• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Artificial neural network-based optimization of geothermal power plants

Tarih

2022

Yazar

Çetin, Gürcan
Özkaraca, Osman
Keçebaş, Ali

Üst veri

Tüm öğe kaydını göster

Künye

Çetin, G., O. Özkaraca, and A. Keçebaş. 2021. "Artificial Neural Network-Based Optimization of Geothermal Power Plants." In Thermodynamic Analysis and Optimization of Geothermal Power Plants, 263-278. doi:10.1016/B978-0-12-821037-6.00008-1.

Özet

In the world, due to limited energy resources, low efficiency of renewable energies, complex and costly energy conversion technology, and environmental pollution, human beings are trying to develop and improve innovative and efficient systems. Therefore, optimizing a complex system with optimization methods under real operating conditions makes it more efficient, economical, and environmentally beneficial. For simulation, monitoring, and failure prediction of a modern geothermal power plant (GPP), artificial neural network (ANN)-based models have proven to be very suitable, especially for existing systems without physical models. These models have good accuracy if they are trained with data-oriented, adaptive, rapid response, and appropriate data. This chapter introduces the ANN methodology to optimize the thermodynamic performance of a GPP. The mentioned methodology is performed on an existing binary GPP with low enthalpy. For this purpose, experimental data consisting of average hourly temperature, pressure, mass flow rate, and power data at certain reference points of the GPP are collected. A mathematical model including mass, energy, and exergy analyses is developed. As the output parameters of ANN, electricity production rate and exergy efficiency, which are the result of the model, are accepted. The optimization parameters have been created by selecting some parameters at the reference points of the GPP. Its power output and exergy efficiency are estimated by the ANN method using values from the GPP’s reference points. As a result, the best value of the selected optimization parameters is determined by the ANN method for estimating maximum power output and exergy efficiency. Thus, the effect and change of optimization parameters on the thermodynamic performance of the GPP can be observed.

Kaynak

Thermodynamic Analysis and Optimization of Geothermal Power Plants

Bağlantı

https://hdl.handle.net/20.500.12809/10320

Koleksiyonlar

  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu [104]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.