• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Jeoloji Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Mühendislik Fakültesi
  • Jeoloji Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A comparative study to estimate the mode I fracture toughness of rocks using several soft computing techniques

Thumbnail

Göster/Aç

Tam metin / Article (804.6Kb)

Tarih

2023

Yazar

Köken, Ekin
Kadakçı Koca, Tümay

Üst veri

Tüm öğe kaydını göster

Künye

Koken Ekin,Kadakci Koca Tümay A comparative study to estimate the mode I fracture toughness of rocks using several soft computing techniques. Turkish Journal of Engineering 7, no.4 (2023): 296 - 305. 10.31127/tuje.1120669

Özet

Fracture toughness is an important phenomenon to reveal the actual strength of fractured rock materials. It is, therefore, crucial to use the fracture toughness models principally for simulating the performance of fractured rock medium. In this study, the mode-I fracture toughness (KIC) was investigated using several soft computing techniques. For this purpose, an extensive literature survey was carried out to obtain a comprehensive database that includes simple and widely used mechanical rock parameters such as uniaxial compressive strength (UCS) and Brazilian tensile strength (BTS). Several soft computing techniques such as artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), gene expression programming (GEP), and multivariate adaptive regression spline (MARS) were attempted to reveal the availability of these methods to estimate the KIC. Among these techniques, it was determined that ANN presents the best prediction capability. The correlation of determination value (R2) for the proposed ANN model is 0.90, showing its relative success. In this manner, the present study can be declared a case study, indicating the applicability of several soft computing techniques for the evaluation of KIC. However, the number of samples for different rock types should be increased to improve the established predictive models in future studies.

Kaynak

Turkish Journal of Engineering

Cilt

7

Sayı

4

Bağlantı

file:///C:/Users/Aidata/Downloads/document-51.pdf
https://hdl.handle.net/20.500.12809/10960

Koleksiyonlar

  • Jeoloji Mühendisliği Bölümü Koleksiyonu [126]
  • TR-Dizin İndeksli Yayınlar Koleksiyonu [3005]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.