detection methods are shown vulner-
able to the proposed distributed FDIA based on section II.
The issue with the state estimation and convergence-based
detection methods is that a power system’s temporal pattern

is not observed and depends only on the specified topology
and measurements. Therefore, if a detection method can
be designed, which can predict based on the measurement
history, it can not be easily circumvented. Recurrent neural
networks (RNNs) offer such potentiality. RNN is an ideal
candidate because of its established ability to learn contextual
connections in terms of its success in machine translation and
speech recognition [30]. This section summarizes several key
ideas for RNNs and long short-term memory (LSTM) block
structure.

A. THE LSTM MODEL
Compared to conventional feedforward neural networks
assuming inputs/outputs are mutually independent, RNNs are
a particular type of neural networks that use sequential infor-
mation to forecast the output [30]. The temporal correlations
between previous and current knowledge can be defined in
RNN models. This implies that, with the issue of time series,
the decision taken by the RNN at stage t − 1 could have an
impact on the decision taken at a later time step t . This feature
of RNNs is ideal since there is a temporal correlation in
power systems between consecutive time slots. Utilizing this
characteristic, in this section, a real-time FDIA identification
mechanism is proposed using recent advances in RNNs.

RNNs are trained by Backpropagation Through Time
(BPTT) Algorithm by adjusting the weights of the net-
work [31]. BPTT expands the Backpropagation Learning
(BPL) Algorithm over a time series in which the gradient
of each output is calculated by both current and prior steps.
However, RNN is limited in learning long-term dependency
due to gradient loss or explosion problems, as the gradients
back propagated over certain steps [32], [33]. In order to
avoid the vanishing gradient and allowRNN to learn the long-
term dependency, a variant of RNN known as long short-term
memory (LSTM) architecture has been introduced by [34].
It has been the most effective implementation of the RNN and
has achieved tremendous prominence in many subsequent
applications and usually outperforms the conventional RNNs.

Reference [35] has carried out an in-depth review of
LSTM’s overall structure and recent development. We follow
a naming convention identical to [35] to present the idea of
the LSTM briefly. To remember long-time temporal depen-
dencies, LSTM describes and retains an internal memory cell
state C during the whole life cycle as the most important
LSTM system component. Besides the memory cell state, the
LSTM architecture also defines input node gc, input gate ig,
output gate og, and forget gate fg. The following equations
give the formulations of an LSTM block:

gc(t) = φ(WgqTS(t)+Wghh(t − 1)+ bg) (17)

ig(t) = σ (WiqTS(t)+Wihh(t − 1)+ bi) (18)

fg(t) = σ (WfqTS(t)+Wfhh(t − 1)+ bf ) (19)

og(t) = σ (WoqTS(t)+Wohh(t − 1)+ bo) (20)

C(t) = gc(t)� ig(t)+ C(t − 1)� fg(t) (21)

h(t) = φ(C(t))� og(t) (22)
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TABLE 1. The used vectors in the illustrative example.

where TS(t) is input sequence for an LSTM at time point
t; Wgq, Wiq, Wfq, Woq, Wgh, Wih, Wfh, Woh indicate the
correlationweight matrices between the corresponding inputs
of the network activation functions; h(t) displays the LSTM
module outputs at step t; � represents element-wise multi-
plication; bg, bi, bf , and bo are biases of corresponding nodes
and gates; φ(x) indicates the tanh function, and σ (x) is the
sigmoid activation function.

B. THE LSTM BASED ATTACK DETECTOR
In a power system, measurements and state vectors could
be classified as long temporal sequences. Therefore, in the
proposed FDIA detector, LSTM architecture is adopted to
carefully design a real-time deep learning-based attack detec-
tion framework. Specifically, the proposed detection mecha-
nism works as a sequence classifier to discriminate attacks
from normal measurements by learning the temporal data
correlation of a sequence of input data. In this paper, system
states are selected as the inputs to our attack detector. This
means that we used a minimal set of features to find attacks.
Given a set of samples S and labels Y (normal versus attack),
the proposed method’s objective is developing a learning
function S → Y that maps the feature to its correspond-
ing label and classifying the measurements into two classes,
normal and tampered. Therefore, the output of the proposed
FDIA detector is as follows:

yi =

{
1, FDIA in the input data
0, otherwise

. (23)

