• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Yazılım Mühendisliği Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Yazılım Mühendisliği Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Approach and Model Performance Evaluation for Tele-Marketing Success Classification

Thumbnail

View/Open

Tam metin / Article (594.4Kb)

Date

2022

Author

Önay Koçoğlu, Fatma
Esnaf, Şakir

Metadata

Show full item record

Citation

Koçoğlu, Fatma Önay, and Şakir Esnaf. "Machine Learning Approach and Model Performance Evaluation for Tele-Marketing Success Classification," International Journal of Business Analytics (IJBAN) 9, no.5: 1-18. http://doi.org/10.4018/IJBAN.298014

Abstract

Up to the present, various methods such as data mining, machine learning, and artificial intelligence have been used to get the best assessment from huge and important data resources. Deep learning, one of these methods, is an extended version of artificial neural networks. Within the scope of this study, a model has been developed to classify the success of tele-marketing with different machine learning algorithms, especially with deep learning algorithms. Naive Bayes, C5.0, Extreme Learning Machine, and Deep Learning algorithms have been used for modelling. To examine the effect of class label distribution on model success, synthetic minority oversampling technique has been used. The results have revealed the success of deep learning and decision trees algorithms. When the data set was not balanced, the deep learning algorithm performed better in terms of sensitivity. Among all models, the best performance in terms of accuracy, precision, and F-score have been achieved with the C5.0 algorithm.

Source

INTERNATIONAL JOURNAL OF BUSINESS ANALYTICS

Volume

9

Issue

5

URI

http://doi.org/10.4018/IJBAN.298014
https://hdl.handle.net/20.500.12809/10237

Collections

  • WoS İndeksli Yayınlar Koleksiyonu [6466]
  • Yazılım Mühendisliği Bölümü Koleksiyonu [11]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.