• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Monkeypox Detection Using CNN with Transfer Learning

Thumbnail

Göster/Aç

Tam metin / Article (3.526Mb)

Tarih

2023

Yazar

Altun, Murat
Gürüler, Hüseyin
Özkaraca, Osman
Khan, Faheem
Khan, Jawad
Lee, Youngmoon

Üst veri

Tüm öğe kaydını göster

Künye

Altun, M.; Gürüler, H.; Özkaraca, O.; Khan, F.; Khan, J.; Lee, Y. Monkeypox Detection Using CNN with Transfer Learning. Sensors 2023, 23, 1783. https://doi.org/10.3390/s23041783

Özet

Monkeypox disease is caused by a virus that causes lesions on the skin and has been observed on the African continent in the past years. The fatal consequences caused by virus infections after the COVID pandemic have caused fear and panic among the public. As a result of COVID reaching the pandemic dimension, the development and implementation of rapid detection methods have become important. In this context, our study aims to detect monkeypox disease in case of a possible pandemic through skin lesions with deep-learning methods in a fast and safe way. Deep-learning methods were supported with transfer learning tools and hyperparameter optimization was provided. In the CNN structure, a hybrid function learning model was developed by customizing the transfer learning model together with hyperparameters. Implemented on the custom model MobileNetV3-s, EfficientNetV2, ResNET50, Vgg19, DenseNet121, and Xception models. In our study, AUC, accuracy, recall, loss, and F1-score metrics were used for evaluation and comparison. The optimized hybrid MobileNetV3-s model achieved the best score, with an average F1-score of 0.98, AUC of 0.99, accuracy of 0.96, and recall of 0.97. In this study, convolutional neural networks were used in conjunction with optimization of hyperparameters and a customized hybrid function transfer learning model to achieve striking results when a custom CNN model was developed. The custom CNN model design we have proposed is proof of how successfully and quickly the deep learning methods can achieve results in classification and discrimination.

Kaynak

Sensors (Basel) .

Cilt

23

Sayı

1783

Bağlantı

https://doi.org/10.3390/s23041783
https://hdl.handle.net/20.500.12809/10569

Koleksiyonlar

  • Bilişim Sistemleri Mühendisliği Bölümü Koleksiyonu [75]
  • PubMed İndeksli Yayınlar Koleksiyonu [2082]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.