To carefully develop an LSTM based FDIA detector,
we need to meticulously tune its hyper-parameters, namely,
the input layer’s number of neurons, number of LSTM hidden
layer(s), number of fully-connected (dense) layers, and the
number of neurons in the output layer, to obtain an acceptable
attack detection accuracy. The structure of the employed
model for constructing attack detection is shown in Fig. 2.
The input layer is in charge of obtaining observations from the
dataset and delivering them to the first hidden layer for anal-
ysis. Non-linear relationships between data are represented
in the LSTM hidden layers. To properly classify a system
with increasingly intricate relationships, it is necessary to
add more hidden layers. The dense layers take data from the
previous hidden layer and calculate the likelihood of samples
belonging to each class. Lastly, the output layer gets the prob-
abilities of the final fully-connected (FC) layer and assigns
samples labels. Based on observations from many experi-
ments, the constructedmodel comprises one Dense layer with

11 neurons, three LSTMhidden layers, and 28 neurons for the
input layer.

Other parameters are required to be tuned in this LSTM
model to ensure that FDIA detector achieves a promis-
ing detection accuracy. These parameters are dropout and
sequence length. Dropout is a regularization method for neu-
ral networks to minimize the risk of overfitting [36]. The
sequence length specifies the number of samples that should
precede the existing observation when it is entered into the
LSTM. In the constructed LSTM, dropout is applied at a 40%
ratio and the sequence length is set to 3 since it provides
the best results based on many conducted experiments. It is
also worth noting that Adam optimizer [37] is utilized to
define optimum values of the learning parameters of the
constructed LSTM model, i.e., the values for the correlation
weight matrices in (20)-(25). Finally, since the LSTM is
sensitive to data scale, all inputs should be scaled to the range
of (0, 1) before the system states enter the proposed model’s
input layer.

C. MEASURES
F-Measure is used to validate the developed LSTM
RNN-based FDI detector. The F-Measure is calculated in the
following manner [38]:

F1 = (
2× Pr × Re
Pr + Re

), (24)

where Re is the recall and Pr is the precision, which are
determined in the following manner:

Pr = (
TP

TP+ FP
) Re = (

TP
TP+ FN

), (25)

where true positive (TP) represents the number number
of correctly recognized attack measurements, false posi-
tives (FP) represents the number of incorrectly observed
attacks, true negative (TN) represents the proportion of suc-
cessfully identified normal findings, and false negative (FN)
represents the number of overlooked attack vectors. The
F-Measure value 1 shows that every sample labeled as normal
is truly normal, and each observation designated as an attack
is genuinely a manipulated one.

V. NUMERICAL RESULTS
The developed distributed state estimator, attack and detec-
tion method are numerically tested using MATLAB and
PyTorch in this section. IEEE 14-bus system is used as a
benchmark for completing the simulations. The test system’s
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FIGURE 2. Estimation error per area for four regions: a) the normal state,
and b) attack to buses 5 and 14.

load data is derived from the New York independent sys-
tem operator (NYISO) over a period of two days. Param-
eters’ values and the system’s states are obtained using
MATPOWER [39]. As depicted in Fig. 1, the IEEE 14-bus
grid is partitioned into 4 areas; buses 1, 2, and 5 are in
area 1, buses 3, 4, 7, and 8 are in area 2, buses 6, 11,
12, and 13 are in area 3, and buses 9, 10, and 14 are in
area 4. Boundary buses are marked in red. The state vector
contains the magnitude and phase angles of all bus voltages.
Measurements consist of PMU recordings on 6 bus voltages
(circles in Fig. 1) and 17 line currents (squares in Fig. 1),
expressed in rectangular coordinates too. The measurement
noise is modeled as a zero-mean Gaussian with a standard
deviation of 0.02 and 0.05. It is noteworthy that the current
measurements on tie-lines connected to the boundary buses
specify each area’s actual range. In this regard, according to
Fig. 1, it is specified using the gray dashed lines that the actual

FIGURE 3. Proposed LSTM-based attack detection model.

range of area 2 encircles buses 5 and 9, the actual range of area
3 encircles bus 14, and the actual range of area 4 encircles
bus 11.

