• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
  •   DSpace@Muğla
  • Fakülteler
  • Teknoloji Fakültesi
  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessing the current and future effects of Covid-19 on energy related-CO2 emissions in the United States using seasonal fractional grey model

Thumbnail

Göster/Aç

Tam metin / Article (14.73Mb)

Tarih

2023

Yazar

Utkucan Şahin
Yan,Chen

Üst veri

Tüm öğe kaydını göster

Künye

Şahin, U., & Chen, Y. (2023). Assessing the current and future effects of Covid-19 on energy related-CO2 emissions in the United States using seasonal fractional grey model. Energy Strategy Reviews, 50, 101234.

Özet

Accurate CO2 forecasting plays an important role in energy planning. However, in the annual forecasting studies on CO2 emissions, the seasonal effects cannot be predicted. To overcome this problem, this study proposed a novel prediction model based on the seasonally optimised fractional nonlinear grey Bernoulli model (SOFANGBM(1,1)), combining the seasonal fluctuation technique with optimisation of the background, power index, and fractional order values. The proposed novel model offers two important improvements in prediction performance: (1) This model combined optimised fractional nonlinear grey Bernoulli model (OFANGBM(1,1)) with the seasonal fluctuation technique to enable monthly and quarterly predictions (2) The seasonally optimised fractional nonlinear grey Bernoulli model (SFANGBM(1,1)) was improved by optimising the background value. CO2 emissions had the largest share in global GHG emissions, and the United States was the second largest CO2 emission emitter worldwide after China in 2019. However, cases and deaths from Covid-19 continue in the United States, and important questions arise: How has Covid-19 affected CO2 emissions by fossil fuel type in the past, and how will it reshape them in the future? This study aimed to analyse how Covid-19 affects CO2 emissions from fossil fuels in the U.S., how it will reshape its future, and also contribute to Sustainable Development Goals (SDGs). Quarterly CO2 emissions from coal, natural gas, petroleum, and total CO2 emissions in the U.S. were forecasted using a novel grey prediction model under pandemic and pandemic-free scenarios. The pandemic-free scenario determined the CO2 emissions gap due to Covid-19, and the pandemic scenario presented forecasted results of quarterly and annual CO2 emissions by 2025. The prediction performance was tested from 2022-Q1 to 2022-Q4 by simulated from 2015-Q1 to 2021-Q4. Using the SOFANGBM(1,1), Covid-19 caused 2 %, 2 %, 16 %, and 12 % reductions in CO2 emissions from coal, natural gas, petroleum, and total CO2 emissions, respectively, in 2020. SOFANGBM(1,1) also forecasts that total CO2 emissions will reach 4520.6 Mt by 2025.

Kaynak

Energy Strategy Reviews

Cilt

50

Bağlantı

https://doi.org/10.1016/j.esr.2023.101234
https://hdl.handle.net/20.500.12809/11036

Koleksiyonlar

  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu [104]
  • Scopus İndeksli Yayınlar Koleksiyonu [6219]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Muğla

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber|| Yönerge || Kütüphane || Muğla Sıtkı Koçman Üniversitesi || OAI-PMH ||

Muğla Sıtkı Koçman Üniversitesi, Muğla, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Muğla Sıtkı Koçman Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Muğla:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.