• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • Fizik Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • Fizik Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrochemical Properties of Coumarin 500 Encapsulated in a Liquid Crystal Guided Electrospun Fiber Core and Their Supercapacitor Application

Thumbnail

View/Open

Tam metin / Article (7.361Mb)

Date

2022

Author

Mamuk, Atilla Eren
Koçak, Çağdaş
Aslan, Sema

Metadata

Show full item record

Citation

(1) Mamuk, A. E.; Koçak, Ç.; Aslan, S.; Bal Altuntaş, D.. Electrochemical Properties of Coumarin 500 Encapsulated in a Liquid Crystal Guided Electrospun Fiber Core and Their Supercapacitor Application. ACS Applied Energy Materials 2022.

Abstract

Here, we first report a study on coumarin 500 and liquid crystal including polyacrylonitrile nanofibers in terms of synthesis, characterizations, and supercapacitor performances. SEM, POM, FTIR, and DSC measurements showed that liquid crystal was inserted into the fine polyacrylonitrile nanofibers successfully. Because a strong molecular interaction took place between coumarin 500 and liquid crystal and coumarin 500 was sensitive to the polarity of the medium, the liquid crystal behaved as a guide material for coumarin 500, and it was expected that coumarin 500 was oriented by the director of the liquid crystal along the core of the fiber. The average polyacrylonitrile nanofiber size was between 0.19 to 0.25 mu m, and liquid-crystal-doped and liquid-crystal +coumarin-500-doped fibers exhibited a similar distribution, which is approximately in the 0.30 to 0.60 mu m interval. This proved that the fibers maintained their structure after modifications. Electrochemical evaluation of the different composite nanofibers showed that there was not a significant current increase upon liquid crystal addition into polyacrylonitrile nanofibers at voltammograms. C-s values were enhanced after the coumarin 500 addition into liquid-crystal-doped nanofiber and obtained as 410.60 F/g with a specific energy value of 57.03 Wh/kg. Additionally, the long-term charge-discharge test of the liquid-crystal+coumarin-500-doped polyacrylonitrile graphite electrode showed a very steady distribution between 100th and the 2500th cycles with a 14.12% Cs deviation. This is attributed to the stable and robust network of the PAN nanofiber and the synergetic effect between liquid crystal and coumarin 500 in the nanofiber net.

Source

ACS APPLIED ENERGY MATERIALS

URI

https://hdl.handle.net/20.500.12809/10338

Collections

  • Fizik Bölümü Koleksiyonu [189]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]
  • WoS İndeksli Yayınlar Koleksiyonu [6466]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.