A. DSE AND DETECTION METHODS
The developed distributed FDIA is employed on each of the
test system’s boundary buses and multiple buses 5 and 11 in
order to assess its effect. Furthermore, a coordinated attack on
two border buses is also modeled. The magnitude of attack
is always 0.1 of the real measurement of the manipulated
variable. In particular, two injection quantities of 90% and
110% of the true value are simulated for each attacked state
variable. 90% signifies that the modified state variable has
been set to a value that is 10% less than the true value.
100 random DSE and attack scenarios are conducted, and
the average standard deviation of state variables are calcu-
lated throughout these runs. As described in the III-B, the
suggested attack is capable of evading the bad data detectors
of [5]. Figure 3(a)-(b) shows the per-area estimate error rel-
ative to the genuine data in the normal condition and attack
to two buses 5 and 14, respectively. It should be mentioned
that where areas are operated independently, none of their
operators is capable of obtaining neighborhood-specific area
errors and consequently, the graphics shown here can not be
used to detect an attack.

In addition to decentralized BDD methods, as shown in
Sec. III-B and numerically made plain in that section as an
illustrative example, the developed attack could circumvent

VOLUME 10, 2022 29283



M. Mohammadpourfard et al.: Cyber-Physical Attack Conduction and Detection in Decentralized Power Systems

FIGURE 4. The MSD of coordinated attack to buses 14 and 5.

TABLE 2. Training and validation accuracy of the methods.

the convergence-based detection techniques. Convergence-
based detection approaches, as detailed in [6], identify an
assault by monitoring oscillations in the development of
MSD. In each of the attack cases, this index is examined,
and it is found that it is zero for targeting buses 14 and 11.
The MSD diagrams for the coordinated attack to buses 5 and
14 over the iterations are shown in Fig. 4. As it is evident from
this diagram, the MSD has no oscillation and by increasing
the iterations, It eventually reaches zero or a particular value.

B. PROPOSED DETECTION METHODS
Tables 1 and 2 present the detailed results of the proposed
method over different attack scenarios. As one can see,
the proposed method is compared with the conventional
machine learning-based FDIA detectors including C4.5,
Adaboost with C4.5-based classifier, multilayer perceptron,
Naive Bayes, and Random Forest [38]. For the proposed
LSTM-based FDIA detector, the dataset was divided for the
training and test sets. The ratio for the training set is 70%, the
ratio for the testing set is 30%. For the training set, we used a
80% – 20% train-validation pattern. For other classification
methods, we used tenfold cross-validation. Table 1 presents

TABLE 3. Test accuracy of the methods.

the results for the validation accuracy of the proposed method
and the training accuracy of other algorithms. Table 2 presents
the results of applying the developed models on the test
dataset. As can be seen from the results, the proposed method
is superior to other methods in detecting attacks on phase
angles while for voltage magnitudes, all methods have been
able to detect all attacks. This is because the variance of
changes in the phase angles is much more than voltage
magnitudes. In other words, the data distribution change in
voltagemagnitudes is not toomuch tomake anymanipulation
easier to detect.

VI. CONCLUSION
While emphasizing the importance of boundary buses in
multi-area power systems, a distributed FDIA has been devel-
oped in this paper. It has been shown that the developed
attack strategy can bypass distributed BDD methods and
convergence-based detection ones. The first is provided by
attacking the state of boundary buses through all correspond-
ing measurements of those buses in neighboring areas, and
the latter is achieved by equalizing the injected values by
each area. Afterward, an LSTM-based framework is care-
fully designed to detect FDIA, which considers the temporal
dependency of consecutive system states. Numerical results
showed that the proposed method could gain excellent detec-
tion accuracy and deliver remarkable accuracy improvements
to existing FDIA detectors.
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