• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • View Item
  •   DSpace@Muğla
  • Fakülteler
  • Fen Fakültesi
  • İstatistik Bölümü Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A survey of smoothing techniques based on a backfitting algorithm in estimation of semiparametric additive models

Thumbnail

View/Open

Tam metin / Article (17.68Mb)

Date

2022

Author

Aydın, Dursun
Ahmed, Syed Eja
Yılmaz, Ersin

Metadata

Show full item record

Citation

Ahmed, S. E., Aydın, D., & Yılmaz, E. (2023). A survey of smoothing techniques based on a backfitting algorithm in estimation of semiparametric additive models. WIREs Computational Statistics, e1605. https://doi.org/10.1002/wics.1605

Abstract

This paper aims to present an overview of Semiparametric additive models. An estimation of the finite-parameters of semiparametric regression models that involve additive nonparametric components is explained, including their historical background. In addition, three different smoothing techniques are considered in order to show the working procedures of the estimators and to explore their statistical properties: smoothing splines, kernel smoothing and local linear regression. These methods are compared with respect to both their theoretical and practical behaviors. A simulation study and a real data example are carried out to reveal the performances of the three methods. Accordingly, the advantages and disadvantages of each method regarding semiparametric additive models are presented based on their comparative scores using determined evaluation metrics for loss of information. This article is categorized under: Statistical Learning and Exploratory Methods of the Data Sciences > Modeling Methods Statistical and Graphical Methods of Data Analysis > Multivariate Analysis Statistical Models > Semiparametric Models.

Source

Wiley Interdisciplinary Reviews: Computational Statistics

URI

https://doi.org/10.1002/wics.1605
https://hdl.handle.net/20.500.12809/10488

Collections

  • İstatistik Bölümü Koleksiyonu [95]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Muğla

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide|| Instruction || Library || Muğla Sıtkı Koçman University || OAI-PMH ||

Muğla Sıtkı Koçman University, Muğla, Turkey
If you find any errors in content, please contact:

Creative Commons License
Muğla Sıtkı Koçman University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.